PROBING THE 'PRIMORDIAL DARK AGE' WITH GRAVITATIONAL WAVES. IMPLICATIONS FOR REHEATING

DANIEL G. FIGUEROA IFIC, Valencia

Inflationary Reheating Meets Particle Physics Frontier, KITP, Santa Bárbara, 3-6 Feb 2020

INCONSISTENCY OF AN INFLATIONARY SECTOR COUPLED ONLY (minimally) TO GRAVITY

DANIEL G. FIGUEROA IFIC, Valencia

Inflationary Reheating Meets Particle Physics Frontier, KITP, Santa Bárbara, 3-6 Feb 2020

TWO PAPERS / IDEAS*

arXiv:1811.04093 (JCAP 1910 (2019) 10, 050) Inconsistency of an inflationary sector coupled only to Einstein gravity

arXiv:1905.11960 (JCAP 1908 (2019) 011) Ability of LIGO & LISA to probe the Eq. of state of the early Universe

*with E. H. Tanin, MsC EPFL (PhD @ J. Hopkins U.)

TWO PAPERS / IDEAS

Inconsistency of an inflationary sector coupled only to Einstein gravity

REHEATING / GRAVITATIONAL WAVES

Ability of LIGO & LISA to probe the Eq. of state of the early Universe

The context: The Early Universe

The context: The Early Universe

Part 1

$$\mathcal{L} = \frac{1}{\sqrt{g}} \left\{ \underbrace{(\partial \phi)^2 - V_{\text{inf}}(\phi)}_{\text{inflaton}} + \underbrace{\frac{1}{2}m_{pl}^2R}_{\text{gravity}} + \underbrace{(\partial \chi)^2 - V(\chi) - \xi \chi^2 R}_{\text{matter/rad}} - \underbrace{g^2 \chi^2 \phi^2}_{\text{matter/rad}} \right\}$$

Need to excite matter (to reheat the Universe)

$$\mathcal{L} = \frac{1}{\sqrt{g}} \left\{ \underbrace{(\partial \phi)^2 - V_{inf}(\phi)}_{inflaton} + \underbrace{\frac{1}{2}m_{pl}^2R}_{gravity} \underbrace{(\partial \chi)^2 - V(\chi) - \xi \chi^2 R}_{matter/rad} - g^2 \chi^2 \phi^2 \right\}$$
Need to excite matter (to reheat the Universe)
$$\rho_{rad} = \delta \times 10^{-2} H_*^4$$
Inflation does the job !

$$\begin{aligned} & \mathcal{L} = \frac{1}{\sqrt{g}} \left\{ \underbrace{(\partial \phi)^2 - V_{inf}(\phi)}_{inflaton} + \underbrace{\frac{1}{2}m_{pl}^2R}_{gravity} \underbrace{(\partial \chi)^2 - V(\chi) - \xi\chi^2R}_{matter/rad} - \underbrace{g^2 \chi^2 \phi^2}_{gravity} \right\} \\ & \mathsf{Need to excite matter}_{(\text{to reheat the Universe})} \longrightarrow \underbrace{\rho_{rad} = \delta \times 10^{-2}H_*^4}_{\delta \lesssim 1} \begin{array}{l} \text{Inflation does the job !} \\ & \delta \lesssim 1 \end{array} \\ & \mathsf{Inflaton} & \mathsf{Inflaton does the job !} \\ & \delta \sim \begin{cases} \mathcal{O}(m^2/H_*^2) & \text{, quantum - fluct. (light dof) Linde '83} \\ \mathcal{O}(1) & \text{, quantum - fluct. (self - interact.) gravity responses of the job !} \\ & \mathcal{O}(1)/\xi & \text{, non - min grav, } \xi \gtrsim 1 \\ & \mathcal{O}(1)-\xi | 2 \rangle & \text{, non - min grav, } |1-6\xi| \ll 1 \\ \end{array} \end{aligned}$$

$$\mathcal{L} = \frac{1}{\sqrt{g}} \left\{ \underbrace{(\partial \phi)^2 - V_{inf}(\phi)}_{inflaton} + \underbrace{\frac{1}{2}m_{pl}^2R}_{gravity} + \underbrace{(\partial \chi)^2 - V(\chi) - \xi \chi^2 R}_{matter/rad} - g^2 \chi^2 \phi^2 \right\}$$
Need to excite matter (GR)

