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FIG. 1. Projected co-moving “densities” a3| |2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/m

pl

= 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|2 / a�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H�1

in

. The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical
aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:

i

✓
@t +

3

2
H

◆
+

1

2a2

r2 � U 0
nl

(| |2) � �

�
 = 0 ,

r2

a2

� =
�2

2


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

� 3

2
H2 ,

H2 =
�2

3


| |2 +

1

2a2

|r |2 + U
nl

(| |2)
�

,

(1)

where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and U

nl

(| |2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c2

and | |2 in units of m2M2c3/~3. Note that m2M2c3/~3

has dimensions of mass density. We assume that the
parameter

� ⌘ M

m
pl

⌧ 1 . (2)

2 We have checked that qualitatively similar results are obtained
even if we set U

nl

! 0 in the Poisson and Friedmann equations,
but keep U 0

n

(| |2) ⌘ @| |2Un

(| |2) in the nonlinear Schrödinger
equation.

* including gravitational effects
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FIG. 1. Projected co-moving “densities” a3| |2 (average along the line of sight) at several scale factors (a = 1 to a = 20) in
our 3+1 dimensional lattice simulations, with � ⌘ M/m

pl

= 0.03, and local gravitational interactions switched on (top panels)
and o↵ (bottom panels). The early instability due to self-interactions gives rise to the formation of solitons from an almost
homogeneous initial state. A statistical analysis of the locations of solitons at late times shows reveals evidence for clustering
only in the case where gravitational interactions are included. Note that inside solitons, | |2 = const. that is, their core density
does not redshift, whereas the background | ̄|2 / a�3. Moreover, solitons maintain a fixed physical size, hence the illusion of
them shrinking in size in a co-moving volume. The initial size of the box is the size of the horizon at the beginning of the
simulation L ' H�1

in

. The solitons contain a dominant fraction (⇠ 80%) of the mass in the simulation volume. On a technical
aside, note that the projected co-moving density even in the densest (lightest in color) appearing regions in the above plot will
be smaller that the density inside the cores because of the small volume occupied by the solitons.

between relativistic/non-relativistic models and results
is discussed in the Appendix.

The rest of the paper is organized as follows in short
sections. In Section II we discuss the model for a non-
relativistic, self-interacting field in an expanding universe
with weak field gravity. In Section III, we briefly dis-
cuss the lattice simulation and our numerical algorithm.
The initial conditions for the simulations is provided
in Section IV. We analyze linear instabilities from self-
interactions and gravitational interactions in Section V.
The numerically calculated power spectrum for the field
perturbations is provided in Section VI. In Section VII we
discuss the formation of solitons, followed by a discussion
of their individual profiles and stability in Section VIII.
The gravitational clustering of solitons is discussed in
Section IX, and resulting strong soliton interactions are
explored in Section X. Finally, we present our conclusions
and future directions in Section XI. In the Appendix we
discuss connections to a related relativistic system.

II. THE MODEL

We use the following equations of motion (and con-
straint equations) to explore the dynamics of a non-
relativistic, self-interacting, self-gravitating scalar field in

an approximately homogeneous and isotropic universe:
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where [. . .] indicates a spatial average, a(t) is the scale-
factor, H(t) = ȧ(t)/a(t) is the Hubble rate,  (t,x) is
complex field amplitude, �(t,x) is the Newtonian po-
tential and U

nl

(| |2) encodes the self-interactions of the
field.2

All variables and parameters appearing in the above
equation are dimensionless. We have expressed time t in
units of ⌧m = ~/mc2, lengths in units of �m = ~/mc,
the Newtonian gravitational potential � in units of c2

and | |2 in units of m2M2c3/~3. Note that m2M2c3/~3

has dimensions of mass density. We assume that the
parameter

� ⌘ M

m
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⌧ 1 . (2)

2 We have checked that qualitatively similar results are obtained
even if we set U

nl

! 0 in the Poisson and Friedmann equations,
but keep U 0

n

(| |2) ⌘ @| |2Un

(| |2) in the nonlinear Schrödinger
equation.

* also applies to moduli or aspects of axion dynamics in the late universe
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what we “know” about inflation 
(simplest case - scalar field driven inflation)

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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*similar to a matter dominated universe, see for example: Gilmore, Flauger & Easther (2012), also see Richard’s talk 



 
self-interaction instability 
— “oscillon” formation

⇤� = V 0(�)

expansion

self-interactions

gravitational int.

�
(t
,
x
)/
M

          MA (2010) 1006.3075 

M ⌧ mpl

*without oscillons, but relevant for instabilities, see related (much) earlier work: Khlopov, Malomed & Zeldovich (1985)
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instabilities in an expanding universe
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Figure 2. The instability bands and the magnitude of the Floquet exponent (in units of the field dependent
e↵ective mass m(�̄)) are shown as functions of the oscillating condensate amplitude and the dimensionless physical
wavenumber  = k/am. The white lines indicate how a given co-moving wavenumber passes through the instability
bands as the universe expands.

Linear Instability Analysis — At the end of infla-
tion, the homogeneous inflaton condensate �̄ starts
oscillating around the minimum of its potential. In
the presence of any perturbations, such homoge-
neous oscillations are unstable: they lead to a rapid
growth in field perturbations ��(t,x ), or equiva-
lently, to non-adiabatic particle production [22–25].

A useful way of characterizing the e�ciency of
particle production is as follows. First, let us ignore
expansion. Floquet theory tells us that the gen-
eral solution for the field perturbations in Fourier
space is of the form ��

k

/ exp(±µkt), where µk is
the Floquet exponent. If <(µk) 6= 0, then there is
an ‘unstable’ solution growing exponentially with
time. In general, any nonlinearity in V (�) will
lead to resonant particle production. The real part
of the Floquet exponent, which characterizes the
particle production rate, is shown in Fig. 2 as a
function of the amplitude of the oscillating con-
denstate and the physical wavenumber  ⌘ k/am

(with a = 1). Note that we have expressed k and
µk in units of a field/time dependent e↵ective mass

scale: m2 ⌘ 2n⇤2 (⇤/M)2
�
�̄/M

�
2(n�1)

. This e↵ec-
tive mass scale m2 ⇡ @

¯�V/�̄ when �̄ ⌧ M and is
what sets the period of �̄.

The expansion of the universe can now be in-
corporated qualitatively. The amplitude of the
inflaton field oscillating in V / |�|2n decays as
�̄ / a�3/(n+1), and the dimensionless wavenumber
scales as  / a�2(2�n)/(1+n). Hence a given Fourier
mode flows through a number of Floquet bands as
shown in Fig. 2. Heuristically, the mode will grow
if the expansion rate H is much less than |<(µk)|.
Strong resonance occurs for |<(µk)|/H ⇠> O[10].

For the lowest-k band (k/am near 0):

[|<(µk)|/H]0
max

= f(n)(mPl/M), (1)

where f(n) . O[1] with a very weak dependence
on n for moderate values of n. It is M/mPl that
controls whether there is e�cient self-resonance
at low wave-numbers. In particular, for M .
2.5 ⇥ 10�2mPl, the fluctuations grow rapidly and
become energetically comparable to the homoge-
neous condensate. They backreact on the conden-
sate, leading to its complete fragmentation.

