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CITA = Canadian Inst. of Theoretical Astrophysics IFIC = Instituto de F́ısica Corpuscular, Valencia
DESY = Deutsches Elektronen-SYnchrotron MEC/MICINN = Spanish Ministry of Science
EPFL = Ecole Polytechnique Fédérale de Lausanne RyC = Ramón y Cajal (senior research grant)
ERF = Ernest Rutherford Fellowship UAM = Universidad Autónoma de Madrid
FPU = Spanish ministry PhD financial program UNIGE = Université de Genève (Geneva Univ.)
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1, the total amount of energy stored in all these fields at
the end of inflation would read

⇢rad ⇠ 10�2
H

4
⇤

 
N1 +

N2X

i=1

(1� 6⇠i)
2

!
. (3)

If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.

In addition to non-adiabatic production of particles,
spectator scalar fields with potential V = 1

2m
2
'
2 and

mass m
2
⌧ H

2
⇤ , i.e. free light scalar dof , can also be

excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX

i

✓
mi

H⇤

◆2

, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,

�⇤ ⌘
⇢rad

3m2
p
H2

⇤
=

�

300

✓
H⇤
mp

◆2

(7)

⇠ � · 10�12
⇥

✓
H⇤

Hmax

◆2

⌧ 1 ,

where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never

(to reheat the Universe)
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ACADEMIC POSITIONS
Postdoctoral researcher:
· Helsinki: HU/HIP, Theoretical Physics Dept. , 2010 (Oct) - 2012 (Sep)

· Geneva:

⇢
UNIGE, Theoretical Physics Dept. , 2012 (Oct) - 2014 (Sep)
CERN, Theoretical Physics Dept. , 2014 (Oct) - 2017 (Sep)

Junior faculty:
· Research sta↵, EPFL, HET Group ! 2017 (Oct) - 2019 (Aug)
· Proleptic Lecturer (via ERF), Sussex Univ. ! declined
· Ramón y Cajal Fellow, IFIC & Valencia U. ! started Sept 2019

GRANTS

· MEC Undergrad Collaboration Grant, Oct 2004-June 2005. Value: 2700 Euros
· DESY Summer Student Programme 2005, Jul - Sept 2005. Value: 800 Euros [+ accomodation]
· FPU Fellowship for the Ph.D., funded by MICINN, Apr 2006 - Mar 2010 (4 years). Value: 64.000 Euros
· FPU Visit grant 2007/2008/2009, see INTERNATIONAL STAYS below. Value: 15.000 Euros (total)
· UNIVERSENET Research Training Grant at CERN, Jan - Apr 2010. Value: 16.000 CHF
· MARIE CURIE Early Stage Training Ship at CERN, May - July 2010. Value: 10.500 CHF
· SNSF ’International Short Visit’, Columbia Univ., NYC, Oct - Dec 2014. Value: 10.000 CHF

Advanced research grants:
· Ernest Rutherford Fellowship (ERF) 2017, with Sussex University TPP group. Value: 591.415 GBP
· Ramón y Cajal (RyC) Fellowship 2017, with IFIC & Valencia University. Value: 321.846 Euros

LANGUAGE SKILLS
· Spanish (Native), English (Very Good), French (Good)

1



INFLATIONARY SECTOR COUPLED 
ONLY (minimally) TO GRAVITY

{ {
inflaton gravity 

(GR)

L =
1
p
g

⇢
(@�)2 � Vinf(�) +

1

2
m2

plR+ (@�)2 � V (�)� ⇠�2R� g2�2�2

�

{
Need to excite matter Inflation does 

the job !

3

1, the total amount of energy stored in all these fields at
the end of inflation would read

⇢rad ⇠ 10�2
H

4
⇤

 
N1 +

N2X

i=1

(1� 6⇠i)
2

!
. (3)

If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.

In addition to non-adiabatic production of particles,
spectator scalar fields with potential V = 1

2m
2
'
2 and

mass m
2
⌧ H

2
⇤ , i.e. free light scalar dof , can also be

excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX

i

✓
mi

H⇤

◆2

, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,

�⇤ ⌘
⇢rad

3m2
p
H2

⇤
=

�

300

✓
H⇤
mp

◆2

(7)

⇠ � · 10�12
⇥

✓
H⇤

Hmax

◆2

⌧ 1 ,

where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H
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state (EoS) w satisfies w < �1/3. The EoS in the epoch
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even though it is common to assume that 0  w  1/3,
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to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
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The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
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enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2
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where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m
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i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'
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⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H
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⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,
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where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never
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If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.
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where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/
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enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2
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where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m
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i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'
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4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as
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⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,
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where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never
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excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX

i

✓
mi

H⇤

◆2

, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,

�⇤ ⌘
⇢rad

3m2
p
H2

⇤
=

�

300

✓
H⇤
mp

◆2

(7)

⇠ � · 10�12
⇥

✓
H⇤

Hmax

◆2

⌧ 1 ,

where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never

� . 1 ,

(to reheat the Universe)
� . 1 ,
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3

77777775

RESEARCH INTERESTS

Cosmology : (@�)2 gravitational waves, inflation, (p)reheating, phase transitions, topological defects, baryo-
genesis, cosmological axions, dark matter, cosmic microwave background

High Energy Physics : equilibrium & non-equilibrium quantum & classical field theory, non-perturbative
field e↵ects, quantum field theory anomalies, phenomenology of BSM extensions

EDUCATION HISTORY

· 2005 (Sept): B.Sc., Physics at UAM.
· 2006 (Sept): M.Sc., Theoretical Physics at UAM/IFT. Master Thesis: ”Inflationary Reheating”.
· 2010 (July): Ph.D., Theoretical Physics at UAM/IFT. Grade: Sobresaliente CUM LAUDE
Thesis: “Aspects of Reheating”, Advisor: Prof. J. Garćıa-Bellido.
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Figure 12: The spectrum of amplification of vacuum fluctuations produced by a phase of
De Sitter inflation (solid line), with a value of H that saturates the COBE bound. The
nucleosynthesis bound (dotted line) and the pulsar bound (triangle shaped) of fig. 11 are
also shown for comparison.
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2

pH
2
RD. This and the scaling law of radiation

energy density implies

✓
aRD

a0

◆4✓HRD

H0

◆2

=
8⇡G⇢rad(⌧0)

3H2
0

= ⌦(0)
rad

✓
g⇤,k
g⇤,0

◆✓
gs,0
gs,k

◆4/3

. (3.22)

Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain

⌦(0)
GW(f) = ⌦(0)

GW

���
plateau

⇥W(f/fRD)⇥As

✓
f

fRD

◆2(1�↵s)

, (3.23)

where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant

As ⌘
�2 (↵s + 1/2)

22(1�↵s)↵2↵s
s �2(3/2)

, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain

W(f/fRD ⌧ 1) �! A�1
s

✓
f

fRD

◆�2(1�↵s)

, W(f/fRD � 1) �! 1 , (3.25)

and hence

⌦(0)
GW(f) ' ⌦(0)

GW

���
plateau

⇥

8
><

>:

1 , f ⌧ fRD

As

⇣
f

fRD

⌘2(1�↵s)
, f � fRD

(3.26)

What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,

nt ⌘
d log⌦(0)

GW

d log f
= 2(1� ↵s) = 2

✓
3!S � 1

3!S + 1

◆
> 0 , (3.27)

which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2

pH
2

[17]

⌦GW(⌧, k) ⌘ 1

⇢crit

d⇢GW(⌧, k)

d ln k
=

k2

12a2(⌧)H2(⌧)
�2

h
(⌧, k) , (2.9)

It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function

�2
h
(⌧, k) ⌘ Th(⌧, k)�

2
h,inf(k) , Th(⌧, k) ⌘

1

2

✓
ak
a(⌧)

◆2

, (2.10)

which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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GW
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, (2.11)

where in the first line we have used k = akHk and introduced the RD transfer function