$$P_{rad} = \delta \times 10^{-2} H_*^4 \quad \text{Inflation does the job !}$$

$$\Delta_* = \frac{\rho_{rad}}{3m_p^2 H_*^2} = \frac{\delta}{300} \left(\frac{H_*}{m_p}\right)^2 \ll 1$$
Fraction energies radiation-to-total

$$\mathcal{L} = \frac{1}{\sqrt{g}} \left\{ \underbrace{(\partial \phi)^2 - V_{inf}(\phi)}_{inflaton} + \underbrace{\frac{1}{2}m_{pl}^2R}_{gravity} + \underbrace{(\partial \chi)^2 - V(\chi) - \xi \chi^2 R}_{matter/rad} - g^2 \chi^2 \phi^2 \right\}$$
Need to excite matter (GR)
$$P_{rad} = \delta \times 10^{-2} H_*^4 \quad \text{Inflation does the job !}$$

$$\Delta_* \sim \delta \cdot 10^{-12} \times \left(\frac{H_*}{H_{max}}\right)^2 \ll 1$$
Fraction energies radiation-to-total

INFLATIONARY SECTOR COUPLED ONLY (minimally) TO GRAVITY

$$\rho_{\rm rad}^* \ll H_*^2 m_{pl}^2$$

Radiation excited but subdominant

Rad. produced, but subdominant

Rad. produced, and dominant !

Ford '86, Spokoiny '93, Joyce '97, Giovannini '98/99, Vilenkin & Damour '95, Peebles & Vilenkin '98, [...], DGF & Tanin '18/19

Ford '86, Spokoiny '93, Joyce '97, Giovannini '98/99, Vilenkin & Damour '95, Peebles & Vilenkin '98, [...], DGF & Tanin '18/19

Ford '86, Spokoiny '93, Joyce '97, Giovannini '98/99, Vilenkin & Damour '95, Peebles & Vilenkin '98, [...], DGF & Tanin '18/19

$$1/3 < w_s \lesssim 1$$

Stiff Eq. of State

Requisites

Control perturbations
 End before BBN

All good... but we are not done !

Ford '86, Spokoiny '93, Joyce '97, Giovannini '98/99, Vilenkin & Damour '95, Peebles & Vilenkin '98, [...], DGF & Tanin '18/19

$$1/3 < w_s \lesssim 1$$

Stiff Eq. of State

Requisites

Control perturbations
 End before BBN

All good... but we are not done !

Enhancement of inflationary Gravitational Waves (GW) !

[Giovannini '98/99, ..., Boyle & Buonnano '07, ..., DGF & Tanin '19]

GRAVITATIONAL WAVES (independently of grav. reheating)

$$\Omega_{\rm GW}^{(o)}(f) \equiv \frac{1}{\rho_c^{(o)}} \left(\begin{array}{c} \frac{d\rho_{\rm GW}}{d\log k} \end{array} \right)_o = \underbrace{\Omega_{\rm Rad}^{(o)}}{24} \Delta_{h_*}^2(k) \qquad \Delta_h^2(k) = \frac{2}{\pi^2} \left(\frac{H}{m_p} \right)^2 \left(\frac{k}{aH} \right)^{n_t} \\ n_t \equiv -2\epsilon \\ \text{Transfer Funct.:} T(k) \propto k^0 (\text{RD}) \qquad \text{energy scale}$$

A couple few pages computation of the Transfer function @ Stiff Domination

Inflationary GW background

EoS

Stiff

Period

Energy

Scale

Inflation

Duration

Stiff

Period

GW background $\Omega_{GW}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LISA (~ 2034)** $\overset{\text{Energy}}{\text{Scale}}$ $\overset{\text{EoS}}{\text{Stiff}}$ $\overset{\text{Duration}}{\text{Stiff}}$

GW background $\Omega_{\text{GW}}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LISA (~ 2034)** $\overset{\text{Energy}}{\underset{\text{Scale}}{\text{Stiff}}} \overset{\text{EoS}}{\underset{\text{Stiff}}{\text{Stiff}}} \overset{\text{Duration}}{\underset{\text{Stiff}}{\text{Stiff}}}$

GW background $\Omega_{\text{GW}}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LISA (~ 2034)** $\overset{\text{Energy}}{\text{Scale}}$ $\overset{\text{EoS}}{\text{Stiff}}$ $\overset{\text{Duration}}{\text{Stiff}}$

 $9.1 \times 10^{10} \text{ GeV} < H_{\text{inf}} < 6.6 \times 10^{13} \text{ GeV}$ $0.47 < w_{\text{S}} < 1$ $10^{-11} \text{ Hz} \lesssim f_{\text{RD}} < 4.6 \times 10^{-6} \text{ Hz}$ $10^{-3} \text{ GeV} \lesssim E_{\text{RD}} < 5.91 \times 10^{3} \text{ GeV}$

Significant fraction of param. space observable !