When the initial fragmentation is ine�cient
(M & 2.5 ⇥ 10�2mPl), the higher order instabil-
ity bands can play an important role. Compared
to the band near k = 0, the bands at higher k are
narrower, and < (µk) is typically smaller. However,
these narrow bands can lead to fragmentation of the
condensate at late times for two reasons. First, in
these bands

[<(µk)/H]1 / mPl/|�̄| |�̄| ⌧ M . (2)

Furthermore, the modes tend to spend a lot of
time in these narrow bands. This e↵ect can be
understood by considering the white flow lines in
Fig. 2. The flow lines cross the first narrow band
from right to left (n < 2), left to right (n > 2),
or never leave it (n = 2). The narrow resonance
will clearly persist until non-linear e↵ects become
important in the n = 2 case. Upon closer inspec-
tion, the same holds for the n < 2 and n > 2 cases
as well. For these two cases, |̇| ⇠ H. Since H

is decreasing, at some point a given k-mode will
spend su�cient time within the narrow band for
fluctuations to grow substantially. This eventually
leads to backreaction on the condensate and



oscillon formation at the end of inflation

MA, Easther, Finkel, Flauger & Hertzberg (2011) 
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oscillons?

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland et al. (1995) …

For example:
Segur & Kruskal (1987)
MA & Shirokoff (2010) [flat-tops] 
Sfakianakis (2012)
Hertzberg (2011)
MA (2013) [non-canonical] 
Mukaida et. al (2016)
Salmi & Hindmarsh (2014)
Sakstein & Trodden (2018) [non-canonical]
Antusch, Cefala & Torrenti (2019)
Fodor (2019)

very inefficient antennas!
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long term dynamics ?

expansion

self-interactions

gravitational int.

assuming coupling to other fields is sufficiently weak

?



include gravity ?
expansion

self-interactions

gravitational int.

• gravitational clustering takes time … 

• long time makes it difficult to resolve very fast oscillatory time 
scale 

gravitational interactions



“non-relativistic” limit
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non-linear Schrodinger eq. Poisson eq. + Friedmann eq.
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* this is a bit non-rigorous



non-relativistic case
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IX. GRAVITATIONAL CLUSTERING

For � ⌧ 1, gravitational clustering is expected to be-
come important at late times (significantly after the soli-
tons have formed, see eq. (12)). At these late times,
this universe essentially behaves as a matter dominated
universe (a(t) / t2/3), with solitons becoming our new
non-relativistic dust particles on scales much larger than
their size. As a result, our zeroth order expectation is
that the gravitational clustering of these solitons should
proceed in a manner similar to dust in an expanding uni-
verse. Moreover, we can ignore non-gravitational forces
between the solitons at separations much larger than 2re

because we expect them to be Yukawa-like, with the force
falling away exponentially with separation.13

We construct the two point correlation function of soli-
ton locations obtained from our simulations to quantita-
tively investigate the e↵ects of gravitational clustering.
In Fig. 5, we show the two-point correlation function of
the solitons, calculated with the Landy-Szalay estimator
[52, 53]:

⇠
LS

(r) =
DD

RR
� N � 1

N
DR

RR
+ 1 , (19)

where there are N solitons (the data D), and N uniform
randomly chosen points R, and RR is the number of soli-
ton pairs in a given co-moving radial separation bin, RR
is the mean count for the random points over several re-
alization R, and DR is the cross-correlation statistic.

As seen in Fig. 5, the measured two point correlation
function is the same for the case with and without gravi-
tational interactions at early times soon after soliton for-
mation (a . 4). The distribution is close to Poissonian
on large scales: ⇠

LS

(r & 10) ⇡ 0. However, the co-moving
scale r

nl

⇠ k�1

nl

which is the typical separation of solitons
when they first form manifests itself in a negative corre-
lation function on small scales (we find very few solitons
with separations less than k�1

nl

).
If we allow for gravitational interactions, solitons begin

to cluster. This clustering can be quantified in our simu-
lations at late times as excess power in ⇠

LS

(for a & 10).
Consistent with clustering of point particles in a matter
dominated universe starting with uncorrelated positions
[54], we find

⇠
LS

(r) / 1

r2

, (20)

where r is a co-moving separation. Fitting the model
⇠
LS

/ a↵r� for our 6 simulations in the range of a = 10

self-interaction potential), which also showed that the above sta-
bility criterion correctly predicted the survival of large amplitude
oscillons in simulations. We further note that three dimensional
oscillons in Sine-Gordon potentials (for axions, but without grav-
ity) are not stable and have a relatively short lifetime, compared
to flattened potentials [49, 50]. Also see the Appendix.

13 This is also reminiscent of the force between solitons as analyzed
by [51].

[co-moving separation]

/ r�2

FIG. 5. The two point correlation function of soliton loca-
tions with and without the inclusion of gravitational interac-
tions. At early times, the correlation function with and with-
out gravity agree with each other. However, at late times
gravitational clustering ⇠

LS

(r) / r�2 is clearly visible for the
a = 16 and a = 20 cases in the above figure.

to a = 20, we find: ↵ = 1.7 ± 0.3, � = �2.1 ± 0.2. It
would be interesting to explore this clustering further in
detail, since it might reveal di↵erences from the point
particle case at late times.

X. STRONG SOLITON INTERACTIONS

Self-gravity plays the important role of bringing soli-
tons together at late times (i.e., significantly after their
formation), and allows them to interact.14 Fig. 6 shows
three di↵erent types of interactions that are achieved
from our cosmological initial conditions.

1. Solitons “repel/bounce o↵” each other when the
relative phase of the interacting solitons |✓

1

�✓
2

| ⇡
⇡ where  a(t,x) =  a(x)e�i(⌫at+✓a) with a = 1, 2.
The repulsive interactions lead to some of the
largest post interaction kicks to our solitons. We
observe some solitons zooming across our simula-
tion volume.

2. A few solitons merge to form more massive solitons
(typically when the relative phase is ⇠ 0), resulting
in a change in number density of solitons. Such in-
teractions are typically accompanied by generation
of a burst of scalar waves as the solitons settle into
new configurations.

3. A small fraction of solitons form orbiting binaries.

14 There are interactions at early times when gravity is ignored as
well, but not so at late times in our simulations.

consistent with nonlinear 
clustering of “point” masses

MA & Mocz (2019) 1902.07261
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consistent with nonlinear 
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Caution: we don’t fully understand (some) velocities of solitons (work in progress)
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1.oscillons dominate the energy density

2.they cluster gravitationally

3. can undergo complex scattering



so far, quadratic minima with wings …
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• shape of the potential (self couplings) 

• couplings to other fields
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quadratic minimum
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non-quadratic, power-law minima ?
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• shape of the potential (self couplings)

• couplings to other fields
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power law at the minimum

flattened potential

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <⇠ 40,
partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated

34

(fractional powers also)



dynamics in different power law minima
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“equation-of-state”  
from oscillating fields

the spatially averaged equation-of-state of fields

- (n = 1) quadratic minima        w = 0 
- (n > 1) non-quadratic minima w = 1/3 (after sufficient time)

V (�) / |�|2n

|�| ⇠ M

power law at the minimum

Lozanov & MA (2016/17)

1608.01213, 1710.06851 

µk/H / ��1why?