Th(k) ' 1
2

⇣
ak
a0

⌘2
' 1

2

⇣
gs,0

gs,k

⌘4/3 ⇣
g⇤,k
g⇤,0

⌘
⌦(0)
rad

⇣
a0H0

akHk

⌘2
[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as

/ g⇤,kg
�4/3
s,k

⇠ g�1/3
k

⇠ 100�1/3 ' 0.2.
Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as

/ g⇤,kg
�4/3
s,k

⇠ g�1/3
k

⇠ 100�1/3 ' 0.2.
Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon

– 5 –

factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2

pH
2

[17]

⌦GW(⌧, k) ⌘ 1

⇢crit

d⇢GW(⌧, k)

d ln k
=

k2

12a2(⌧)H2(⌧)
�2

h
(⌧, k) , (2.9)

It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function

�2
h
(⌧, k) ⌘ Th(⌧, k)�

2
h,inf(k) , Th(⌧, k) ⌘

1

2

✓
ak
a(⌧)

◆2

, (2.10)

which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]

⌦(0)
GW

���
plateau

'
⌦(0)
rad

12⇡2

✓
gs,0
gs,k

◆ 4

3

✓
g⇤,k
g⇤,0

◆✓
Hinf

mp

◆2

' 2 · 10�16

✓
H⇤

Hmax

◆2

, (2.11)

where in the first line we have used k = akHk and introduced the RD transfer function

Th(k) ' 1
2

⇣
ak
a0

⌘2
' 1

2

⇣
gs,0

gs,k

⌘4/3 ⇣
g⇤,k
g⇤,0

⌘
⌦(0)
rad

⇣
a0H0

akHk

⌘2
[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as

/ g⇤,kg
�4/3
s,k

⇠ g�1/3
k

⇠ 100�1/3 ' 0.2.
Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon

– 5 –

Window  x  power-law

nt(ws)

0.01 0.10 1 10 100
10-17

10-16

10-15

10-14

f/fRD

h
2 �

G
W

(0
)
(f)

Rad. Plateau

Window

power-la
w

Not just Grav. RH !
Generic for Stiff Era
(before Rad. Dom.)



Inflationary GW background

Transfer Funct. Stiff Period 

where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2

pH
2
RD. This and the scaling law of radiation

energy density implies

✓
aRD

a0

◆4✓HRD

H0

◆2

=
8⇡G⇢rad(⌧0)

3H2
0

= ⌦(0)
rad

✓
g⇤,k
g⇤,0

◆✓
gs,0
gs,k

◆4/3

. (3.22)

Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,

nt ⌘
d log⌦(0)

GW

d log f
= 2(1� ↵s) = 2

✓
3!S � 1

3!S + 1

◆
> 0 , (3.27)

which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.

– 11 –

Rad. 
Plateau

} }

factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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d log⌦(0)
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= 2(1� ↵s) = 2
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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2

[17]
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function

Th(k) ' 1
2

⇣
ak
a0

⌘2
' 1

2

⇣
gs,0

gs,k

⌘4/3 ⇣
g⇤,k
g⇤,0

⌘
⌦(0)
rad

⇣
a0H0

akHk

⌘2
[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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2

[17]
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.
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If the GW energy spectrum in the smooth transition case ⌦
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant

As ⌘
�2 (↵s + 1/2)
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, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2
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[17]
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It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2

pH
2

[17]

⌦GW(⌧, k) ⌘ 1

⇢crit

d⇢GW(⌧, k)

d ln k
=

k2

12a2(⌧)H2(⌧)
�2

h
(⌧, k) , (2.9)

It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as
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Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.
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Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.

5
If the GW energy spectrum in the smooth transition case ⌦

(smooth)

GW
(⌧0, f) is also shown in the same figure,

the di↵erence between ⌦
(abrupt)

GW
(⌧0, f) and ⌦

(smooth)

GW
(⌧0, f) would be nearly unnoticeable.
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inf and the scaling of the energy density of the sti↵ fluid gives ⇢inf(⌧RD)/⇢inf(⌧inf) =
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�3(wS+1). Together, they yield

aRD

ainf
=

✓
21/2

Hinf

HRD

◆ ↵s

1+↵s

. (3.28)

Taking the sub-horizon limit of expression (3.10), squaring it, and averaging over oscillations,
we arrive at
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where we recall that  ⌘ k/kRD = f/fRD, a⇤H⇤⌧̃s(⌧) = ↵s + a⇤H⇤(⌧ � ⌧⇤) [c.f. (3.8)], and in
the second line we have used the scale factor a(⌧) = a1+↵s

⇤ H↵s

⇤ ↵�↵s

s [⌧̃s(⌧)]↵s deep inside SD
during ⌧⇤  ⌧ ⌧ ⌧RD [c.f. (3.3)], and we have used (3.28) and kRD ⌘ aRDHRD.

Now that the solution is expressed in terms of the scale factor, it remains valid in all the
subsequent epochs, and so we can omit the superscript (sti↵). Building the present-day tensor
power spectrum �2

h
(⌧0, k) =

2k3

⇡2 |hk�kRD
(⌧0)|2 with (3.19), and plugging this into (2.9), leads

to the present-day energy spectrum for the modes k � kRD re-entering the horizon during
the SD,
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where in the second step we have introduced the inflationary tensor power spectrum (2.6)
(with nt = 0) and used  ⌘ k/kRD, kRD = aRDHRD and ⇡ = 4�2(3/2), whereas in the third
step we have used that  = f/fRD, the definition of As [c.f. Eq. (3.24)] and of the inflationary
plateau [c.f. (2.11)], and the fact that in a smooth transition ⇢rad(⌧RD) = ⇢crit(⌧RD)/2 =
3H2

RD/16⇡G, which implies
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. (3.31)

We notice that in (3.31) there is an extra factor of 2 compared to the analogous expression
(3.22) for the abrupt transition case. As before, in the final expression of Eq. (3.30) we

absorbed the e↵ects due to the changes in the relativistic degrees of freedom into ⌦(0)
GW

���
plateau

.

If we compare the expression of the high-frequency branch of the GW energy spectrum
we just obtained in the smooth transition case with its instant transition counterpart (3.26),
we see that the normalization constant is now a factor 21�↵s larger, which ranges from 1 (if
wS = 1/3) to

p
2 (if wS ! 1). For comparison we plot in Fig. 3.2 the present GW energy

density power spectrum obtained in the instant SD-to-RD transition model, c.f. Eq. (3.23), to-
gether with the high frequency branch obtained in the smooth transition case, c.f. Eq. (3.30).

– 13 –

where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2

pH
2
RD. This and the scaling law of radiation

energy density implies
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant

As ⌘
�2 (↵s + 1/2)

22(1�↵s)↵2↵s
s �2(3/2)

, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain

W(f/fRD ⌧ 1) �! A�1
s

✓
f

fRD

◆�2(1�↵s)

, W(f/fRD � 1) �! 1 , (3.25)

and hence
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(3.26)

What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,

nt ⌘
d log⌦(0)

GW

d log f
= 2(1� ↵s) = 2

✓
3!S � 1

3!S + 1

◆
> 0 , (3.27)

which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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2
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energy density implies

✓
aRD

a0

◆4✓HRD

H0

◆2

=
8⇡G⇢rad(⌧0)

3H2
0

= ⌦(0)
rad

✓
g⇤,k
g⇤,0

◆✓
gs,0
gs,k

◆4/3

. (3.22)

Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD
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energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2

pH
2

[17]

⌦GW(⌧, k) ⌘ 1

⇢crit

d⇢GW(⌧, k)

d ln k
=

k2

12a2(⌧)H2(⌧)
�2

h
(⌧, k) , (2.9)

It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function

�2
h
(⌧, k) ⌘ Th(⌧, k)�

2
h,inf(k) , Th(⌧, k) ⌘

1

2

✓
ak
a(⌧)

◆2

, (2.10)

which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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, (2.11)

where in the first line we have used k = akHk and introduced the RD transfer function
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[5]. In the second line of Eq. (2.11) we

have used ⌦(0)
rad ' 9 · 10�5, Hinf ' H⇤, gs,0 ' 3.91, g⇤,0 = 3.36 and gs,k ' g⇤,k ' 100.

Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
scale. We postpone the discussion of this spectral distorsion to Section 4.3.2. For the time
being we simply consider an identical suppression of all the modes crossing during RD as

/ g⇤,kg
�4/3
s,k

⇠ g�1/3
k

⇠ 100�1/3 ' 0.2.
Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon
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While expressing the GW energy spectrum in terms of fRD yields a neat expression,
it is sometimes more useful from physical point of view to characterize the point of SD to
RD transition in terms of the energy scale ERD, defined to be the fourth root of the energy
density of radiation at that point6

ERD ⌘ ⇢1/4rad(⌧RD) =
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Mp
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fRD, smooth transition

(4.1)

where we have used fRD = 2⇡aRDkRD, kRD = aRDHRD, and (3.22) in the abrupt tran-

sition case or (3.31) in the smooth transition case. Using ⌦(0)
rad ' 9 ⇥ 10�5 and H0 '

67.8 (km/s)/Mpc, we can write ERD in a more readily usable form

ERD =

8
<

:
5.5⇥ 108 GeV

⇣
fRD

1 Hz

⌘
, abrupt transition

3.9⇥ 108 GeV
⇣

fRD

1 Hz

⌘
, smooth transition

(4.2)

which tells us that the energy scales of electroweak 100 GeV, BBN 1 MeV, and matter-
radiation equality 1 eV correspond to GW frequencies of 10�6 Hz, 10�11 Hz, and 10�17 Hz.
It also says that the GW frequencies that LISA and LIGO are sensitive to, namely fLISA ⇠
10�3 Hz and fLIGO ⇠ 10 Hz, correspond to the energy scales of 105 GeV and 109 GeV,
respectively. The requirement not to disturb the success of BBN limits the possible values
of ERD to ERD & 1 MeV.

Fixed-Hinf slices, fixed-w slices, and fixed-fRD (or ERD, introduced in (4.1)) slices of
the parameter-space regions probe-able by LISA and Advanced LIGO are shown in Figure 4.
The relatively small, model-dependent e↵ects of a red tilt in the GW spectrum due to the
fact that the universe cannot be perfectly de-Sitter during inflation and of changes in the
relativistic degrees of freedom in the RD epoch are not included in these plots. We will
discuss about these e↵ects in Section 4.3.1 and 4.3.2. We found that, in order to have a
chance to be probed by LISA, the values of the three parameters must lie in the following
ranges

9.1⇥ 1010 GeV <Hinf < 6.6⇥ 1013 GeV

0.47 <wS < 1

10�11 Hz .fRD < 4.6⇥ 10�6 Hz

10�3 GeV .ERD < 5.91⇥ 103 GeV

which are understood as follows. If a parameter, say, Hinf lies in the above specified range,
then there are values of the other two parameters, i.e. w and fRD or ERD, that give rise to

6
The energy scale ERD is a better parameter than the temperature TRD because there is no guarantee that

the universe was in a thermal equilibrium at an arbitrary time in the SD or RD epoch; the universe in general

does not immediately thermalize right after inflation.
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In this section, we will show that any gravitational
reheating scenario with � lying within its natural range
�  1 is actually inconsistent. The inconsistency arises
mainly due to the need to preserve the success of BBN,
particularly that the total energy density of extra rela-
tivistic species (which are not part of the SM) present
during BBN must not contribute significantly to the ex-
pansion rate of the Universe, or otherwise the resulting
light element abundances would be spoiled. Since GWs
are one type of such extra relativistic species, the energy
density of the stochastic background of GWs should be
smaller than the upper bound [39]

✓
h
2
⇢GW

⇢c

◆

0

=

Z
df

f
h
2 ⌦GW(f)  5.6⇥ 10�6 �N⌫ ,

(20)
where �N⌫ parametrizes the extra amount of radiation
from beyond the SM dof

3 [66]. As we will see soon, a
post-inflationary sti↵ epoch breaks the (quasi-)scale in-
variance of the GW background from inflation, induc-
ing a positive tilt in the high-frequency part of the spec-
trum corresponding to the modes that crossed the hori-
zon during the sti↵ epoch. The sti↵er the EoS w̄, the
steeper the tilt. In what follows, we will show that there
is no choice of parameters {�, H⇤, w̄} within the natural
domains �  1, H⇤  Hmax, wRD  w̄ < 1, for which
Eq. (20) is not violated.

A. Distortion of the inflationary GW background
due to the sti↵ period

Let us first of all recall that GWs are transverse
(@ihij = 0 ) and traceless (hii = 0) metric perturba-
tions ds2 = a

2(t)(�dt
2+(�ij+hij)dxi

dx
j). Their energy

density spectrum (at sub-horizon scales) is defined as [39]

⌦GW(t, k) ⌘
1

⇢crit

d⇢GW(t, k)

d ln k
=

k
2

12a2(t)H2(t)
�2

h
(t, k) ,

(21)

where �2
h
(t, k) is the tensor power spectrum at arbitrary

times, defined as

⌦
hij(t,x)h

ij(t,x)
↵
⌘

Z
dk

k
�2

h
(t, k) , (22)

with h...i denoting an average over a statistical ensemble.
In our case, we can factorize the tensor power spectrum
as

�2
h
(t, k) ⌘ Th(t, k)�

2
h,inf(k) , (23)

3 The contribution from extra radiation during BBN or other
stages of the evolution of the universe is typically parametrized
in terms of an e↵ective deviation �N⌫ from the number of SM
neutrino species N⌫ = 3. This is only a parametrization. The
extra radiation does not need to be neutrinos and can be either
bosonic or fermionic.

with Th(t, k) a transfer function and �2
h,inf(k) the pri-

mordial tensor spectrum from inflation

�2
h,inf(k) '

2

⇡2

✓
Hinf(k)

mp

◆2 ✓
k

kp

◆nt

, (24)

with nt a spectral tilt, kp a pivot scale of the order the
Hubble rate at the time of CMB decoupling, and Hinf(k)
the Hubble rate when the mode k exited the Hubble
radius during inflation. The upper bound Hmax intro-
duced in Sect. II actually applies only to the Hubble rate
Hinf(k), i.e. Hinf(k)  Hmax, rather than to H⇤, as we
already explained below Eq. (8). The spectrum is ex-
pected to be only slightly red-tilted in slow-roll inflation,
with the spectral index being ’slow-roll suppressed’ as

nt ' �2✏ ' �
r0.002

8
, (25)

where r0.002 ⌘ �2
h
/�2

R is the tensor-to-scalar ratio eval-
uated at the scale kp, constrained by the most recent
analysis by the Planck collaboration as r0.002  0.064 [1].
It is actually this bound that determines the upper
bound Hmax on the inflationary Hubble scale reported
in Eq. (8). Given this bound, we see that the infla-
tionary spectrum has a very small red-titled spectral in-
dex �nt  0.008 ⌧ 1, which makes the spectrum very
close to exact scale-invariance, at least around the CMB
scales4. From now on, for simplicity of our discussion, we
will consider an exact scale-invariant inflationary spec-
trum, as this gives an excellent approximation. We will
comment on deviations from this assumption in Sect. IV.
Let us assume for a moment that, immediately after

inflation, the Universe became RD with equation of state
w = 1/3. The resulting present-day GW energy density
spectrum would then be scale-invariant for the frequency
range corresponding to the modes crossing the Hubble
radius during RD. Using Eqs. (21), (23), and (24) (with
nt = 0), we obtain

⌦(0)
GW

���
RD

'
⌦(0)

rad

12⇡2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆✓
Hinf(k)

mp

◆2

' 2 · 10�16

✓
H⇤

Hmax

◆2

, (26)

where in the first line we have introduced the RD transfer
function [67]