GW background $\Omega_{\text{GW}}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LIGO (today)** $\overset{\text{Energy}}{\underset{\text{Scale}}{\text{Stiff}}} \overset{\text{EoS}}{\underset{\text{Stiff}}{\text{Stiff}}} \overset{\text{Usaluation}}{\underset{\text{Stiff}}{\text{Stiff}}}$

GW background $\Omega_{\text{GW}}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LIGO (today)** $\overset{\text{Energy}}{\underset{\text{Scale}}{\text{Stiff}}} \overset{\text{EoS}}{\underset{\text{Stiff}}{\text{Stiff}}} \overset{\text{Usaluation}}{\underset{\text{Stiff}}{\text{Stiff}}}$

LIGO reduces parameter space probe-able by LISA !

GW background $\Omega_{\text{GW}}^{(0)}(f; \underline{H}_*, \underline{w}_s, \underline{f_{RD}})$ **Observability @ LIGO (today)** $\overset{\text{Energy}}{\underset{\text{Scale}}{\text{Stiff}}} \overset{\text{EoS}}{\underset{\text{Stiff}}{\text{Stiff}}} \overset{\text{Usaluation}}{\underset{\text{Stiff}}{\text{Stiff}}}$

Let's look first at consistency of scenarios

Part 3

The trouble with gravitational reheating

BACK to ... GRAVITATIONAL REHEATING

BIG BANG NUCLEOSYNTHESIS Expansion rate (Rad. Dom): ~ Extra relativistic species

 $\int \frac{df}{f} h^2 \,\Omega_{\rm GW}(f) \le 1.12 \times 10^{-6}$

 $\Delta N_{\nu} = 0.2 \; (95\% C.L.) \; \text{[latest CMB]}$

BIG BANG NUCLEOSYNTHESIS

Expansion rate (Rad. Dom): ~ Extra relativistic species

$$\int \frac{df}{f} h^2 \,\Omega_{\rm GW}(f) \le 1.12 \times 10^{-6}$$

BBN:
$$\int \frac{df}{f} h^2 \Omega_{\rm GW}(f) \le 1.12 \times 10^{-6}$$

Grav. Reheating: $\Omega_{\rm GW}(f) \propto (f/f_{\rm RD})^{2\left(\frac{w_s-1/3}{w_s+1/3}\right)}$

Monotonically growing signal !

BBN:
$$\int \frac{df}{f} h^2 \Omega_{\rm GW}(f) \le 1.12 \times 10^{-6}$$

Grav. Reheating:
$$\Omega_{\rm GW}(f) \propto (f/f_{\rm RD})^{2\left(rac{w_s-1/3}{w_s+1/3}
ight)}$$

Monotonically growing signal !

BBN bound @ $f_{\rm max}$ [Freq. horizon crossing End of Inflation] $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$

BBN: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$

BBN:
$$h^2 \Omega_{\text{GW}}^{(0)} \Big|_{\text{max}} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$$

Grav. Reheating: $\Delta_* \equiv \frac{\rho_{\rm rad}}{3m_p^2 H_*^2} = \frac{\delta}{300} \left(\frac{H_*}{m_p}\right)^2$, $\delta \lesssim 1$,

BBN: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$

Grav. Reheating: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}$, $\delta \lesssim 1$,

BBN:
$$h^2 \Omega_{\text{GW}}^{(0)} \Big|_{\text{max}} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$$

Grav. Reheating:
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}$$
, $\delta \lesssim 1$,

However ...
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times f(w_s) \times \frac{1}{\delta}$$

mild dependence initial fraction

BBN: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$

Grav. Reheating: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \ \delta \lesssim 1,$

BBN:
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$$

Grav. Reheating:
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}$$
, $\delta \lesssim 1$,