Implications

• gravitational
- homogeneous
- inhomogeneous

• non-gravitational ( typically more fields needed, and more 
model dependent)
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reduction in uncertainty

V (�) / |�|2n
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4

Figure 4. A summary for the asymptotic equation of
state without coupling to additional fields. The nu-
merical results from lattice simulations are shown as
green circles for M ⇡ 2.45mPl, and orange squares for
M ⇡ 7.75 ⇥ 10�3mPl. The dotted blue line is the ex-
pectation from a homogeneous, oscillating condensate.

the transients decay, the inflaton is completely
fragmented with almost no energy remaining in the
homogeneous condensate. The field configuration
now evolves freely in a turbulent manner (as
discussed for n = 2 in [29]). Numerically, we find
that the kinetic and gradient energies are approxi-
mately equal to each other and much greater than
the potential energy, implying w ! 1/3 (cf. Fig.
3), and that the field is virialized in the sense that
h�̇2/2i

s,t

= h(r�)2/2a2i
s,t

+ nhV i
s,t

holds. We
can then get an estimate of the deviation of w

from 1/3: w � 1/3 ! (2/3)(n � 2)⇥ the fraction
of energy density in the potential energy. For
ine�cient initial resonance M & 2.5⇥10�2mPl and
n = 1, we observe initially some small excitations
of the modes near k = 0 due to the broad band
which is eventually shut o↵ by expansion. The
condensate energy is redshifted as a�3, slower than
the gradient energy (a�4). Hence, the fluctuations
become ever smaller, and the oscillating condensate
determines the equation of state, yielding w = 0.
For n > 1, after initial particle production is shut
o↵ the condensate energy decays as a�6n/(n+1),
whereas the gradient energy stored in field fluctu-
ations decays as a�4 (i.e. like radiation) until the
first narrow resonance band becomes important
and particles are again produced. This second
phase of particle production in a narrow k band is
expected from our Floquet analysis and confirmed
by our lattice simulations. Subsequent evolution
includes a shifting of this peak towards higher

(n < 2) or lower (n > 2) co-moving momenta as
expected from the flow lines in the Floquet anal-
ysis. This is followed by the generation of a series
of secondary peaks from nonlinear scattering (for
n = 2, see [30]). Eventually the growth is shut o↵
by backreaction. All the peaks smear out, whereas
the remnant condensate continues to oscillate with
slowly decaying amplitude, continuing its particle
production. After su�ciently long times, we find
that the kinetic and gradient energies are approxi-
mately equal and much greater than the potential
energy with the field again virialized. This yields
an equation of state parameter w ⇡ 1/3. Note that
the n = 2 case would yield w = 1/3 for the homo-
geneous and inhomogeneous field. A summary of
the asymptotic equation of state is shown in Fig. 4.

e-folds to Radiation Domination — Our linear
analysis of the instabilities allows us to estimate
the number of e-folds after inflation required to
reach radiation domination, �N

rad

⌘ R arad

aend
d ln a,

by calculating the time of backreaction of the fluc-
tuations. First, note that for n = 2, �N

rad

⌧ 1
since in this case w ! 1/3 with and without
fragmentation. For all other n & 1, the universe
becomes radiation dominated within

�N
rad

⇠
8
<

:

1 M . 10�2mPl ,
n + 1

3
ln

✓


�

10M

m
Pl

◆
M & 10�2mPl .

(5)
Here, �/ ⇠ 10�2 is the fractional width of the

first k 6= 0 narrow resonance band (cf. Fig. 2).
Note that �/ becomes vanishingly small as n !
1 (and n � 2), leading to �N

rad

� 1. These
estimates are confirmed by our lattice simulations
(see Fig. 3).

We emphasize that w ! 1/3 can be achieved
without coupling to other fields for all n & 1.
When coupling to other massless fields is included,
�N

rad

is reduced further. Thus the above calcu-
lated �N

rad

should be taken as an upper bound on
�N

rad

. Using these results, we can calculate the
expected values of the tensor-to-scalar ratio r and
the spectral index n

s

for di↵erent values of M and
n, even including the uncertainty from couplings
to additional light fields (see Fig. 5, we use a pivot
scale k? = 0.002 Mpc�1). The solid black lines use
�N

rad

calculated above, whereas the width of the
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primordial black hole  
formation from solitons?
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.

Gravitational field:
In the third column of Fig. 2, we show the evolution
of histograms of the gravitational field (equivalently,
acceleration). If the oscillons had a uniform spheri-
cally symmetric density up to radius R, then g / r
for r < R and g / r�2 for r > R, where r is the
distance from the oscillon core. Hence, the maximal
g will be on the surface of the oscillons. Our oscil-
lons do not have an exactly uniform density, but we
still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.

Let us re-iterate the main takeaway from this sub-
section. Since oscillons do not form e�ciently for
M & 10�2mPl, the gravitational potential on the
surfaces of individual objects is bound to be

|�nl| ⇠ 10 ⇥
✓

M

mPl

◆
2

. 10�3 . (13)

Oscillons do not gravitate strongly, justifying the
linear treatment of metric perturbations. Neverthe-
less, it will be interesting to study the stability of
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still expect that the maximal g in the histograms
will come from regions close to the oscillon surfaces.
This maximal value was estimated in eq. (12) and is

represented by a vertical dashed line; it again agrees
with the values from the numerical simulations.

Let us re-iterate the main takeaway from this sub-
section. Since oscillons do not form e�ciently for
M & 10�2mPl, the gravitational potential on the
surfaces of individual objects is bound to be
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Oscillons do not gravitate strongly, justifying the
linear treatment of metric perturbations. Neverthe-
less, it will be interesting to study the stability of

7

� . few ⇥ 10�3

Not easy to form PHBs
from individual solitons from self resonance

Can accidental over-densities in solitons lead 
to PBHs (Cotner et. al 2018/19) 

implications

Lozanov & MA (2019)1902.06736

Also see Kou, Tian & Zhou (2019) for recent GR simulations of oscillons  
Also see T. Giblin’s talk on GR effects in preheating



gravitational waves  
(mainly from formation)
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FIG. 2. Formation of oscillons after inflation and their persistence. In each row we show the histograms of the energy
density, ⇢, Newtonian potential, �, and the gravitational acceleration, g, across the simulation box at �N e-folds
after the end of inflation (in each column, later times are at the bottom). The orange contours, in the snapshots of
the simulation box in the last column, are drawn around regions of overdensity � 5. This is for the T-model with
n = 1, M =

p
6↵mPl, ↵ = 10�5. The vertical dashed line is at gR = �� = 10(M/mPl)

2 – the approximate prediction
for the Newtonian potential on the oscillon surface of radius R. Since oscillons are spherical, localized objects, g
should be maximal near their surfaces. It agrees with the observed maximal value of g within the simulation box.
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still expect that the maximal g in the histograms
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FIG. 6. The gravitational waves generated between
�N = 0 to 1 (red to purple curves) for the oscillon model
from Fig. 2. The peak of the red curves is close to the
predicted values in eqs. (33) and (34).

the most unstable ��̃k. The rapid growth of the
peak height reflects the exponential amplification of
the inflaton perturbations. Even at this stage, the
source term in eq. (16) has to be evaluated beyond
linear order in perturbations.

The next 3 � 4 red curves show the onset of the
nonlinear regime. This stage is known as rescatter-
ing, since mode-mode couplings, including the back-
reaction of amplified ��̃k on the condensate, become
important. The broad peak, centered on the most
unstable frequency, becomes wider. Its height grows
more slowly than before and approaches the pre-
dicted value of ⇠ 10�10, see eq. (34), as the field
becomes completely inhomogeneous (with ⇠ 1/3 of
the total energy being stored in gradients).

The following thick band of red-green curves rep-
resents the third stage. There the oscillons form and
stabilize, with GWs power increasing slowly on all
scales.