T (k) '
1

2

✓
ak

a0

◆2

'
1

2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆
⌦(0)

rad

✓
a0H0

akHk

◆2

,

(27)

4 For instance, with no running of the spectral index, the am-
plitude of the tensor spectrum would fall only by a factor
⇠ (1025)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of mag-
nitude separating the CMB scales and the scale that matches
the Hubble radius at the end of inflation.
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the onset of BBN are then given by

H
2
RD = 2⇥

⇡
2

90
g⇤,RD

T
4
RD

m2
p

=
2⇢⇤�⇤
3m2

p

✓
a⇤
aRD

◆4

(35)

= 2H2
⇤�

1+↵
1�↵
⇤ = 2H2

⇤

✓
�

300

◆ 1+↵
1�↵

✓
H⇤
mp

◆ 2(1+↵)
1�↵

,

H
2
BBN =

⇡
2

90
g⇤,BBN

T
4
BBN

m2
p

' (2.5 · 10�25 GeV)2, (36)

where in the last equality we have used TBBN ' 10�3

GeV at the onset of BBN, and the e↵ective thermal rela-
tivistic dof (accounting for photons and neutrinos of the
SM) is gBBN ' 3.36. We note that we are assuming that
TRD � TBBN, otherwise if the universe reheats just about
before the onset of BBN, at a temperature TRD & TBBN,
then Eq. (36) should pick up a factor 2 on the rhs, which
would cancel out the factor

p
2 in Eq. (33).

B. Incompatibility with upper bounds on
stochastic gravitational wave background

The first problem with gravitational reheating that we
immediately encounter, is that the energy density asso-
ciated to the tensor modes that first crossed the Hubble
radius after the onset of the sti↵ era is larger than the
energy density of the radiation component excited dur-
ing or towards the end of inflation. This can be easily
seen by computing the GW spectral energy density asso-
ciated to the highest frequency modes, k ⇠ k⇤ = a⇤H⇤,
as their contributions dominate the integration over all
the sub-horizon modes contributing to the total GW en-
ergy density. In particular, some time after such modes
have entered the horizon, say once they can be consid-
ered as propagating (hence oscillating) GWs, the ratio of
their logarithmic energy density spectrum to the critical
energy density, can be found as

⌦GW(t, k⇤) ⌘
1

⇢c(t)

d⇢GW

d log k
(t, k⇤) =

k
2
⇤�

2
h
(t, k⇤)

12a2(t)H2(t)

'
A↵

12⇡2

✓
H⇤
mp

◆2 ✓
a(t)

a⇤

◆3w̄�1

(37)

where we have used the expression of �2
h
(t, k⇤) from Ap-

pendix A, and H
2(t) = H

2
⇤ (a⇤/a(t))

2(1+↵)/↵. Comparing
Eq. (37) with Eq. (9), we realize that they have not only
the same time-dependence (a/a⇤)3w̄�1 = (a/a⇤)2(1�↵)/↵

(as expected for the ratio of energy densities of relativis-
tic species to that of a sti↵ background), but also the
same Hubble scale dependence / (H⇤/mp)2. Hence, the
ratio between Eq. (37) and Eq. (9) is time- and scale-
independent,

⌦GW(t, k⇤)

�(t)
'

300 · A↵

12⇡2�
. (38)

We observe that for the canonical values �  1,
⌦GW(t,k⇤)

�(t) > 1 , i.e. the energy density stored in the

high frequency modes of the GW spectrum is larger than
the energy density of the initial radiation component,
c.f. Eq. (9). Since the energy density of GWs scales as
radiation, it would remain to be the dominant radiation
component today, in clear conflict with the idea that the
radiation sector need to be become eventually dominated
by SM light species.
In fact, technically speaking, this already invalidates

the analysis of gravitational reheating done so far, be-
cause the universe would reheat at an earlier time than
inferred from Eq. (6), and the universe would enter into
RD with its energy budget dominated by GWs. There-
fore, Eq. (38) simply indicates that, for consistency, grav-
itational reheating could only be a viable scenario if � is
larger than a critical value, which in this case is given by

� � �c =
25

⇡2
A↵ ⇠ 5 , (39)

in contradiction with the canonical range �  1.
This leads into a similar but yet more severe prob-

lem with gravitational reheating: its incompatibility with
BBN. The GW bound in Eq. (20) applies on the total in-
tegrated GW energy density. However, except for GW
spectra with a very narrow peak of width �f ⌧ f , the
above bound can be interpreted as a direct bound on

the amplitude of a GW spectrum h
2⌦(0)

GW(f) . 5.6 ⇥

10�6�N⌫ over a wide frequency range. This, of course,
only applies to GWs with wavelengths well inside the
horizon before the onset of BBN8. Hence, the bound in
Eq. (20) applies only to tensor modes that crossed the
horizon before the start of BBN, which correspond to
present-day frequencies f � fBBN, with fBBN the fre-
quency corresponding to the (redshifted) horizon scale
at the onset of BBN,

fBBN ⌘
1

2⇡

aBBN

aRD

aRD

a0

HBBN

GeV
⇥ 1.52 · 1024 Hz

' 2.1 · 1011
✓

gs,0

gs,RD

◆ 1
3
✓
g⇤,RD

g⇤,0

◆ 1
4

⌦(0)
1
4

rad

r
H0

Hz

HBBN

GeV
Hz

' 1.6⇥ 10�11 Hz . (40)

In going to the last line, we have used H0 ' 67.8 ⇥

3.24 · 10�20 Hz, ⌦(0)
rad ' 9 · 10�5, and gs,0 ' 3.91, g⇤,0 =

g⇤,BBN ' 3.36. In order to respect the BBN bound from
Eq. (20), we need to demand that the high frequency part
of Eq. (28) satisfies

h
2⌦GW(f � fRD) < 1.12⇥ 10�6

, (41)

where we have used the most recent constraint on the
number of extra relativistic species �N⌫ . 0.2 at

8 Tensor modes with super-horizon wavelengths do not act as rela-
tivistic dof since they do not propagate as waves, so they do not
a↵ect the expansion rate of the Universe at the onset of BBN.

�N⌫ = 0.2 (95%C.L.) [latest CMB]
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In this section, we will show that any gravitational
reheating scenario with � lying within its natural range
�  1 is actually inconsistent. The inconsistency arises
mainly due to the need to preserve the success of BBN,
particularly that the total energy density of extra rela-
tivistic species (which are not part of the SM) present
during BBN must not contribute significantly to the ex-
pansion rate of the Universe, or otherwise the resulting
light element abundances would be spoiled. Since GWs
are one type of such extra relativistic species, the energy
density of the stochastic background of GWs should be
smaller than the upper bound [39]

✓
h
2
⇢GW

⇢c

◆

0

=

Z
df

f
h
2 ⌦GW(f)  5.6⇥ 10�6 �N⌫ ,

(20)
where �N⌫ parametrizes the extra amount of radiation
from beyond the SM dof

3 [66]. As we will see soon, a
post-inflationary sti↵ epoch breaks the (quasi-)scale in-
variance of the GW background from inflation, induc-
ing a positive tilt in the high-frequency part of the spec-
trum corresponding to the modes that crossed the hori-
zon during the sti↵ epoch. The sti↵er the EoS w̄, the
steeper the tilt. In what follows, we will show that there
is no choice of parameters {�, H⇤, w̄} within the natural
domains �  1, H⇤  Hmax, wRD  w̄ < 1, for which
Eq. (20) is not violated.

