Nonlinear Dynamics After Inflation

* including gravitational effects

Inflationary Reheating
Meets
Particle Physics Frontier

Mustafa A. Amin

Nonlinear Dynamics After Inflation

* also applies to moduli or aspects of axion dynamics in the late universe

Inflationary Reheating
Meets
Particle Physics Frontier

Mustafa A. Amin

Non-perturbative Dynamics After Inflation

Inflationary Reheating
Meets
Particle Physics Frontier

Mustafa A. Amin

what we "know" about inflation

(simplest case - scalar field driven inflation)

$$S = \int d^4x \sqrt{-g} \left[\frac{m_{\rm pl}^2}{2} R - \frac{1}{2} (\partial \phi)^2 - V(\phi) \right]$$

for example:

Starobinsky Inflation (1979/80) Silverstein & Westhpal (2008) Kallosh & Linde (2013)

end of inflation

- shape of the potential (self couplings)
- couplings to other fields

$$\chi , \psi A_{\mu}$$

end of inflation in "simple" models

- shape of the potential (self couplings)
- couplings to other fields

oscillating "free" scalar field - "slow" gravitational instability

^{*}similar to a matter dominated universe, see for example: Gilmore, Flauger & Easther (2012), also see Richard's talk

instabilities in an expanding universe

oscillon formation at the end of inflation

expansion

self-interactions V

gravitational int. X

oscillons?

very inefficient antennas!

For example:

Segur & Kruskal (1987)

MA & Shirokoff (2010) [flat-tops]

Sfakianakis (2012)

Hertzberg (2011)

MA (2013) [non-canonical]

Mukaida et. al (2016)

Salmi & Hindmarsh (2014)

Sakstein & Trodden (2018) [non-canonical]

Antusch, Cefala & Torrenti (2019)

Fodor (2019)

(1) oscillatory (2) spatially localized (3) very long lived

Bogolubsky & Makhankov (1976), Gleiser (1994), Copeland et al. (1995) ...

family of scalar field solitons

long term dynamics?

expansion

self-interactions

gravitational int.

assuming coupling to other fields is sufficiently weak

include gravity?

- gravitational clustering takes time ...
- long time makes it difficult to resolve very fast oscillatory time scale

"non-relativistic" limit

$$\Box \phi + V'(\phi) = 0$$

$$\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re[e^{-imt} \psi(t, \mathbf{x})]$$

$$\frac{|\nabla|}{m}, \frac{\partial_t}{m} \ll 1$$

non-linear Schrodinger eq.

$$G_{\mu\nu} = \frac{1}{m_{\rm pl}^2} T_{\mu\nu}$$

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Phi)d\mathbf{x}^{2}$$
$$|\Phi| \ll 1$$

Poisson eq. + Friedmann eq.

$$V(\phi) = \frac{1}{2}m^2\phi^2 + V_{\rm nl}(\phi)$$

non-relativistic case

$$\left[i\left(\partial_t + \frac{3}{2}H\right) + \frac{1}{2a^2}\nabla^2 - U_{\rm nl}'(|\psi|^2) - \Phi\right]\psi = 0, \qquad \text{nonlinear Schrodinger eq.}$$

$$\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re \left[e^{-imt} \psi(t, \mathbf{x}) \right]$$

non-relativistic case

$$\left[i\left(\partial_{t} + \frac{3}{2}H\right) + \frac{1}{2a^{2}}\nabla^{2} - U'_{\rm nl}(|\psi|^{2}) - \Phi\right]\psi = 0,$$

$$\frac{\nabla^{2}}{a^{2}}\Phi = \frac{\beta^{2}}{2}\left[|\psi|^{2} + \frac{1}{2a^{2}}|\nabla\psi|^{2} + U_{\rm nl}(|\psi|^{2})\right] - \frac{3}{2}H^{2},$$

$$H^{2} = \frac{\beta^{2}}{3}\left[|\psi|^{2} + \frac{1}{2a^{2}}|\nabla\psi|^{2} + U_{\rm nl}(|\psi|^{2})\right],$$

nonlinear Schrodinger eq.

Poisson eq.