The last and longest stage is given by the green-
purple curves. The oscillons have stabilized and
sphericalized, while being assembled in a fixed co-
moving grid-like configuration. Since there are al-
most no time-dependent quadrupole moments to
act as sources, there is very little and slow pro-
duction of GWs. On intermediate and low fre-
quencies, GW power propagates (almost freely) to-
wards lower frequencies and lower values as time
goes by and the universe expands. This makes
sense since the oscillon-dominated universe under-
goes a matter-like state of expansion, with ⇢̄ / a�3.
Since HLattice uses a formula like eq. (21) to cal-
culate the GW frequency today (more specifically,

FIG. 7. The gravitational waves generated between
�N = 0 to 0.85 (red to purple curves) for the tran-
sients model from Fig. 3. The peak of the red curves is
close to the predicted values in eqs. (33) and (34), and
almost identical to the one in Fig. 6.

f
0

(k, ⌧) = k/(a(⌧)⇢̄1/4(⌧)) ⇥ 4 ⇥ 1010 Hz, where ⌧ is
the time of output, beyond which it is assumed that
the universe is thermal and radiation dominated),
it follows that f

0

(k, ⌧) will decrease with time in
a matter-dominated universe. The energy density
of GWs redshifts as radiation, which explains why
the GWs contribution to the energy budget of the
matter-dominated universe decreases with time. Al-
beit nearly-spherical, individual oscillons do gener-
ate small amounts of GWs. This is visible at the high
frequency end of the GW spectrum. Oscillons act as
objects of fixed physical size, sourcing GWs of fixed
physical wavenumber. For the HLattice conventions
this implies that f

0

(k, ⌧)⇢̄1/4(⌧) / k/a(⌧) = const,
i.e., the oscillons-sourced GWs are at increasingly
higher f

0

(k, ⌧). This small late-time e↵ect has an
intrinsic numerical component. The oscillons are in-
evitably less well resolved as the comoving lattice ex-
pands, sourcing weak late-time high-frequency GWs.
This does not a↵ect the spectrum on intermediate
and low frequencies. For more detailed studies of
GWs from oscillons see [55–61].

2. Transients

Transients decay away quickly, in a non-spherical
manner. Hence, unlike the cases when we have oscil-
lons in which gravitational waves are not generated
after oscillons are formed, the decay of the transients
potentially can act as an additional source of GWs.
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In the calculations below, we will use �r = 1/3 for
the inhomogeneous scalar field, typically valid at the
time of backreaction of the field.

The typical values of ⌦
GW,0

h2

100

. 10�10 at the
peak are quite small. Qualitatively, this bound
can be understood from the following reasoning.
The factor of 10�5 in eq. (31) comes from ⌦

rel,0

.
Since gravitational waves redshift as radiation (or
relativistic matter) we expect ⌦

GW

to scale linearly
with ⌦

rel

, which has been decreasing since the
epoch of equality. The additional � suppression is a
consequence of the suppression of GW production
on subhorizon scales sourced by the anisotropic
part of the energy momentum tensor of the scalar
field (see eq. (29)). This last suppression is similar
in nature to the one discussed after eq. (8) for the
scalar metric perturbations.

3. Oscillons & Transients

Oscillons: For the typical lengthscale which first
becomes nonlinear when oscillons form, the param-
eter � is given by (refer to Section III A 2)

� =
H

br

a
br

k
⇠ H

br

R

2⇡
⇠ M

mPl

. (32)

Assuming that the peak of the GWs is generated
around the time of backreaction of this mode, its
frequency today is

f
0

⇠
r

mPl

M
⇥ 108 Hz . (33)

In deriving the above expression we used eq. (24)
and H

br

⇠ ⇤2/m
pl

with ⇤2 given by eq. (4).
Similarly, using eq. (31), the expected strength of

the gravitational waves today is

⌦
GW,0

h2

100

⇠ 10�6

✓
M

mPl

◆
2

. (34)

Once oscillons have settled, we do not expect sig-
nificant emission of GWs from individual oscillons,
since field profiles of individual objects are spheri-
cally symmetric [59].

We stress that if the universe is not radiation
dominated after the time of production (which is
likely since oscillons lead to a matter-like equation
of state), then there will be additional suppression
factors in the frequency (see eq. (20)) and the
fractional density of the gravitational waves (see eq.

(30)) from oscillons after inflation.

Transients: The formation of transients is very
similar to the one of oscillons. We expect the fre-
quency and the strength of the peak of the GW
power spectrum to be the same as in the oscillon
case, see eqs. (33,34). As the transients decay, those
which evolve in a non-spherical manner may gener-
ate an additional GW signal. Its typical frequency
should be again set by the spatial extend of the indi-
vidual objects, whereas its strength is hard to model
analytically and is best studied numerically.

B. Results from lattice simulations

We employed HLattice [93] for the calculation
of the GWs sourced by the nonlinear field dynam-
ics. For the cases we studied, we used the same
simulation parameters, i.e., box size, lattice points
separation, time step, initial conditions, etc., as for
the LatticeEasy simulations discussed in Section
III B. However, we used a more accurate 6th-order
symplectic integrator for the self-consistent evo-
lution of the scalar field and the scale factor.
We also used the HLattice2 spatial-discretization
scheme (with k

e↵

, not k
std

) when calculating the
field spatial derivatives. Those improvements in
accuracy were necessary for the computation of
the GWs. To find the GWs, we evolved the tensor
metric perturbations passively, i.e., we solved eq.
(16), without taking into account their feedback
on the field and background metric dynamics. The
time step for the GW integrator was four times
greater than the one for the field and scale factor
evolution.

1. Oscillons

The generated GW power spectrum from the os-
cillon formation for M ⇡ 0.775 ⇥ 10�2mPl is shown
in Fig. 6. Time runs from red to purple. One can
see four distinct stages [55].

The first 5�6 red peaked curves represent the os-
cillatory stage, during which the condensate is still
intact. A broad range of ��̃k is steadily excited via
broad resonance, see Section II B, and is responsi-
ble for the generation of the GWs. The frequency
of the curves peak is slightly under 109 Hz, which
corresponds to the predicted order of magnitude in
eq. (33) and is determined by the wavenumber of
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. O[10�9]

expansion

self-interactions

gravitational int.

⌦gw,0

⌦gw,0

Lozanov & MA (2019) 1902.06736
Earlier work: Zhou et. al (2013).  Also see  Kitajima, Soda & Urakawa (2018)
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FIG. S4. Snapshots of the values of the Modulus (first row) and Higgs (second row) fields on a two-dimensional slice through
the simulation box at four di↵erent times. Around the time of backreaction, t ⇡ 23m�1 (second column), the Higgs field forms
domains (‘bubbles’) with � = ±p

2|�|f/q. They disappear within �t ⇠ 10m�1, due to collisions, as well as oscillations of the
remnant � condensate. The used parameters are b = 1, q = 102, M = 10�12m

pl

, f = m
pl
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S2 Gravitational Waves and Lattice Simulations

1. Equations of Motion

We calculate the gravitational waves generated by the nonlinear field dynamics using

ḧTT
ij + 3HḣTT

ij � r2

a2

hTT
ij =

2

m2

pl

⇧TT
ij (S15)

where hTT
ij is the spatial, transverse, traceless part of the metric perturbations (gµ⌫ = gFRW

µ⌫ + hµ⌫), and ⇧TT
ij is the

transverse-traceless part of the energy momentum tensor of the fields which sources the gravitational waves. This is
a “passive calculation” where the (small) backreaction of the metric perturbations on the fields is ignored.

2. Characteristic Scales

Let us consider a gravitational wave generated at a = a
g

in the early universe with a co-moving wavenumber k.
By taking into account red-shifting due to expansion and conservation of entropy after thermalization, the frequency
today of this GW signal is
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where H
g

is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
th

and g
0

are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
wavenumber at which the gravitational waves are generated:
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where H
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is the Hubble parameter of the universe at the time of generation of the gravitational waves, g
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and g
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are the e↵ective number of relativistic degrees of freedom at the epoch of thermalization (a
th

) and today (a
0

), ⌦
r,0 is

the fractional energy density in relativistic species today and w
mod

is the mean equation of state between generation
and thermalization (after which we assume a standard thermal history). We can parametrize the characteristic
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electroweak symmetry breaking and early universe cos-
mology. It also motivates further studies on the potential
of gravitational wave probes for new physics beyond the
SM.