A. Distortion of the inflationary GW background
due to the sti↵ period

Let us first of all recall that GWs are transverse
(@ihij = 0 ) and traceless (hii = 0) metric perturba-
tions ds2 = a

2(t)(�dt
2+(�ij+hij)dxi

dx
j). Their energy

density spectrum (at sub-horizon scales) is defined as [39]

⌦GW(t, k) ⌘
1

⇢crit

d⇢GW(t, k)

d ln k
=

k
2

12a2(t)H2(t)
�2

h
(t, k) ,

(21)

where �2
h
(t, k) is the tensor power spectrum at arbitrary

times, defined as

⌦
hij(t,x)h

ij(t,x)
↵
⌘

Z
dk

k
�2

h
(t, k) , (22)

with h...i denoting an average over a statistical ensemble.
In our case, we can factorize the tensor power spectrum
as

�2
h
(t, k) ⌘ Th(t, k)�

2
h,inf(k) , (23)

3 The contribution from extra radiation during BBN or other
stages of the evolution of the universe is typically parametrized
in terms of an e↵ective deviation �N⌫ from the number of SM
neutrino species N⌫ = 3. This is only a parametrization. The
extra radiation does not need to be neutrinos and can be either
bosonic or fermionic.

with Th(t, k) a transfer function and �2
h,inf(k) the pri-

mordial tensor spectrum from inflation

�2
h,inf(k) '

2

⇡2

✓
Hinf(k)

mp

◆2 ✓
k

kp

◆nt

, (24)

with nt a spectral tilt, kp a pivot scale of the order the
Hubble rate at the time of CMB decoupling, and Hinf(k)
the Hubble rate when the mode k exited the Hubble
radius during inflation. The upper bound Hmax intro-
duced in Sect. II actually applies only to the Hubble rate
Hinf(k), i.e. Hinf(k)  Hmax, rather than to H⇤, as we
already explained below Eq. (8). The spectrum is ex-
pected to be only slightly red-tilted in slow-roll inflation,
with the spectral index being ’slow-roll suppressed’ as

nt ' �2✏ ' �
r0.002

8
, (25)

where r0.002 ⌘ �2
h
/�2

R is the tensor-to-scalar ratio eval-
uated at the scale kp, constrained by the most recent
analysis by the Planck collaboration as r0.002  0.064 [1].
It is actually this bound that determines the upper
bound Hmax on the inflationary Hubble scale reported
in Eq. (8). Given this bound, we see that the infla-
tionary spectrum has a very small red-titled spectral in-
dex �nt  0.008 ⌧ 1, which makes the spectrum very
close to exact scale-invariance, at least around the CMB
scales4. From now on, for simplicity of our discussion, we
will consider an exact scale-invariant inflationary spec-
trum, as this gives an excellent approximation. We will
comment on deviations from this assumption in Sect. IV.
Let us assume for a moment that, immediately after

inflation, the Universe became RD with equation of state
w = 1/3. The resulting present-day GW energy density
spectrum would then be scale-invariant for the frequency
range corresponding to the modes crossing the Hubble
radius during RD. Using Eqs. (21), (23), and (24) (with
nt = 0), we obtain

⌦(0)
GW

���
RD

'
⌦(0)

rad

12⇡2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆✓
Hinf(k)

mp

◆2

' 2 · 10�16

✓
H⇤

Hmax

◆2

, (26)

where in the first line we have introduced the RD transfer
function [67]

T (k) '
1

2

✓
ak
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◆2

'
1

2

✓
gs,0
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◆ 4
3
✓
g⇤,k
g⇤,0

◆
⌦(0)

rad

✓
a0H0

akHk

◆2

,

(27)

4 For instance, with no running of the spectral index, the am-
plitude of the tensor spectrum would fall only by a factor
⇠ (1025)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of mag-
nitude separating the CMB scales and the scale that matches
the Hubble radius at the end of inflation.
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the onset of BBN are then given by

H
2
RD = 2⇥
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T
4
RD
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p

=
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(35)
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✓
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,

H
2
BBN =
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2

90
g⇤,BBN

T
4
BBN

m2
p

' (2.5 · 10�25 GeV)2, (36)

where in the last equality we have used TBBN ' 10�3

GeV at the onset of BBN, and the e↵ective thermal rela-
tivistic dof (accounting for photons and neutrinos of the
SM) is gBBN ' 3.36. We note that we are assuming that
TRD � TBBN, otherwise if the universe reheats just about
before the onset of BBN, at a temperature TRD & TBBN,
then Eq. (36) should pick up a factor 2 on the rhs, which
would cancel out the factor

p
2 in Eq. (33).

B. Incompatibility with upper bounds on
stochastic gravitational wave background

The first problem with gravitational reheating that we
immediately encounter, is that the energy density asso-
ciated to the tensor modes that first crossed the Hubble
radius after the onset of the sti↵ era is larger than the
energy density of the radiation component excited dur-
ing or towards the end of inflation. This can be easily
seen by computing the GW spectral energy density asso-
ciated to the highest frequency modes, k ⇠ k⇤ = a⇤H⇤,
as their contributions dominate the integration over all
the sub-horizon modes contributing to the total GW en-
ergy density. In particular, some time after such modes
have entered the horizon, say once they can be consid-
ered as propagating (hence oscillating) GWs, the ratio of
their logarithmic energy density spectrum to the critical
energy density, can be found as

⌦GW(t, k⇤) ⌘
1

⇢c(t)

d⇢GW

d log k
(t, k⇤) =

k
2
⇤�

2
h
(t, k⇤)

12a2(t)H2(t)

'
A↵

12⇡2

✓
H⇤
mp

◆2 ✓
a(t)

a⇤

◆3w̄�1

(37)

where we have used the expression of �2
h
(t, k⇤) from Ap-

pendix A, and H
2(t) = H

2
⇤ (a⇤/a(t))

2(1+↵)/↵. Comparing
Eq. (37) with Eq. (9), we realize that they have not only
the same time-dependence (a/a⇤)3w̄�1 = (a/a⇤)2(1�↵)/↵

(as expected for the ratio of energy densities of relativis-
tic species to that of a sti↵ background), but also the
same Hubble scale dependence / (H⇤/mp)2. Hence, the
ratio between Eq. (37) and Eq. (9) is time- and scale-
independent,

⌦GW(t, k⇤)

�(t)
'

300 · A↵

12⇡2�
. (38)

We observe that for the canonical values �  1,
⌦GW(t,k⇤)

�(t) > 1 , i.e. the energy density stored in the

high frequency modes of the GW spectrum is larger than
the energy density of the initial radiation component,
c.f. Eq. (9). Since the energy density of GWs scales as
radiation, it would remain to be the dominant radiation
component today, in clear conflict with the idea that the
radiation sector need to be become eventually dominated
by SM light species.
In fact, technically speaking, this already invalidates

the analysis of gravitational reheating done so far, be-
cause the universe would reheat at an earlier time than
inferred from Eq. (6), and the universe would enter into
RD with its energy budget dominated by GWs. There-
fore, Eq. (38) simply indicates that, for consistency, grav-
itational reheating could only be a viable scenario if � is
larger than a critical value, which in this case is given by

� � �c =
25

⇡2
A↵ ⇠ 5 , (39)

in contradiction with the canonical range �  1.
This leads into a similar but yet more severe prob-

lem with gravitational reheating: its incompatibility with
BBN. The GW bound in Eq. (20) applies on the total in-
tegrated GW energy density. However, except for GW
spectra with a very narrow peak of width �f ⌧ f , the
above bound can be interpreted as a direct bound on

the amplitude of a GW spectrum h
2⌦(0)

GW(f) . 5.6 ⇥

10�6�N⌫ over a wide frequency range. This, of course,
only applies to GWs with wavelengths well inside the
horizon before the onset of BBN8. Hence, the bound in
Eq. (20) applies only to tensor modes that crossed the
horizon before the start of BBN, which correspond to
present-day frequencies f � fBBN, with fBBN the fre-
quency corresponding to the (redshifted) horizon scale
at the onset of BBN,

fBBN ⌘
1

2⇡

aBBN

aRD

aRD

a0

HBBN

GeV
⇥ 1.52 · 1024 Hz

' 2.1 · 1011
✓

gs,0
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◆ 1
3
✓
g⇤,RD
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◆ 1
4

⌦(0)
1
4

rad

r
H0

Hz

HBBN

GeV
Hz

' 1.6⇥ 10�11 Hz . (40)

In going to the last line, we have used H0 ' 67.8 ⇥

3.24 · 10�20 Hz, ⌦(0)
rad ' 9 · 10�5, and gs,0 ' 3.91, g⇤,0 =

g⇤,BBN ' 3.36. In order to respect the BBN bound from
Eq. (20), we need to demand that the high frequency part
of Eq. (28) satisfies

h
2⌦GW(f � fRD) < 1.12⇥ 10�6

, (41)

where we have used the most recent constraint on the
number of extra relativistic species �N⌫ . 0.2 at

8 Tensor modes with super-horizon wavelengths do not act as rela-
tivistic dof since they do not propagate as waves, so they do not
a↵ect the expansion rate of the Universe at the onset of BBN.