Friedmann eq.

$$mx^{\mu} \rightarrow x^{\mu}$$

$$\frac{\psi}{mM} \to \psi$$

length/time units

non-linearity

$$\beta \equiv \frac{M}{m_{\rm pl}}$$

$$\phi(t, \mathbf{x}) = \frac{\sqrt{2}}{m} \Re \left[e^{-imt} \psi(t, \mathbf{x}) \right]$$

self-interactions + gravity* (Schrodinger-Poisson)

MA & Mocz (2019) 1902.07261

expansion

self-interactions V

gravitational int.

relativistic?

for "passive gravity" case, see Lozanov & MA (2019) 1902.06736

gravitational clustering of solitons

gravitational clustering of solitons

gravitational clustering of solitons

Caution: we don't fully understand (some) velocities of solitons (work in progress)

self-interactions
 + gravity*
(Schrodinger-Poisson)

phase dependent interactions

$$\phi \propto \Re[\psi]$$

$$\psi_a(t, \mathbf{x}) = \Psi_a(\mathbf{x}) e^{-i\nu_a t + \theta_a}$$

$$|\theta_1 - \theta_2| \simeq \pi$$

$$|\theta_1 - \theta_2| \simeq 0$$

EFT of non-topological solitons— MA & Iqbal (in progress)

summary I

- Loscillons dominate the energy density
- 2.they cluster gravitationally
- 3. can undergo complex scattering

so far, quadratic minima with wings ...

- shape of the potential (self couplings)
- couplings to other fields

non-quadratic, power-law minima?

- shape of the potential (self couplings)
- couplings to other fields

dynamics in different power law minima

Turner (1983)

inflaton potential

field eventually fragments, but no solitons

eq. of state

$$w \equiv \frac{\text{pressure}}{\text{density}} \to 1/3$$

radiation domination

 $V(\phi) \propto |\phi|^{2n}$

 $n \gtrsim 1$

n = 1

field fragments into solitons (for M-- moi)

eq. of state

 $w \to 0$

matter domination

Lozanov & MA (2016/17) 1608.01213, 1710.06851

"equation-of-state" from oscillating fields

the spatially averaged equation-of-state of fields

- (n=1) quadratic minima w=0
- (n>1) non-quadratic minima $oldsymbol{w}=\mathbf{1/3}$ (after sufficient time)

why? $\mu_k/H \propto \phi^{-1}$

Implications

- gravitational
 - homogeneous
 - inhomogeneous
- non-gravitational (typically more fields needed, and more model dependent)

eq. of state & CMB observables

MA & Lozanov 2017 [1608.01213, 1710.06851] also see: Kamionkowski & Munoz (2014), Cook et. al (2015)

* non-quadratic minimum $n \neq 1$

* no oscillons here,

reduction in uncertainty

Lozanov & MA (2017) [1608.01213, 1710.06851] *Caveat: all other fields are assumed to be light and massless.

 $n \neq 1$ * non-quadratic minimum

primordial black hole formation from solitons?

1902.06736 Lozanov & MA (2019)

$$\Phi \lesssim \text{few} \times 10^{-3}$$

Not easy to form PHBs from individual solitons from self resonance

Can accidental over-densities in solitons lead to PBHs (Cotner et. al 2018/19)

Also see Kou, Tian & Zhou (2019) for recent GR simulations of oscillons Also see T. Giblin's talk on GR effects in preheating

expansion

gravitational waves (mainly from formation)

$$\frac{{
m growth\text{-}rate~of~fluctuations}}{{
m expansion~rate}} \sim \frac{m_{
m pl}}{M} \gg 1$$

$$\Omega_{\rm gw,0} \sim 10^{-6} \left(\frac{M}{m_{\rm Pl}}\right)^2 \lesssim \mathcal{O}[10^{-9}]$$

Lozanov & MA (2019) 1902.06736

Earlier work: Zhou et. al (2013). Also see Kitajima, Soda & Urakawa (2018)

gravitational waves

also potential constraints from Neff from CMB S4

limits adapted from Lasky et. al (2015)

caveat* early universe g-waves amplitude depend on assumptions of expansion history (see Kane, Sinha & Watson (2015)

Earlier work on g-waves from end of inflation: Khlebnikov & Tkachev (1996), Easther, Giblin, Lim (2006/07), Dufaux et. al (2007)

coupling to other fields? — model dependent answers

- shape of the potential (self couplings)
- couplings to other fields

$$\chi \; , \psi \; A_{\mu}$$

example: Higgs - modulus/inflaton system

MA, J. Fan, K. Lozanov & M. Reece (2018) [1802.00444]