II A Simple Model A simplified potential captur-
ing the most salient features of a Higgs field, h, coupled
to a modulus, �, is

1

2
m2

��2 +
M2

f
(� � �

0

)

✓
h†h � v2

2

◆
+ �(h†h)2. (1)

The global minimum of the potential lies at � = 0, where
the potential becomes simply the Standard Model Higgs
potential. The constant v2 = M2�

0

/(�f). Placing the
minimum at � = 0 is a pure convention; in particular, �
carries no charges and can be shifted by a constant. We
take the mass scale M2 to be the natural value of the
Higgs mass and f to be the natural scale of the modulus
field �. That is, we suppose that quantum corrections to
the Higgs mass would be of order M2 and that generic
values � ⇠ f produce Higgs masses of this order.

The e↵ective Higgs boson mass

m2

h; e↵

(�) = M2

� � �
0

f
(2)

is positive at � � 0 and negative at � ⌧ 0, transitioning
through zero when � = �

0

. The SM Higgs mass parame-
ter is m2

h; e↵

(0) = �M2�
0

/f . In this model, the criterion
for fine tuning is

Fine tuning , � ⌘ f

�
0

� 1. (3)

In other words, it is an accident if the Higgs mass is zero
at the same point where the � potential is minimized; the
closer these two points, the more surprising the result.

We will mostly have in mind supersymmetric theories,
where this toy simplified potential can arise with M2 ⇠
m2

soft

as explained in § S4 2. We consider the hierarchy
|m2

h; e↵

(0)| ⌧ m2

� . M2 ⌧ f2. Terms we have neglected,

such as (m2

�/f2)�4 or 1

f2

�2@µ�@µ�, could have important

e↵ects on the dynamics (such as oscillon formation [10–
14]). We assume that the field � stays far from singular
points in field space for all relevant times. For now we
have omitted all modulus self-interactions for simplicity.

III Non-linear Dynamics In a tuned universe, the
modulus-Higgs field system can undergo explosive, non-
perturbative field dynamics leading to fragmentation of
the fields on short time scales (t ⌧ H�1), and yield a
non-trivial equation of state for a number of e-folds of
expansion following the fragmentation.

For � � 1, the e↵ective Higgs mass term oscillates
between very large positive and negative values due to
the oscillation of �. One expects such oscillations to

FIG. 2. The ratio of the spatially averaged energy density
in the Higgs and modulus fields as a function of time ob-
tained from our lattice simulations. This dynamics of energy
transfer between the modulus and Higgs fields is represen-
tative of the case where the modulus fragments, i.e. when
b ⌘ M4/2�f2m2

� ! 1. For the above plot we have chosen
b = 1, M2/m2

� = 102 and M/f = 10�12. The interaction
term is not included in the above energy densities.

lead to non-adiabatic, out-of-equilibrium production of
the Higgs particles. By considering tachyonic resonance
[15], and for f ⇠ �

in

⇠ m
pl

, the e�ciency of such particle
production is controlled by q ⌘ M2/m2

�. In particular,
q � 1 (as we assume) should lead to a broad range of
physical momenta for the produced Higgs particles (see
Fig. S3 in § S1).

E�cient transfer of energy from the modulus to the
Higgs field is countered by the Higgs self-interaction �.
Large self-interactions block Higgs production, whereas
at small � the Higgs field will be su�ciently populated
in non-zero momentum modes to backreact on the mod-
ulus, yielding a spatially inhomogeneous modulus (frag-
mentation). A more detailed view of the dynamics of the
modulus-Higgs system can be seen in Fig. S2 in § S1.

A Does the modulus fragment? The Higgs field
must be significantly populated in order to backreact on
the modulus and cause its fragmentation. Large q fa-
vors tachyonic resonance whereas large � limits the Higgs
field occupation numbers. We define the fragmentation
e�ciency parameter

b ⌘ M4

2�f2m2

�

, (4)

which incorporates both e↵ects to determine whether the
modulus field fragments. Note that b  1 from the
constraint that the combined modulus-Higgs potential is
positive definite. From detailed numerical simulations
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GFiRe: a Gauge Field integrator for Reheating 
Kaloian D. Lozanov & MA [arXiv:1911.06827]

New algorithm and code, GFiRe, to simulate nonlinear dynamics of 
Charged Scalars Fields coupled to Abelian Gauge Fields in an 
expanding universe

- algorithm uses link variables and includes self-consistent 
expansion

- algorithm is symplectic (arbitrary order) and has “exact” 
preservation of Gauss constraint
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Figure 12. Left panel:The energy conservation for three different conformal time steps. The red curve
is for the case from the left panel in Fig. 11. The green and blue curves are for the same simulation and
model parameters, but for time steps 10

1/4 and 10

1/2 times smaller. The used symplectic integrator
was of fourth order, k = 4, and the energy conservation scales appropriately with the time step,
/ O(�⌧k

). Right panel: As expected from our algorithm, the violation of the Gauss constraint does
not depend on the size of the time step.

Energy and Gauss Constraint: The energy conservation is shown in the left panel in Fig.
11. We have used the same lattice parameters as for the simulation from Section 4.1. The
energy conservation is still excellent,  10

�4. It is almost identical to the one for the v = 0

case given in the left panel in Fig. 8, worsening only slightly at late times. The reason for
this slightly worse performance for v 6= 0 can be traced back to the fact that we work with a
fixed conformal-time step, �⌧ . For v = 0, i.e., a quartic Higgs potential, the typical frequency
scales always decrease with time as / a�1, implying that their product with the cosmic-time
step, a(⌧)�⌧ , is constant.

On the other hand, for the massive case, v 6= 0, the typical frequency scales are constant,
implying that their product with the cosmic-time step grows like / a(⌧), thereby increasing
the time-integration error. Even though it was not necessary for this study, this small degra-
dation in energy conservation can be easily alleviated by decreasing the conformal-time step
only slightly. This takes advantage of the fact that the order of the time integrator, k, is high
and the energy conservation is quite sensitive to the time step. The local truncation error in
the time integration is O(�⌧k+1

), see Eq. (3.6), and the total accumulated error is O(�⌧k
).

For k = 4, the energy conservation can be improved by one or two orders of magnitude, when
we decrease the conformal-time step only by a factor of 10

1/4 or 10

1/2, respectively, as shown
in Fig. 12.

The Gauss constraint violation is shown in the right panel in Fig. 11 for a random lat-
tice point. We find that it is qualitatively identical to the one for the v = 0 case given in
Fig. 8. It is also insensitive to the conformal-time step, which is expected for a quantity
dominated by differencing noise.
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Figure 7. The evolution of the normalized electric (blue) and magnetic (orange) field energy densities
for the case where v = 0 (no symmetry breaking). The contours are drawn at fi = ⇢i/⇢

tot

= 0.4
where i = E, B. The middle panel is close to the time when backreaction begins. The rightmost
panel is at late times after the ' condensate has fragmented. Note that this figure is produced from
half the box compared to the rest of the text.

field with a quartic self-interaction, which implies the well-known result of 1/3 for the mean
equation of state [115] (in our notation, the only non-zero fis are fK = 2fV = 2/3). Later
on, since the ' self-interaction potential energy vanishes, the real and imaginary parts of ',
as well as the components of the gauge fields behave as massless radiation, again implying a
radiation-like equation of state (in our notation in the radiation limit, fK + f

elec

⇡ 1/2, since
the magnetic and electromagnetic components are approximately equal, as well as the Higgs
kinetic and gradient energies).

Lattice snapshots: Individual snapshots of the field configurations and their energy densi-
ties on the lattice at any given time reveal a rich spatial structure in the fields at both the
linear and nonlinear stages. In Fig. 7, we provide an example of snapshots of the fractional
electric and magnetic field densities at three different times. The initial resonance instabil-
ity leads to a growth of large length-scale modes with a somewhat larger fraction in electric
fields. The third panel reveals a more scrambled configuration at late times (after backreac-
tion). While we do not do so here, plotting the vector field configurations (rather than scalar
energy densities), or pseudoscalar quantities such as (E · B) also provides useful insight into
the complex underlying dynamics.