4 Detection Prospects

4.1 Parameter space region probe-able by LISA and Advanced LIGO

The GW energy spectrum h2⌦(abrupt)
GW (⌧0, f) in the abrupt transition case for modes that re-

enter the horizon before the matter-radiation equality for di↵erent values of the inflationary
Hubble rate Hinf, the equation of state parameter in the SD epoch wS, and the frequency
corresponding to the mode that re-enters the hoirzon at the transition from SD to RD
epoch fRD, together with the sensitivity curves of LISA and Advanced LIGO, are shown in
Figure 35. As can be seen, the spectrum consists of two parts: a plateau and a blue-tilted
part. The model parameters Hinf, wS, and fRD, respectively, control the level of the plateau,
the slope of the blue-tilted part, and the location (in frequency space) of the “elbow” where
the plateau part and the blue-tilted part are connected. The non-detection of B-modes in
the CMB puts a bound on the Hubble rate Hinf during inflation Hinf . 6.6⇥ 1013 GeV and
the requirement to reheat before the start of BBN puts a bound on fRD, fRD & 10�11 Hz.

10-12 10-8 10-4 1

10-19

10-16

10-13

10-10

10-7

Figure 3. The expected GW energy spectra in the abrupt transition case h2⌦(abrupt)
GW (⌧0, f) (black

solid lines) for di↵erent values of Hinf, fRD, and wS, together with the LISA sensitivity curve (blue
solid line), LIGO sensitivity curves (green solid lines), and BBN extra degrees of freedom bound (red
dotted line). In the top-left figure, we fix w = 0.8 and fRD = 10�9 Hz and plot the GW energy
spectrum for Hinf = 1012 GeV, 1013 GeV, 1014 GeV. In the top-right figure, we fix Hinf = 1013 GeV
and w = 0.8 and plot the GW energy spectrum for fRD = 10�7 Hz, 10�9 Hz, 10�11 Hz. In the bottom
figure, we fix Hinf = 1013 GeV and fRD = 10�9 Hz and plot the GW energy spectrum for w = 0.5,
0.7, 1.

5
If the GW energy spectrum in the smooth transition case ⌦

(smooth)

GW
(⌧0, f) is also shown in the same figure,

the di↵erence between ⌦
(abrupt)

GW
(⌧0, f) and ⌦

(smooth)

GW
(⌧0, f) would be nearly unnoticeable.
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In this section, we will show that any gravitational
reheating scenario with � lying within its natural range
�  1 is actually inconsistent. The inconsistency arises
mainly due to the need to preserve the success of BBN,
particularly that the total energy density of extra rela-
tivistic species (which are not part of the SM) present
during BBN must not contribute significantly to the ex-
pansion rate of the Universe, or otherwise the resulting
light element abundances would be spoiled. Since GWs
are one type of such extra relativistic species, the energy
density of the stochastic background of GWs should be
smaller than the upper bound [39]

✓
h
2
⇢GW

⇢c

◆

0

=

Z
df

f
h
2 ⌦GW(f)  5.6⇥ 10�6 �N⌫ ,

(20)
where �N⌫ parametrizes the extra amount of radiation
from beyond the SM dof

3 [66]. As we will see soon, a
post-inflationary sti↵ epoch breaks the (quasi-)scale in-
variance of the GW background from inflation, induc-
ing a positive tilt in the high-frequency part of the spec-
trum corresponding to the modes that crossed the hori-
zon during the sti↵ epoch. The sti↵er the EoS w̄, the
steeper the tilt. In what follows, we will show that there
is no choice of parameters {�, H⇤, w̄} within the natural
domains �  1, H⇤  Hmax, wRD  w̄ < 1, for which
Eq. (20) is not violated.

A. Distortion of the inflationary GW background
due to the sti↵ period

Let us first of all recall that GWs are transverse
(@ihij = 0 ) and traceless (hii = 0) metric perturba-
tions ds2 = a

2(t)(�dt
2+(�ij+hij)dxi

dx
j). Their energy

density spectrum (at sub-horizon scales) is defined as [39]

⌦GW(t, k) ⌘
1

⇢crit

d⇢GW(t, k)

d ln k
=

k
2

12a2(t)H2(t)
�2

h
(t, k) ,

(21)

where �2
h
(t, k) is the tensor power spectrum at arbitrary

times, defined as

⌦
hij(t,x)h

ij(t,x)
↵
⌘

Z
dk

k
�2

h
(t, k) , (22)

with h...i denoting an average over a statistical ensemble.
In our case, we can factorize the tensor power spectrum
as

�2
h
(t, k) ⌘ Th(t, k)�

2
h,inf(k) , (23)

3 The contribution from extra radiation during BBN or other
stages of the evolution of the universe is typically parametrized
in terms of an e↵ective deviation �N⌫ from the number of SM
neutrino species N⌫ = 3. This is only a parametrization. The
extra radiation does not need to be neutrinos and can be either
bosonic or fermionic.

with Th(t, k) a transfer function and �2
h,inf(k) the pri-

mordial tensor spectrum from inflation

�2
h,inf(k) '

2

⇡2

✓
Hinf(k)

mp

◆2 ✓
k

kp

◆nt

, (24)

with nt a spectral tilt, kp a pivot scale of the order the
Hubble rate at the time of CMB decoupling, and Hinf(k)
the Hubble rate when the mode k exited the Hubble
radius during inflation. The upper bound Hmax intro-
duced in Sect. II actually applies only to the Hubble rate
Hinf(k), i.e. Hinf(k)  Hmax, rather than to H⇤, as we
already explained below Eq. (8). The spectrum is ex-
pected to be only slightly red-tilted in slow-roll inflation,
with the spectral index being ’slow-roll suppressed’ as

nt ' �2✏ ' �
r0.002

8
, (25)

where r0.002 ⌘ �2
h
/�2

R is the tensor-to-scalar ratio eval-
uated at the scale kp, constrained by the most recent
analysis by the Planck collaboration as r0.002  0.064 [1].
It is actually this bound that determines the upper
bound Hmax on the inflationary Hubble scale reported
in Eq. (8). Given this bound, we see that the infla-
tionary spectrum has a very small red-titled spectral in-
dex �nt  0.008 ⌧ 1, which makes the spectrum very
close to exact scale-invariance, at least around the CMB
scales4. From now on, for simplicity of our discussion, we
will consider an exact scale-invariant inflationary spec-
trum, as this gives an excellent approximation. We will
comment on deviations from this assumption in Sect. IV.
Let us assume for a moment that, immediately after

inflation, the Universe became RD with equation of state
w = 1/3. The resulting present-day GW energy density
spectrum would then be scale-invariant for the frequency
range corresponding to the modes crossing the Hubble
radius during RD. Using Eqs. (21), (23), and (24) (with
nt = 0), we obtain

⌦(0)
GW

���
RD

'
⌦(0)

rad

12⇡2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆✓
Hinf(k)

mp

◆2

' 2 · 10�16

✓
H⇤

Hmax

◆2

, (26)

where in the first line we have introduced the RD transfer
function [67]

T (k) '
1

2

✓
ak

a0

◆2

'
1

2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆
⌦(0)

rad

✓
a0H0

akHk

◆2

,

(27)