However ...
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max}$$
 $(\mathcal{K}, \mathcal{M}_{s}; \delta) \simeq 2.1 \cdot 10^{-5} \times f(w_s) \times \frac{1}{\delta}$
initial dependence fraction
 $2 \leq f(w_s) \leq 2.54$
 $(w_s = 1/3)$ $(w_s = 1)$
 $f(w_s) \equiv \frac{2^{\frac{3(1-w_s)}{(1+3w_s)}}\Gamma^2\left(\frac{5+3w_s}{2+6w_s}\right)}{\left(\frac{2}{1+3w_s}\right)^{\frac{4}{1+3w_s}}\Gamma^2\left(\frac{3}{2}\right)}$

BBN:
$$h^2 \Omega_{GW}^{(0)} \Big|_{\max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$$

Grav. Reheating: $h^2 \Omega_{GW}^{(0)} \Big|_{\max} (H_*, w_s; \delta) \lesssim 10^{-6}$, $\delta \lesssim 1$,
However ... 10^{-4}
 10^{-4}
 10^{-4}
 10^{-4}
 10^{-19}
 10^{-19}
 10^{-19}
 10^{-19}
 10^{-19}
 10^{-8}
 10^{-8}
 0.001
 100.000
 10^7
 10^{-12}
 f [Hz]

BBN: $h^2 \Omega_{\rm GW}^{(0)} |_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$

Grav. Reheating: $h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}$, $\delta \lesssim 1$,

$$\begin{split} & \textbf{BBN:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6} \\ & \textbf{Grav. Reheating:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \quad \delta \lesssim 1 \,, \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\kappa} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm However} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1}{\delta} \\ & \textbf{However} (H_*, w_s; \delta) \otimes 10^{-6} \times \frac{1$$

$$\begin{split} \textbf{BBN:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6} \\ \textbf{Grav. Reheating:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \quad \delta \lesssim 1, \end{split}$$
$$\begin{aligned} \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{(const.)} \times \frac{1}{\delta} \\ \frac$$

BBN:
$$h^2 \Omega_{\text{GW}}^{(0)} \Big|_{\text{max}} (H_*, w_s, f_{RD}) \lesssim 10^{-6}$$

Grav. Reheating:
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}$$
, $\delta \lesssim 1$,

However ...
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (\mathcal{H}_{\ast}, \mathcal{W}_{\$}; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\text{mild}} \times \frac{1}{\delta}$$

mild dependence initial fraction

So ...
$$h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \frac{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50$$

$$\begin{split} & \textbf{BBN:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6} \\ & \textbf{Grav. Reheating:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \quad \delta \lesssim 1, \end{split}$$

$$& \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (\mathbf{M}_*, \mathbf{M}_s; \delta) \simeq \underbrace{2.1 \cdot 10^{-5} \times f(w_s) \times \frac{1}{\delta}}_{\text{const.}} \underbrace{\frac{1}{\delta} \times \frac{1}{\delta}}_{\text{midd}} \underbrace{\frac{1}{\delta} \times \frac{1}{\delta}}_{\text{fraction}} \\ & \textbf{So} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \underbrace{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50 \end{split}$$

$$\begin{split} & \textbf{BBN:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6} \\ & \textbf{Grav. Reheating:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \quad \delta \lesssim 1, \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (\mathbf{M}_*, \mathbf{M}_s; \delta) \simeq 2.1 \cdot 10^{-5} \times f(w_s) \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \frac{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50 \\ & \textbf{So} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \frac{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50 \\ & \frac{\rho_{\rm GW}}{\rho_{\rm rad}} \sim const. \gg 1 \quad \textbf{Universe dominated by GWs!} \end{split}$$

$$\begin{split} & \textbf{BBN:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s, f_{RD}) \lesssim 10^{-6} \\ & \textbf{Grav. Reheating:} \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \lesssim 10^{-6}, \quad \delta \lesssim 1, \end{split} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} (H_*, w_s; \delta) \simeq 2.1 \cdot 10^{-5} \times \frac{f(w_s)}{\text{const.}} \times \frac{1}{\delta} \\ & \textbf{However} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \frac{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50 \end{split} \\ & \textbf{So} \dots \quad h^2 \Omega_{\rm GW}^{(0)} \Big|_{\rm max} \simeq \frac{const.}{\delta} \lesssim 10^{-6} \quad \Leftrightarrow \quad \delta \gtrsim 50 \end{split}$$

Therefore...

- 1) Either we modify Grav. Reheating
- 2) We use modified gravity in Inflationary Sector
- 3) We couple the inflaton and reheat via such couplings

Therefore...