100

0

150

 $m_{\phi}t$

200

250

 10^{5}

 10^{4}

1000

 f_0/Hz

10

100

 10^{6}

GFiRe: a Gauge Field integrator for Reheating

Kaloian D. Lozanov & MA [arXiv:1911.06827]

New algorithm and code, GFiRe, to simulate nonlinear dynamics of Charged Scalars Fields coupled to Abelian Gauge Fields in an expanding universe

- algorithm uses link variables and includes self-consistent expansion
- algorithm is symplectic (arbitrary order) and has "exact" preservation of Gauss constraint

Resonant Production of Electric & Magnetic Fields

Formation & Evolution of "Local" cosmic Strings

Also see related works by Figueroa et. al (2015), Adshead, Giblin, Scully/Weiner (2015/17)

Kaolian Lozanov & MA [arXiv:1911.06827]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} \mathcal{R} - (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - V(|\phi|) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

Kaolian Lozanov & MA [arXiv:1911.06827]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} \mathcal{R} - (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - V(|\phi|) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

Kaolian Lozanov & MA [arXiv:1911.06827]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} \mathcal{R} - (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - V(|\phi|) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

Kaolian Lozanov & MA [arXiv:1911.06827]

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} \mathcal{R} - (D_{\mu}\phi)^{\dagger} D^{\mu}\phi - V(|\phi|) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right]$$

sufficiently complex models of inflation and reheating

appropriate for sufficiently complex models of inflation

- Wires to Cosmology (MA & Baumann 1512.02637)
- Multifield Stochastic Particle Production (MA, Garcia, Wen & Xie 1706.02319)
- Stochastic Particle Production in deSitter Space (Garcia, MA, Carlsten & Green 1902.06736)
- Curvature Perturbations from Stochastic Particle Production during Inflation (Garcia, MA & Green 2001.09158)

in general, there can be lot more going on

expansion history, baryogenesis ...

generality & novel connections

- Axionic dark matter
- Solitons in cold-atom BECs

Mocz et. al + MA (2019)

Nguyen, Luo & Hulet (2017)

dark matter: axion-like fields

Schive et. al (2014)

for example:

Peccei & Quinn (1977)

Hogan & Reece (1988)

Kolb & Tkachev (1994)

Hu, Barkana & Gruzinov (2000)

Marsh & Silk (2014)

Guth, Hertzberg & Prescod-Weinstein (2018)

Niemeyer & Engels (2016)

Hui et. al (2016)

Arvanitaki et. al (2009/19)

Mocz et. al (2019)

structure formation with light scalar fields

Mocz, +MA, et. al (2019)

related solitons in BECs

Nguyen, Luo & Hulet (2017)

nonlinear Klein Gordon — nonlinear Schrodinger eq.

$$\partial_t^2 \phi - c^2 \nabla^2 \phi + \partial_\phi V(\phi) = 0$$

 $\partial_t^2 \varphi - c_s^2 \nabla^2 \varphi + \partial_\varphi \mathcal{V}(\varphi) = 0 \quad \longleftrightarrow \quad i\partial_t \psi = \left| -\frac{1}{2m} \nabla^2 + U'(|\psi|^2) \right| \psi$ relative phase between different condensates non-relativistic

see Jonathan Braden's work on bubble nucleation

non-perturbative dynamics at the end of inflation?

Nonlinear Dynamics after Inflation

with connections to

axions & condensed matter systems + Higgs & gauge fields + disordered systems

theoretical/numerical results

I. instability in oscillating fields

2. formation of solitons

3. eq. of state

obs. implications

I. expansion history

2. gravitational waves

3. structure formation

what else can these general results be useful for?

thanks

"Hubble Tension" resolution — some novel implications

Also see: Karwal & Kamionkowski (2016), Poulin et. al (2018), Agrawal et. al (2019).

Smith, Poulin & MA (2019) MA, Lozanov & Smith (in progress) self-interactions X

formation X

"ultra-compact" soliton collision

Helfer, Lim, Garcia & MA (2018)

self-interactions

gravitational int. X

gravitational int.

individual solitons stability

$$\psi(t,r) = e^{-i\nu t}\Psi(r)$$

$$\mathcal{N} \equiv \int d^3r \Psi^2(r)$$

stable iff:

Vakhitov Kolokolov (1973)

$$\frac{d\mathcal{N}}{d(-\nu)} > 0$$

— stability with gravitational interactions needs to be investigated