4 For instance, with no running of the spectral index, the am-
plitude of the tensor spectrum would fall only by a factor
⇠ (1025)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of mag-
nitude separating the CMB scales and the scale that matches
the Hubble radius at the end of inflation.
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the onset of BBN are then given by

H
2
RD = 2⇥

⇡
2

90
g⇤,RD

T
4
RD

m2
p

=
2⇢⇤�⇤
3m2

p

✓
a⇤
aRD

◆4

(35)

= 2H2
⇤�

1+↵
1�↵
⇤ = 2H2

⇤

✓
�

300

◆ 1+↵
1�↵

✓
H⇤
mp

◆ 2(1+↵)
1�↵

,

H
2
BBN =

⇡
2

90
g⇤,BBN

T
4
BBN

m2
p

' (2.5 · 10�25 GeV)2, (36)

where in the last equality we have used TBBN ' 10�3

GeV at the onset of BBN, and the e↵ective thermal rela-
tivistic dof (accounting for photons and neutrinos of the
SM) is gBBN ' 3.36. We note that we are assuming that
TRD � TBBN, otherwise if the universe reheats just about
before the onset of BBN, at a temperature TRD & TBBN,
then Eq. (36) should pick up a factor 2 on the rhs, which
would cancel out the factor

p
2 in Eq. (33).

B. Incompatibility with upper bounds on
stochastic gravitational wave background

The first problem with gravitational reheating that we
immediately encounter, is that the energy density asso-
ciated to the tensor modes that first crossed the Hubble
radius after the onset of the sti↵ era is larger than the
energy density of the radiation component excited dur-
ing or towards the end of inflation. This can be easily
seen by computing the GW spectral energy density asso-
ciated to the highest frequency modes, k ⇠ k⇤ = a⇤H⇤,
as their contributions dominate the integration over all
the sub-horizon modes contributing to the total GW en-
ergy density. In particular, some time after such modes
have entered the horizon, say once they can be consid-
ered as propagating (hence oscillating) GWs, the ratio of
their logarithmic energy density spectrum to the critical
energy density, can be found as

⌦GW(t, k⇤) ⌘
1

⇢c(t)

d⇢GW

d log k
(t, k⇤) =

k
2
⇤�

2
h
(t, k⇤)

12a2(t)H2(t)

'
A↵

12⇡2

✓
H⇤
mp

◆2 ✓
a(t)

a⇤

◆3w̄�1

(37)

where we have used the expression of �2
h
(t, k⇤) from Ap-

pendix A, and H
2(t) = H

2
⇤ (a⇤/a(t))

2(1+↵)/↵. Comparing
Eq. (37) with Eq. (9), we realize that they have not only
the same time-dependence (a/a⇤)3w̄�1 = (a/a⇤)2(1�↵)/↵

(as expected for the ratio of energy densities of relativis-
tic species to that of a sti↵ background), but also the
same Hubble scale dependence / (H⇤/mp)2. Hence, the
ratio between Eq. (37) and Eq. (9) is time- and scale-
independent,

⌦GW(t, k⇤)

�(t)
'

300 · A↵

12⇡2�
. (38)

We observe that for the canonical values �  1,
⌦GW(t,k⇤)

�(t) > 1 , i.e. the energy density stored in the

high frequency modes of the GW spectrum is larger than
the energy density of the initial radiation component,
c.f. Eq. (9). Since the energy density of GWs scales as
radiation, it would remain to be the dominant radiation
component today, in clear conflict with the idea that the
radiation sector need to be become eventually dominated
by SM light species.
In fact, technically speaking, this already invalidates

the analysis of gravitational reheating done so far, be-
cause the universe would reheat at an earlier time than
inferred from Eq. (6), and the universe would enter into
RD with its energy budget dominated by GWs. There-
fore, Eq. (38) simply indicates that, for consistency, grav-
itational reheating could only be a viable scenario if � is
larger than a critical value, which in this case is given by

� � �c =
25

⇡2
A↵ ⇠ 5 , (39)

in contradiction with the canonical range �  1.
This leads into a similar but yet more severe prob-

lem with gravitational reheating: its incompatibility with
BBN. The GW bound in Eq. (20) applies on the total in-
tegrated GW energy density. However, except for GW
spectra with a very narrow peak of width �f ⌧ f , the
above bound can be interpreted as a direct bound on

the amplitude of a GW spectrum h
2⌦(0)

GW(f) . 5.6 ⇥

10�6�N⌫ over a wide frequency range. This, of course,
only applies to GWs with wavelengths well inside the
horizon before the onset of BBN8. Hence, the bound in
Eq. (20) applies only to tensor modes that crossed the
horizon before the start of BBN, which correspond to
present-day frequencies f � fBBN, with fBBN the fre-
quency corresponding to the (redshifted) horizon scale
at the onset of BBN,

fBBN ⌘
1

2⇡

aBBN

aRD

aRD

a0

HBBN

GeV
⇥ 1.52 · 1024 Hz

' 2.1 · 1011
✓

gs,0

gs,RD

◆ 1
3
✓
g⇤,RD

g⇤,0

◆ 1
4

⌦(0)
1
4

rad

r
H0

Hz

HBBN

GeV
Hz

' 1.6⇥ 10�11 Hz . (40)

In going to the last line, we have used H0 ' 67.8 ⇥

3.24 · 10�20 Hz, ⌦(0)
rad ' 9 · 10�5, and gs,0 ' 3.91, g⇤,0 =

g⇤,BBN ' 3.36. In order to respect the BBN bound from
Eq. (20), we need to demand that the high frequency part
of Eq. (28) satisfies

h
2⌦GW(f � fRD) < 1.12⇥ 10�6

, (41)

where we have used the most recent constraint on the
number of extra relativistic species �N⌫ . 0.2 at

8 Tensor modes with super-horizon wavelengths do not act as rela-
tivistic dof since they do not propagate as waves, so they do not
a↵ect the expansion rate of the Universe at the onset of BBN.
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In this section, we will show that any gravitational
reheating scenario with � lying within its natural range
�  1 is actually inconsistent. The inconsistency arises
mainly due to the need to preserve the success of BBN,
particularly that the total energy density of extra rela-
tivistic species (which are not part of the SM) present
during BBN must not contribute significantly to the ex-
pansion rate of the Universe, or otherwise the resulting
light element abundances would be spoiled. Since GWs
are one type of such extra relativistic species, the energy
density of the stochastic background of GWs should be
smaller than the upper bound [39]

✓
h
2
⇢GW

⇢c

◆

0

=

Z
df

f
h
2 ⌦GW(f)  5.6⇥ 10�6 �N⌫ ,

(20)
where �N⌫ parametrizes the extra amount of radiation
from beyond the SM dof

3 [66]. As we will see soon, a
post-inflationary sti↵ epoch breaks the (quasi-)scale in-
variance of the GW background from inflation, induc-
ing a positive tilt in the high-frequency part of the spec-
trum corresponding to the modes that crossed the hori-
zon during the sti↵ epoch. The sti↵er the EoS w̄, the
steeper the tilt. In what follows, we will show that there
is no choice of parameters {�, H⇤, w̄} within the natural
domains �  1, H⇤  Hmax, wRD  w̄ < 1, for which
Eq. (20) is not violated.

