

Diversity, selection and specificity of immune receptors

Thierry Mora Laboratoire de physique statistique École normale supérieure, Paris & CNRS

ENS Paris

Rhys Adams Yuval Elhanati Quentin Marcou Aleksandra Walczak

Princeton

Curt Callan Anand Murugan Zachary Sethna

Cold Spring Harbor Justin Kinney

RECEPTOR GENERATION

antibody = mutagenized scFv

Titration by flow cytometry

Titration by flow cytometry

VanAntwerp and Wittrup Biotechnol. Prog. 2000

Titration by flow cytometry

Comparison to direct fluorescence

wide range of affinities

Comparison to direct fluorescence

wide range of affinities

Adams Kinney Mora Walczak arXiv 2016

Mutation binding landscape

Mutation binding landscape

Adams Kinney Mora Walczak arXiv 2016

the effect of mutations on affinity: $S_K^i = \sqrt{\left\langle \left(\log_{10} K_D^{ia} - \log_{10} K_D^{WT}\right)^2 \right\rangle_a}$

 is independent of distance of mutation to antigen

the effect of mutations on affinity: $S_K^i = \sqrt{\left\langle \left(\log_{10} K_D^{ia} - \log_{10} K_D^{WT}\right)^2 \right\rangle_a}$

 is independent of distance of mutation to antigen depends on the number of contacts a residue makes in the receptor

the effect of mutations on affinity: $S_K^i = \sqrt{\left\langle \left(\log_{10} K_D^{ia} - \log_{10} K_D^{WT}\right)^2 \right\rangle_a}$

 is independent of distance of mutation to antigen depends on the number of contacts a residue makes in the receptor

- non-local effects
 - \rightarrow effect of interactions between receptor residues

 S_{E}^{i}

the effect of mutations on affinity: $S_K^i = \sqrt{\left\langle \left(\log_{10} K_D^{ia} - \log_{10} K_D^{WT}\right)^2 \right\rangle_a}$

 is independent of distance of mutation to antigen depends on the number of contacts a residue makes in the receptor

- non-local effects
 - → effect of interactions between receptor residues
- CDR3 mutations have greater effect on affinity
 →more likely to be mutated in functional receptors

 S_K^i

 S_{E}^{i}

- human T-cell beta chain receptor sequences
- 9 people

Sequence data

- human T-cell beta chain receptor sequences
- 9 people
- CD4+ naive cells
- out of frame reads (~14%) = 35,000 unique reads \rightarrow generation
- in frame reads (~235,000 unique reads) \longrightarrow selection

Robins et al, Blood (2009) data from Robins lab 2009-2012

learning VDJ recombination

sequence generation:VDJ recombination

Probability distribution?

- too many possible sequences to sample
- basic approach

The problem

• impossible to reliably assign events (insertions, deletion, ...)

sequencing errors

Expectation maximization

- genomic VDJ assignment
- cut position/deletions
- insertions

$\vec{\sigma}$ - receptor DNA sequence

• VD and DJ insertion profiles are identical

Probabilistic is necessary: D and J gene choice

• Not true (20% of forbidden pairings) according to best alignment

Probabilistic is necessary: D and J gene choice

• Not true (20% of forbidden pairings) according to best alignment

potential sequence diversity of VDJ recombination

all possible sequences impossible! $S_{\text{gen}} = -\sum_{\sigma} P_{\text{gen}}(\vec{\sigma}) \log P_{\text{gen}}(\vec{\sigma})$

potential sequence diversity of VDJ recombination

all possible sequences impossible! $\boldsymbol{S}_{\text{gen}} = -\sum_{\sigma}^{\clubsuit} P_{\text{gen}}(\vec{\sigma}) \log P_{\text{gen}}(\vec{\sigma})$

estimate from

potential sequence diversity of VDJ recombination

estimate from

all possible sequences -

impossible!

 $S_{\text{gen}} = -\sum^{\bullet} P_{\text{gen}}(\vec{\sigma}) \log P_{\text{gen}}(\vec{\sigma})$

		Convergent Recomb.						
Recombination Events : 52 bits								
Gene : 9.1 bits	Insertions : 30 bits				Deletions : 13 bits			
V D J	VD nts	VD length	DJ nts	DJ length	delV	delD	delJ	

potential sequence diversity of VDJ recombination

• estimate from

all possible sequences -

impossible!

