# (NonGaussian) Curvature Perturbations from Entropy Generation on Cosmic Trajectories

#### JONATHAN BRADEN

CITA (Canadian Institute for Theoretical Astrophysics) <a href="https://www.cita.utoronto.ca/~jbraden">www.cita.utoronto.ca/~jbraden</a>





Work with Dick Bond, Andrei Frolov, Zhiqi Huang, Thomas Morrison, Jibran Haidar, Jaafar Chakrani

Particle Physics Meets Inflationary Reheating

## Sand Entropy [JB and Bond, in progress]

$$\frac{d\zeta}{dt} = \frac{1}{3(1+w)} \frac{d\ln\rho}{dt} + \frac{d\ln a}{dt}$$
$$= \frac{T}{3V(\rho+P)} \frac{dS}{dt}$$

Entropy Production  $\zeta$  Production



#### Entropy Production Mechanisms

- Potential features during inflation [JB, Bond, Morrison]
  - Nonlinear superhorizon evolution
  - Particle production during inflation
- End-of-inflation dynamics [JB, Bond, Frolov, Huang]
- Initial Conditions [JB, Johnson, Peiris, Aguirre]

#### Lattice Simulations

[Braden] 
$$\frac{\mathcal{L}}{\sqrt{|g|}} = -\frac{1}{2}G_{IJ}(\phi)\partial_{\mu}\phi^I\partial^{\mu}\phi^J - V(\phi) + \frac{M_P^2}{2}f(\phi)R_{\mathrm{FRW}}$$

$$ds^2 = -dt^2 + a^2(t)d\mathbf{x}^2$$

- Finite-difference or pseudospectral
- 10th order Gauss-Legendre (general) or 8th order Yoshida (nonlinear sigma model)
- Quantum fluctuations random field realization
- Scales to (at least) 2048^3 sites



convergence

## Nonlinearity Leads to Complexity



$$\ln \frac{
ho}{\langle 
ho 
angle}$$

## Superhorizon Complexity



Time evolution of large scale condensate

## Inflation may have been complex



## Tachyonic Features

[Bond, JB, Thomas Morrison]

$$V(\phi) = V_{\text{inf}} + \frac{m^2(\phi)}{2} \chi^2 + V_{\text{stabilise}}(\chi)$$



#### Development of Structure



Freezeout of large-scale modes after transient

#### Inflation + Particle Production



#### Contribution from Particle Production



$$\zeta(x) = \zeta_{G}(x) + \sum A_{i} P_{i}(\Lambda^{-1}(x - x_{i}))$$

## Response of Adiabatic Mode to Entropy Perturbations



Suggests  $\zeta$  response function to isocurvature mode  $\zeta(x) = \zeta_{\rm G} + \zeta_{\rm NL}(\zeta_{\rm iso})$ 

### Scale Dependence



## k-dependent $\zeta$





#### A More Extreme Example

$$V(\phi) = \frac{m^2}{2}\phi^2 + (m_{\chi}^2 + \Delta m^2(\phi))\chi^2 + \frac{\lambda}{4}\chi^4$$

$$\Delta m^2 = 0$$

$$\Delta m^2 \gg m_\phi^2, m^2 \chi$$





#### Lattice slice $\langle \zeta \rangle_{k = aH, n = 3}$



#### $\langle \zeta \rangle$ by k-band (2d slice) $ln(k/aH) \in [-2.69, -1.99)$ $ln(k/aH) \in [-3.38, -2.69)$ $ln(k/aH) \in [-1.99, -1.30)$ 150 -100 50 $ln(k/aH) \in [-1.30, -0.61)$ $ln(k/aH) \in [-0.61, 0.09)$ $ln(k/aH) \in [0.09, 0.78)$ 150 -100 -50

100

 $(aH)^{-1}$ 

150

50

100

150

50

100

50

150

### k-dependent $\zeta$

 $\mu_2$  of  $\langle \zeta \rangle_{k=aH,\,n=3}$  by k-band (2d slice)



#### k-dependent $\zeta$

 $\mu_3$  of  $\langle \zeta \rangle_{k=aH,\,n=3}$  by k-band (2d slice)



#### Simple and "Universal" Form of NonGaussianity

$$\zeta(x) = \zeta_{\rm G} + \zeta_{\rm NL}(\zeta_{\rm iso})$$

Inflationary Particle Prod.

$$\zeta = \zeta_{\rm inf} + \zeta_{\rm NL}(\chi)$$

End-of-Inflation

$$\zeta(x) = \zeta_{\rm G}(x) + \zeta_{\rm NG}(\zeta_G)$$

Correlated nonGaussianity

$$\zeta(x) = \zeta_{G}(x) + \sum_{i} A_{i} P_{i}(\Lambda^{-1}(x - x_{i}))$$

Simplified Peak Model

Sum of Gaussian and nonGaussian signal

How do we separate the nonGaussian component

## ICA Separation

#### **Separating Multiple Sources**



Maximise relative entropy of whitened signal combinations

### ICA Separation

[JB, Bond, Jibran Haider]







Maximise relative entropy of whitened signal combinations



#### $\zeta = \zeta_{\rm inf} + \zeta_{\rm NL}(\chi)$







## ICA Separation





#### Conclusions / Future Work

- Interesting nonGaussian  $\zeta$  can be produced from nonlinear dynamics in the ultra early Universe
- Generically obtain a highly NG signal combined with Gaussian inflationary contribution
- Production of  $\zeta$  tied to entropy production
- ICA provides a powerful way to separate the nonGaussianity

Bond + Braden + Frolov
Thomas Morrison - Arrives Next Week
Jibran Haider - Arrives in 2 Weeks

## Preheating and Vacuum Decay in multi-component BECs





[JB, in prep / JB, Johnson, Peiris, Pontzen, Weinfurtner]