Energy and Gauss constraint preservation: To keep track of the violation of the energy con-
servation in our simulations, we consider the quantity

E ⌘ |CE |
a2⇢

=

�

�

�

�

1 � 3m2

PlH2

a2⇢

�

�

�

�

. (4.6)

where CE was defined in section Eq. (2.11). For the simulation whose results we have been
discussing so far, the evolution of E is shown in the left panel in Fig. 8. Note that it is easy to
achieve a very small degree of energy violation, < 10

�5, with a fairly large time step, due to
the high order of the symplectic time integrator. Furthermore, the energy violation is quite
stable and grows very slowly, due to the time-reversability of symplectic integrators.
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Resonant Production of 
Electric & Magnetic Fields
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Figure 9. Snapshots of the simulation box at four different times for the case where V (') has
a Sombrero-hat shape. The orange points have non-zero winding number, n, see Eq. (4.9). The
physical size of the simulation box, L, is given in units of the Hubble radius, H�1. There is a copious
production of subhorizon Nielsen-Olesen string loops around the time of backreaction. The loops
eventually start to evaporate away. In the last panel the string core is resolved by O[10] points per
linear dimension.

amplitude of '̄
1

oscillations, see Eq. (4.2), the initial parametric resonance phase is unaffected
by v. We still have significant �A resonant particle production. Again parametric resonance
does not develop in the Higgs due to our choice of e, as explained in Section 4.1. Only once
�A begins to backreact, there is significant amplification of a broad range of comoving Higgs
modes. After backreaction, the power spectra of the Higgs and the gauge fields again settle
into stable broad single-peaked configurations. Since the power spectra plot are qualitatively
similar to the v = 0 case, we have relegated them to an appendix.

Cosmic strings: Plotting the evolution of the fields in real space, reveals a phenomenon
that cannot be picked out from the evolution of the power spectra. Note that the v 6= 0

Higgs potential (right panel in Fig. 3), can support the non-trivial field configurations known
as topological strings [116]. They can be generated during thermal phase transitions via the
Kibble mechanism in the form of cosmic string networks (for reviews see, e.g., [14, 15, 117]).
Strings can be also produced after backreaction due to parametric resonance [27, 118–120],
just like in our case. Since strings are characterized by a non-zero integer topological number,
known as the winding number, n,

n ⌘ 1

2⇡

I

dl · r arg(') , (4.9)

we plot the lattice points with n 6= 0 at four different times in Fig. 9.
The first panel in Fig. 9 is at the start of the simulation. All lattice points have n = 0,

consistent with the inflationary initial conditions, see Eqs. (3.14) and (3.16). Towards the end
of the resonant particle production and the onset of backreaction we observe copious forma-
tion of strings and string loops with a sub-Hubble correlation length, as shown in the second
panel in Fig. 9. The strings then interact,13 reconnect into loops and gradually evaporate
via classical radiation. We see features developing on loops, which split from the larger loop
to form smaller loops, which then decay away. The last large loop in our simulation is seen

13The 2-dimensional counterparts to our strings are known as vortices. The long-range interaction force
between like-charged vortices is repulsive for e2 < 2� [109], and hence for our parameter choice, Eq. (4.3).
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Formation & Evolution of  
“Local” cosmic Strings

Also see related works by Figueroa et. al (2015),   Adshead, Giblin, Scully/Weiner (2015/17)
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sufficiently complex models  
of inflation and reheating

• Wires to Cosmology 
(MA & Baumann 1512.02637)

• Multifield Stochastic Particle Production 
(MA, Garcia, Wen & Xie 1706.02319)

• Stochastic Particle Production in deSitter Space 
(Garcia, MA, Carlsten & Green 1902.06736)

• Curvature Perturbations from Stochastic Particle Production during Inflation
(Garcia, MA & Green  2001.09158)

appropriate for sufficiently complex models of inflation

Also see recent work by D. Green in 2015.  Early work in context of noise in preheating: Zanchin et. al 1997, Bassett 1998 
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Figure 1: Ratio of the component of the power spectrum sourced by stochastic particle production, ��2

⇣ , to
the component of the power spectrum sourced solely by the vacuum fluctuation, �2

⇣,0, as a function of the
number of e-folds N and wavenumber k. Here the characteristic disorder strength is given by Ns(�/H)2 = 25,
stochastic particle production is assumed to be e↵ective for N

tot

= 20 e-folds, and we have assumed that
�2

⇣,0 = �2

⇣,Planck

' 2.1 ⇥ 10�9. The wavenumber k
0

is that of the curvature mode that leaves the horizon at
N = 0. Each gray curve corresponds to a particular realization of disorder, for a total of 20 unique realizations.
The red (black) curve shows the arithmetic (geometric) sample mean. The blue curve shown in the rightmost
panel shows the reconstructed probability density function for ln(��2

⇣/�2

⇣,0) at N = 20, k/k
0

= e10.

Sourced Curvature Perturbations: Curvature perturbations are sourced by the excited specta-

tor field perturbations – calculating this sourced curvature spectrum is the main goal of this paper.

We summarize the main results here for convenience.

• We find that the curvature perturbations sourced by the spectator field can exceed the usual

vacuum contribution, without the spectator field dominating the background energy density of

the universe.

• The curvature power spectra generated (via the excited spectator fields) by each realization

of the e↵ective-mass ensemble can be highly non-trivial. For a finite duration of the epoch

during which repeated non-adiabatic particle production in the spectator field takes place, the

sourced component of the curvature power spectrum has a shape resembling a “tilted plateau”

with additional small-scale features on top in any given realization. At very low wavenumbers,

the sourced part of the spectrum rises with a slope determined by causality, while at very high

wavenumbers the spectrum decays due to the lack of excitation of deep sub-horizon modes.

• In the ensemble averaged sense, we calculate the shape and amplitude of the curvature power

spectrum semi-analytically (see Fig. 11) in terms of (i) Ns(�/H)2, where �2 is the variance

of the strength of the e↵ective mass, N
s

� 1 is the mean number of non-adiabatic changes

per e-fold of expansion, and (ii) the total number of e-folds (N
tot

) during with repeated,

non-adiabatic particle production takes place. Although in an ensemble sense, the e↵ective

mass realizations do not break scale invariance, the resulting sourced power spectra can do so.

There are features related to the beginning and end of the non-adiabatic period, as well as a

Ns(�/H)2 dependent tilt.

3



in general, there can be lot more going on

inflation
preheating non-linear!

regime
perturbative!

regime thermalization

scalar & gauge bosons + fermions

topological & non-topological solitons!
 (strings, textures, bubbles, Q-balls, oscillons)

gravitational perturbations!
( non-gaussianity, gravitational waves)
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generality & novel connections

๏ Axionic dark matter 
๏Solitons in cold-atom BECs
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �

dB

of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�
dB

⇠ few ⇥ kpc
::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above m
WDM

⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is

“usual” cold  
dark matter

warm  
dark matter

“fuzzy” 
dark matter

Nguyen, Luo & Hulet (2017)

Mocz et. al  + MA (2019)
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dark matter: 
axion-like fields
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Figure 2 | A slice of the density field of the  DM simulation on various
scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows
how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to
the granular structure inside the haloes. Distinct solitonic cores with radii
⇠0.3–1.6kpc are found within collapsed haloes (which have virial masses
Mvir ⇠ 109˘1011 M�). The density shown here spans over nine orders of
magnitude, from 10�1 to 108 (normalized to the cosmic mean density). The
colour map scales logarithmically, with cyan corresponding to density .10.

giving rise to a co-moving Jeans length, �J / (1+z)1/4m�1/2
B , during

the matter-dominated epoch17. The insensitivity of �J to redshift, z ,
generates a sharp cuto�mass belowwhich structures are suppressed.
Cosmological simulations in this context turn out to be much
more challenging than standard N-body simulations, as the highest
frequency oscillations, !, given approximately by the matter wave
dispersion relation, ! /m�1

B �
�2, where � is the wavelength, occur

on the smallest scales, requiring very fine temporal resolution even
formoderate spatial resolution (Supplementary Fig. 1). In this work,
we optimize an adaptive-mesh-refinement (AMR) scheme, with
graphic processing unit acceleration, improving performance by
almost two orders of magnitude22 (see Supplementary Section 1
for details).