 $S_{\text{gen}} = -\sum^{\mathbf{v}} P_{\text{gen}}(\vec{\sigma}) \log P_{\text{gen}}(\vec{\sigma})$

Nucleotide Sequence : 47 bits								
Recombination Events : 52 bits								
Gene : 9.1 bits	In	Insertions : 30 bits				Deletions : 13 bits		
V D J	VD nts	VD length	DJ nts	DJ length	delV	delD	delJ	

• 47 bits \implies repertoire size 10¹⁴ sequences > *Robins et al, Blood (2009)

10^{8*}+ unique seqs in individual 3 10¹¹ total T-cells in individual

all possible sequences impossible! potential sequence diversity of VDJ recombination $S_{\rm gen} = \sum P_{\text{gen}}(\vec{\sigma}) \log P_{\text{gen}}(\vec{\sigma})$ typical sequence can estimate from be generated in 32 5 bits 52 bits different ways $S_{\text{gen}} = S_{\text{recomb}} - \langle S(\text{scenario}|\sigma) \rangle_{\sigma}$ conditional entropy of recombination events recombination scenario given sequence entropy

Nucleotide Sequence : 47 bits							onvergent Recomb.
Recombination Events : 52 bits							
Gene : 9.1 bits	Insertions : 30 bits				Deletions : 13 bits		
V D J	VD nts	VD length	DJ nts	DJ length	delV	delD	delJ

• 47 bits \implies repertoire size 10¹⁴ sequences > *Robins et al, Blood (2009)

10⁸*+ unique seqs in individual 3 10¹¹ total T-cells in individual

diversity dominated by junctional diversity

Nucleotide Sequence : 47 bits							onvergent Recomb.		
Recombination Events : 52 bits									
Gene : 9.1 bits	In	Insertions : 30 bits					Deletions : 13 bits		
V D J	VD nts	VD length	DJ nts	DJ length	delV	delD	delJ		

• 47 bits \implies repertoire size 10¹⁴ sequences > *Robins et al, Blood (2009)

10⁸*+ unique seqs in individual 3 10¹¹ total T-cells in individual

quantify using selection factors

$$\frac{Q(\{\sigma\})}{P_{\text{gen}}(\{\sigma\})} = \frac{P_{\text{post-sel}}(\{\sigma\})}{P_{\text{gen}}(\{\sigma\})}$$

a model for the observed probabilities

Elhanati Callan Mora Walczak PNAS (2014)

Selection

Elhanati Callan Mora Walczak PNAS (2014)

Correlations between individuals

B. Correlation coefficients of $\log q_{VJ}$ between datasets

Selection only depends on aa, not codon

Natural selection anticipates somatic selection

• sequences more likely to be generated \rightarrow more likely to be selected

• true for all individuals independently

Entropy, again

entropy of generated repertoire

 \rightarrow thymic selection gives 50-fold reduction in diversity

Entropy, again

entropy of generated repertoire

Receptor sharing

how many shared receptors between 2 people?

close to random expectations

Other datasets: alpha chains

- we can do the same for the alpha chain
- similar insertion profile as beta chain

Elhanati Marcou Mora Walczak arXiv 2015

Other datasets: alpha chains

- we can do the same for the alpha chain
- similar insertion profile as beta chain

• entropy: 30 (alpha) + 47 (beta) = 77 bits $\sim N = 10^{23}$

Total Recombination Entropy: 32 bits								
Nucleotide Sequence : 30 bits								
VJ Choice: 11bits	Insertion Nucleotides: 12bits	Ins Length: 3.7bits	DelV: 2.7bits	DelJ: 3.3bits				

Elhanati Marcou Mora Walczak arXiv 2015

Other datasets: BCR

- we can do the same for B cell receptors: heavy chain
- analyse out-of-frame sequences from naive and memory B cells

Somatic hypermutations

- use out-of-frame sequences from memory B cells
- position-weight matrix model hypermutation hotspots

nt that are likely to hypermutate

hypermutation hotspot 7-mer signature

Elhanati Sethna Marcou Callan Mora Walczak Phil. Trans. R. Soc. B 2015

Somatic hypermutations

• nt to which a nt mutates

Thank you

at the level of generation

at the level of generation \longrightarrow twins are special

at the level of generation \longrightarrow twins are special

The source: long lived sequences

- last time twins shared blood: before birth
- insertions enzyme less active before birth

The source: long lived sequences

- last time twins shared blood: before birth
- insertions enzyme less active before birth

clone lifetime ~ 36 years

The source: long lived sequences

- last time twins shared blood: before birth
- insertions enzyme less active before birth

l egg l sperm Same placenta Separate amniotic sacs Identical twins

clone lifetime ~ 36 years

- Decay of zero insertion clonotypes:
 - zero insertion clonotypes within the naive pool
 - size of the total naive pool