- 1) Either we modify Grav. Reheating
- 2) We use modified gravity in Inflationary Sector

3) We couple the inflaton and reheat via such couplings

Standard (P)reheating

Therefore...

1) Either we modify Grav. Reheating

2) We use modified gravity in Inflationary Sector

I'm very happy with General Relativity !

Therefore...

1) Either we modify Grav. Reheating

2) We use modified gravity in Inflationary Sector

But if you are not ...

Y. Watanabe and E. Komatsu, Phys. Rev. **D75**, 061301 (2007), gr-qc/0612120.

- Y. Watanabe, Phys. Rev. **D83**, 043511 (2011), 1011.3348.
- A. A. Starobinsky, Phys. Lett. **B91**, 99 (1980), [,771(1980)].
- A. De Felice and S. Tsujikawa, Living Rev. Rel. **13**, 3 (2010), 1002.4928.

Therefore...

1) Either we modify Grav. Reheating

Therefore...

1) Either we modify Grav. Reheating

$$\Delta_* \equiv \frac{\rho_{\rm rad}}{3m_p^2 H_*^2} = \frac{\delta}{300} \left(\frac{H_*}{m_p}\right)^2 \longrightarrow \mathcal{N}_f \Delta_*$$

 $\begin{array}{ll} \text{All }\mathcal{N}_f \text{ fields} & \delta = \delta_1 \times \mathcal{N}_f \,, & \text{Ad hoc} \\ \text{same properties !} & \mathcal{N}_f \gtrsim \mathcal{O}(10^3) & \text{tuning !} \end{array}$

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Standard Grav. RH ?

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Standard Grav. RH wrong $\ref{eq:standard} m_{\chi}^2 < 0$ @ Stiff Period,
(standard) Grav. Reheating incompatible with BBN/CMB !

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Standard Grav. RH wrong ! $m_{\chi}^2 < 0$ @ Stiff Period, but self-interactions regularize

(standard) Grav. Reheating incompatible with BBN/CMB !

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Standard Grav. RH wrong !

Corrected in DGF & Byrnes '16 Phys.Lett. B767 (2017) 272-277 Arxiv: 1604.03905

(standard) Grav. Reheating incompatible with BBN/CMB !

Therefore...

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

$$\mathcal{L}_{\chi} = (\partial \chi)^2 + \lambda \chi^4 - \xi \chi^2 R$$

Standard Grav. RH wrong !

Corrected in DGF & Byrnes '16 Phys.Lett. B767 (2017) 272-277 Arxiv: 1604.03905

$$\delta \sim \mathcal{O}(10^3) \frac{\xi^2}{\lambda} \gg 1$$

$$\begin{array}{l} \text{Grav.} \\ \text{Reheating} \\ \text{OK !} \\ \lambda > 0 \text{ (stability)}, \quad \xi \gtrsim 1 \end{array}$$

See also 1803.07399 for generic $\lambda \chi^4$

Part 4

BBN/CMB constraints: further implications

$\begin{array}{ll} \textbf{BBN Bound } \Omega_{\rm GW}^{(0)}(f;\underline{H_*},\underline{w_s},\underline{f_{RD}}) \lesssim 10^{-6} \\ & \quad \\ &$

Scale

Stiff

Stiff

LIGO cannot probe parameter space compatible with BBN !

Part 5

Outlook (+ take-home message)

OUTLOOK

0) Reheating w/o couplings requires imagination: Grav. Reheating or Modified Gravity

1) (Standard) Grav. Reheating is inconsistent Too many GWs (violates BBN/CMB bounds)

2) Inf. sectors only (minimally) coupled to gravity inconsistent unless:

i) Inflation ~ Modify gravity: I don't want to
ii) O(1000) spectator fields identical: ad hoc tuning
iii) SM Higgs + Non-Min coupling: works (not observable)

3) Stiff Era (in general): not observable @ LIGO, barely @ LISA

TAKE HOME MESSAGE

If you go stiff ... check LIGO/BBN/CMB

Part 6

Muchas gracias por vuestra atención !

Backslides

ZOOM

Inflationary GW background

Inflationary GW background

Real signal: highly oscillatory

Stochastic Signal: average measurement

$$\langle \dot{h}_{ij}(f)\dot{h}_{ij}(f)\rangle = \mathcal{P}_h(f)$$