Figure 1 demonstrates that despite the completely di�erent
calculations employed, the pattern of filaments and voids generated
by a conventional N-body particle3CDM simulation is remarkably
indistinguishable from the wavelike 3 DM for the same linear
power spectrum (Supplementary Fig. 3). Here 3 represents the
cosmological constant. This agreement is desirable given the
success of standard 3CDM in describing the statistics of large-scale
structure. To examine the wave nature that distinguishes DM from
CDM on small scales, we re-simulate with a very high maximum
resolution of 60 pc for a 2 Mpc co-moving box, so that the densest
objects formed of &300 pc size are well resolved with ⇠103 grids. A
slice through this box is shown in Fig. 2, revealing fine interference
fringes defining long filaments, with tangential fringes near the
boundaries of virialized objects, where the de Broglie wavelengths
depend on the local velocity of matter. An unexpected feature of
our DMsimulations is the generation of prominent dense coherent
standing waves of dark matter in the centre of every gravitational
bound object, forming a flat core with a sharp boundary (Figs 2
and 3). These dark matter cores grow as material is accreted and
are surrounded by virialized haloes of material with fine-scale,
large-amplitude cellular interference, which continuously fluctuate
in density and velocity, generating quantum and turbulent pressure
support against gravity.

The central density profiles of all our collapsed cores fit well
the stable soliton solution of the Schrödinger–Poisson equation, as
shown in Fig. 3 (see also Supplementary Section 2 and Figs 2 and 4).
On the other hand, except for the lightest halo, which has just formed
and is not yet virialized, the outer profiles of other haloes possess a
steepening logarithmic slope, similar to the Navarro–Frenk–White
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Figure 3 | Radial density profiles of haloes formed in the  DMmodel.
Dashed lines with various symbols show six examples of the halo profiles
normalized to the cosmic mean density. All haloes are found to possess a
distinct inner core fitted extremely well by the soliton solution (solid lines).
A detailed soliton fit for the largest halo is inset, where the error is the root-
mean-square scatter of density in each radial bin. A Navarro–Frenk–White
(NFW) profile representing standard CDM is also shown for comparison
(black dot-dashed line, with a very large scale radius of 10kpc), which fits
well the profiles outside the cores. The yellow hatched area indicates the
⇢300 of the dSph satellites around the Milky Way3,24, which is consistent
with the majority of galaxy haloes formed in the  DM simulations.

(NFW) profile23 of standard CDM. These solitonic cores, which are
gravitationally self-bound and appear as additional mass clumps
superposed on the NFW profile, are clearly distinct from the cores
formed by WDM and collisional CDM, which truncate the NFW
cuspy inner profile at lower values and require an external halo for
confinement. The radius of the soliton scales inversely with mass,
such that the widest cores are the least massive and are hosted by the
least massive galaxies. Eighty percent of the haloes in the simulation
have an average density within 300 pc (defined as ⇢300) in the range
5.3⇥ 10�3–6.1⇥ 10�1 M�/pc3, consistent with the dSph satellites
around the Milky Way3,24, and objects like these are resilient to
close interaction with massive galaxies. By contrast, the very lowest
mass objects in our simulation have ⇢300 ⇠ 4.0⇥ 10�4 M�/pc3 and
Mvir ⇠108 M�, but exist only briefly as they are vulnerable to tidal
disruption by large galaxies in our simulations. Together with the
cuto� in the power spectrum at the Jeans scale (Supplementary
Fig. 3), this leads to a marked suppression of substructure below
a few times 108 M� relative to the prediction of standard CDM
(refs 8,9). A quantitative evaluation of the mass function of satellite
galaxies predicted by  DM with larger simulations is thus another
crucial test to be addressed.

The prominent solitonic cores uncovered in our simulations
provide an opportunity to estimate the boson mass, mB, by
comparison with observations, particularly for dSph galaxies where
dark matter dominates. The local Fornax dSph galaxy is the best
studied case, with thousands of stellar velocity measurements,
allowing a detailed comparison with our soliton mass profile.
We perform a Jeans analysis for the dominant intermediate
metallicity stellar population, which exhibits a nearly uniform
projected velocity dispersion (�k; ref. 25). We simultaneously

NATURE PHYSICS | VOL 10 | JULY 2014 | www.nature.com/naturephysics 497
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FIG. 1. Anatomy of a cosmic filament. We show, for CDM, WDM, and FDM cosmologies: (a) the projected dark matter
distribution in the simulation domain at redshift z = 5.5; (b) projections of dark matter, gas, and stars in a filament; and (c)
slices of the dark matter through a filament. In CDM the dark matter fragments into subhalos on all scales. WDM exhibits
rich caustic structures. FDM has interference patterns at the scales of the de Broglie wavelength, which regularize caustic
singularities. These di↵erences in small-scale structure will help constrain the elusive nature of dark matter.

(WDM), which is often associated with fermionic dark
matter

:::::::
fermions

:
of particle mass of a few keV (typi-

cally treated as collisionless), Peccei-Quinn axions [28]
which are bosons of mass ⇠ 10�5–10�3 eV, and the ul-
tralight FDM of mass m ⇠ 10�22 eV, which is described
by a classical scalar field and exhibits wave phenomena
on scales of the de Broglie wavelength �

dB

of a few kpc
[18–21, 29, 30]. FDM may be axions expected in string
theory, which suggests the existence of a plenitude of
particles with masses over a broad range 10�33–10�10 eV
[29].

::::::::::::::
�
dB

⇠ few ⇥ kpc
::::::::::::::
[18–21, 29, 30].

:
WDM and FDM

both yield smoother structures than CDM on scales be-
low few kpc, due to either thermal motion (WDM) [23]
or quantum pressure (FDM)

:::
[18]. The existence of dwarf

galaxies in dark matter halos with masses of ⇠ 109 times
the mass of the sun (M�) in the local Universe, as well as
measurements of the ‘lumpiness’ of the dark matter dis-
tribution, constrain WDM and FDM theories, favoring

particle masses above m
WDM

⇠ 3 keV and m ⇠ 10�22 eV
respectively [31]

:::::::
[31, 32]. However, for FDM these con-

straints can only be used as guidelines, being based on
simulations that ignore the impact of wave e↵ects on
baryons.
The first objects in the Universe o↵er a unique way

to tighten the observational constraints. Compared to
the local Universe, in which galaxies in

:::::::
1011 M�:

dark
matter halos of 1011 M� are typical, an early CDM uni-
verse (at redshift z ⇠ 30when the Universe is

:
,
::::
i.e.,

108 years old
::::
after

:::
the

::::
Big

:::::
Bang) is populated by much

smaller nearly-spherical halos of ⇠ 105�107 M� in which
proto-galaxies are born [33]. In contrast, the

:::::
WDM

:
first

star-forming structures in WDM form later and are fila-
mentary due to the initial suppression of the dark matter
power spectrum by particle free-streaming [34, 35]. Com-
pared to WDM, wavelike FDM additionally features in-
terference patterns and soliton coreson kpc scales, as is

Mocz, +MA, et. al (2019)
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related solitons in BECs

Nguyen, Luo & Hulet (2017)

nonlinear Klein Gordon  — nonlinear Schrodinger eq. 
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non-relativistic 
see Jonathan Braden’s work on bubble nucleation
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Nonlinear Dynamics after Inflation 

theoretical/numerical results obs. implications

1. instability in oscillating fields

2. formation of solitons

3. eq. of state

2. gravitational waves

3. structure formation

1. expansion history

+ with connections to 
axions & condensed matter systems + Higgs & gauge fields + disordered systems

what else can these general results be useful for ?
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“Hubble Tension” resolution  
— some novel implications

resonant growth
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“ultra-compact” soliton collision

sub-critical

critical

degenerate

Numerical GR 

self-interactions

formation
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Gravitational Wave Emission from Collisions of Compact Scalar Solitons

Thomas Helfer†, Eugene A. Lim†, Marcos A. G. Garcia‡, Mustafa A. Amin‡⇤
†Theoretical Particle Physics and Cosmology Group, Physics Department,
Kings College London, Strand, London WC2R 2LS, United Kingdom

‡Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1827, U.S.A.

We numerically investigate the gravitational waves generated by the head-on collision of equal-
mass, self-gravitating, real scalar field solitons (oscillatons) as a function of their compactness C.
We start with solitons that are initially at rest with respect to each other, and show that there exist
three di↵erent possible outcomes resulting from their collisions: (1) an excited stable oscillaton for
low C, (2) a merger and formation of a black-hole for intermediate C, and (3) a pre-merger collapse
of both oscillatons into individual black-holes for large C. For (1), the excited, aspherical oscillaton
continues to emit gravitational waves. For (2), the total energy in gravitational waves emitted
increases with compactness, and possesses a maximum which is greater than that from the merger
of a pair of equivalent mass black-holes. The initial amplitudes of the quasi-normal modes in the
post-merger ring-down in this case are larger than that of collisions of corresponding mass black-
holes – potentially a key observable to distinguish black-hole mergers from their scalar mimics. For
(3), the gravitational wave output is indistinguishable from a similar mass, black-hole–black-hole
merger. Based on our results, LIGO may be sensitive to oscillaton collisions from light scalars of
mass 10�12 eV . m . 10�10 eV.

I. INTRODUCTION AND RESULTS

The spectacular recent detections of gravitational
waves from binary black-hole mergers has heralded a new
golden age in gravitational wave physics [1–3]. Gravita-
tional waves from the merger of compact objects are one
of our best resources for probing the strong-field regime
of gravity. They also provide us with a probe of the na-
ture of the compact objects themselves.

In addition to black-holes (BH) and neutron stars
(NS), the expected quality of the gravitational wave
data could allow for the search of exotic compact ob-
jects as progenitors in such collisions [4]. In particular,
coherent, self-gravitating, non-topological solitons made
of scalar fields are known to have highly compact cores
[5–7]. Their collisions may generate observable amounts
of gravitational waves and whose waveforms can deviate
from those of BH-BH or NS-NS mergers (see in particular
[8–11]).

In this paper, we study the head-on collisions of a
class of real scalar field solitons called oscillatons [12]
using GRChombo [13] in full general relativity. Unlike bo-
son stars made of complex scalar fields, oscillatons do
not have a conserved U(1) charge, but can nevertheless
be stable on cosmological time scales [14]. For example,
such objects can consist of a spatially localized conden-
sate of an axion field oscillating near the minimum of the
potential [15]. Such axion fields are ubiquitous in many
high energy physics theories, and are considered to be

⇤ thomashelfer@live.de; eugene.a.lim@gmail.com;
marcos.garcia@rice.edu; mustafa.a.amin@gmail.com
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FIG. 1. Fraction of initial rest mass energy of the two oscilla-
tons (E

tot

) radiated into gravitational waves (E
gw

) as a func-
tion of the initial compactness (C) of each oscillaton. In the
subcritical case, oscillatons collide to form a new stable but
aspherical, excited oscillaton. In the critical regime, oscilla-
tons collide to yield a black-hole after/during the collision. In
the degenerate case, individual oscillatons collapse to black-
holes before the collision. Note that in the critical regime (and
possibly in the subcritical regime also), the emitted fraction
in gravitational waves can exceed that of corresponding mass
black-holes (0.06% dashed line).

Helfer, Lim, Garcia & MA (2018)
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FIG. 4. The relationship between the central amplitude,
and 1/e width of the solitons is shown in the figure. The
points are extracted from our simulations, whereas the curve
is calculated semi-analytically. Note that at late times, only
solitons that are stable according to the Vakhitov-Kolokolov
stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
alter individual soliton properties. The gravitational poten-
tial at the center of the solitons is plotted on the top axis.

using the relativistic nonlinear Klein-Gordon equation in
an expanding universe (but ignoring gravitational clus-
tering), see for example [7, 46]).

VIII. INDIVIDUAL SOLITONS

The first two equations in eq. (1) (ignoring expansion)
admit spatially localized, spherically symmetric, solitonic
solutions of the form

 (t, r) = e�i⌫t (r) . (15)

We substitute this ansatz into (1), to obtain equations
for the profile  (r) and gravitational potential �(r):
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Note that ⌫ can be absorbed into the definition �̃ = ��⌫.
We then find smooth, localized, node-free solutions for
 (r) for each  (0), by appropriately adjusting �̃(0).9

9 If needed, we can recover ⌫ = �� �̃ by insisting that �(r) ! 0
for r ! 1. In practice, recovering accurate values of ⌫ is not
easy since �̃ falls o↵ as a power law.

We note that by going to the large r limit of the profile
equations,  (r) decays in an exponential fashion at large
radii (see [47]). This will be relevant when discussing
soliton interactions.

In Fig. 4 we plot the 1/e width of these soliton pro-
files as a function of the central amplitude (solid black
curve) using the profiles obtained from the above proce-
dure. Note that the width is non-monotonic in the cen-
tral amplitude. The data points in this plot correspond
to solitons extracted from our simulations, and are in
excellent agreement with the calculated analytic expec-
tation. Note that for early times (a = 2), not all high
density regions are solitons yet, hence they do not lie on
the analytic curve initially.

While we have done the above calculation including
gravity, the gravitational potential remains small for
most of the solitons: |�(0)| = O[10�3] for � = O[10�2],
and gravity does not significantly a↵ect profiles for cen-
tral amplitudes  (0) . few. The same is true in our
simulations. We also show the gravitational potential at
the center of these solitons Fig. 4 (top axis).

The mass (or energy) per soliton is10
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for the range of central amplitudes shown in Fig. 4 and
seen in simulations. Note that with m ⌧ M , E � m.
We find that the energy is a non-monotonic function of
 (0), with a minimum near  (0) ' 1.

Stability

From our calculated profiles, we find that for �⌫ &
0.05 (correspondingly  (0) & 0.9):

dN
d(�⌫) > 0 where N ⌘

Z
d3r 2(r) , (18)

whereas it is smaller than zero at smaller amplitudes.
This Vakhitov-Kolokolov stability criterion [48] guaran-
tees stability for solitons with  (0) & 0.9 from against
long-wavelength perturbations.11

The stability criterion elegantly explains the dearth
of solitons with central amplitudes below  (0) . 1 in
Fig. 4.12

10 Note that ignoring the gradient and potential terms only changes
the answer by a factor of few. We also briefly restore units with
~ = c = 1 to clarify that each soliton is made up of a very large
number of m particles.

11 At least for � ! 0.
12 A similar long-wavelength stability analysis for relativistic soli-

tons (oscillons) was carried out in [29, 46] (albeit in a di↵erent
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stability criterion (on right of the gray line remain). For our
parameters, gravity remains weak and does not significantly
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is calculated semi-analytically. Note that at late times, only
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— stability with gravitational interactions needs to be investigated

Vakhitov Kolokolov (1973)