A. Distortion of the inflationary GW background
due to the sti↵ period

Let us first of all recall that GWs are transverse
(@ihij = 0 ) and traceless (hii = 0) metric perturba-
tions ds2 = a

2(t)(�dt
2+(�ij+hij)dxi

dx
j). Their energy

density spectrum (at sub-horizon scales) is defined as [39]

⌦GW(t, k) ⌘
1

⇢crit

d⇢GW(t, k)

d ln k
=

k
2

12a2(t)H2(t)
�2

h
(t, k) ,

(21)

where �2
h
(t, k) is the tensor power spectrum at arbitrary

times, defined as

⌦
hij(t,x)h

ij(t,x)
↵
⌘

Z
dk

k
�2

h
(t, k) , (22)

with h...i denoting an average over a statistical ensemble.
In our case, we can factorize the tensor power spectrum
as

�2
h
(t, k) ⌘ Th(t, k)�

2
h,inf(k) , (23)

3 The contribution from extra radiation during BBN or other
stages of the evolution of the universe is typically parametrized
in terms of an e↵ective deviation �N⌫ from the number of SM
neutrino species N⌫ = 3. This is only a parametrization. The
extra radiation does not need to be neutrinos and can be either
bosonic or fermionic.

with Th(t, k) a transfer function and �2
h,inf(k) the pri-

mordial tensor spectrum from inflation

�2
h,inf(k) '

2

⇡2

✓
Hinf(k)

mp

◆2 ✓
k

kp

◆nt

, (24)

with nt a spectral tilt, kp a pivot scale of the order the
Hubble rate at the time of CMB decoupling, and Hinf(k)
the Hubble rate when the mode k exited the Hubble
radius during inflation. The upper bound Hmax intro-
duced in Sect. II actually applies only to the Hubble rate
Hinf(k), i.e. Hinf(k)  Hmax, rather than to H⇤, as we
already explained below Eq. (8). The spectrum is ex-
pected to be only slightly red-tilted in slow-roll inflation,
with the spectral index being ’slow-roll suppressed’ as

nt ' �2✏ ' �
r0.002

8
, (25)

where r0.002 ⌘ �2
h
/�2

R is the tensor-to-scalar ratio eval-
uated at the scale kp, constrained by the most recent
analysis by the Planck collaboration as r0.002  0.064 [1].
It is actually this bound that determines the upper
bound Hmax on the inflationary Hubble scale reported
in Eq. (8). Given this bound, we see that the infla-
tionary spectrum has a very small red-titled spectral in-
dex �nt  0.008 ⌧ 1, which makes the spectrum very
close to exact scale-invariance, at least around the CMB
scales4. From now on, for simplicity of our discussion, we
will consider an exact scale-invariant inflationary spec-
trum, as this gives an excellent approximation. We will
comment on deviations from this assumption in Sect. IV.
Let us assume for a moment that, immediately after

inflation, the Universe became RD with equation of state
w = 1/3. The resulting present-day GW energy density
spectrum would then be scale-invariant for the frequency
range corresponding to the modes crossing the Hubble
radius during RD. Using Eqs. (21), (23), and (24) (with
nt = 0), we obtain

⌦(0)
GW

���
RD

'
⌦(0)

rad

12⇡2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆✓
Hinf(k)

mp

◆2

' 2 · 10�16

✓
H⇤

Hmax

◆2

, (26)

where in the first line we have introduced the RD transfer
function [67]

T (k) '
1

2

✓
ak

a0

◆2

'
1

2

✓
gs,0

gs,k

◆ 4
3
✓
g⇤,k
g⇤,0

◆
⌦(0)

rad

✓
a0H0

akHk

◆2

,

(27)

4 For instance, with no running of the spectral index, the am-
plitude of the tensor spectrum would fall only by a factor
⇠ (1025)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of mag-
nitude separating the CMB scales and the scale that matches
the Hubble radius at the end of inflation.
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the onset of BBN are then given by

H
2
RD = 2⇥

⇡
2

90
g⇤,RD

T
4
RD

m2
p

=
2⇢⇤�⇤
3m2

p

✓
a⇤
aRD

◆4

(35)

= 2H2
⇤�

1+↵
1�↵
⇤ = 2H2

⇤

✓
�

300

◆ 1+↵
1�↵

✓
H⇤
mp

◆ 2(1+↵)
1�↵

,

H
2
BBN =

⇡
2

90
g⇤,BBN

T
4
BBN

m2
p

' (2.5 · 10�25 GeV)2, (36)

where in the last equality we have used TBBN ' 10�3

GeV at the onset of BBN, and the e↵ective thermal rela-
tivistic dof (accounting for photons and neutrinos of the
SM) is gBBN ' 3.36. We note that we are assuming that
TRD � TBBN, otherwise if the universe reheats just about
before the onset of BBN, at a temperature TRD & TBBN,
then Eq. (36) should pick up a factor 2 on the rhs, which
would cancel out the factor

p
2 in Eq. (33).

B. Incompatibility with upper bounds on
stochastic gravitational wave background

The first problem with gravitational reheating that we
immediately encounter, is that the energy density asso-
ciated to the tensor modes that first crossed the Hubble
radius after the onset of the sti↵ era is larger than the
energy density of the radiation component excited dur-
ing or towards the end of inflation. This can be easily
seen by computing the GW spectral energy density asso-
ciated to the highest frequency modes, k ⇠ k⇤ = a⇤H⇤,
as their contributions dominate the integration over all
the sub-horizon modes contributing to the total GW en-
ergy density. In particular, some time after such modes
have entered the horizon, say once they can be consid-
ered as propagating (hence oscillating) GWs, the ratio of
their logarithmic energy density spectrum to the critical
energy density, can be found as

⌦GW(t, k⇤) ⌘
1

⇢c(t)

d⇢GW

d log k
(t, k⇤) =

k
2
⇤�

2
h
(t, k⇤)

12a2(t)H2(t)

'
A↵

12⇡2

✓
H⇤
mp

◆2 ✓
a(t)

a⇤

◆3w̄�1

(37)

where we have used the expression of �2
h
(t, k⇤) from Ap-

pendix A, and H
2(t) = H

2
⇤ (a⇤/a(t))

2(1+↵)/↵. Comparing
Eq. (37) with Eq. (9), we realize that they have not only
the same time-dependence (a/a⇤)3w̄�1 = (a/a⇤)2(1�↵)/↵

(as expected for the ratio of energy densities of relativis-
tic species to that of a sti↵ background), but also the
same Hubble scale dependence / (H⇤/mp)2. Hence, the
ratio between Eq. (37) and Eq. (9) is time- and scale-
independent,

⌦GW(t, k⇤)

�(t)
'

300 · A↵

12⇡2�
. (38)

We observe that for the canonical values �  1,
⌦GW(t,k⇤)

�(t) > 1 , i.e. the energy density stored in the

high frequency modes of the GW spectrum is larger than
the energy density of the initial radiation component,
c.f. Eq. (9). Since the energy density of GWs scales as
radiation, it would remain to be the dominant radiation
component today, in clear conflict with the idea that the
radiation sector need to be become eventually dominated
by SM light species.
In fact, technically speaking, this already invalidates

the analysis of gravitational reheating done so far, be-
cause the universe would reheat at an earlier time than
inferred from Eq. (6), and the universe would enter into
RD with its energy budget dominated by GWs. There-
fore, Eq. (38) simply indicates that, for consistency, grav-
itational reheating could only be a viable scenario if � is
larger than a critical value, which in this case is given by

� � �c =
25

⇡2
A↵ ⇠ 5 , (39)

in contradiction with the canonical range �  1.
This leads into a similar but yet more severe prob-

lem with gravitational reheating: its incompatibility with
BBN. The GW bound in Eq. (20) applies on the total in-
tegrated GW energy density. However, except for GW
spectra with a very narrow peak of width �f ⌧ f , the
above bound can be interpreted as a direct bound on

the amplitude of a GW spectrum h
2⌦(0)

GW(f) . 5.6 ⇥

10�6�N⌫ over a wide frequency range. This, of course,
only applies to GWs with wavelengths well inside the
horizon before the onset of BBN8. Hence, the bound in
Eq. (20) applies only to tensor modes that crossed the
horizon before the start of BBN, which correspond to
present-day frequencies f � fBBN, with fBBN the fre-
quency corresponding to the (redshifted) horizon scale
at the onset of BBN,

fBBN ⌘
1

2⇡

aBBN

aRD

aRD

a0

HBBN

GeV
⇥ 1.52 · 1024 Hz

' 2.1 · 1011
✓
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◆ 1
3
✓
g⇤,RD
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◆ 1
4

⌦(0)
1
4

rad

r
H0

Hz

HBBN

GeV
Hz

' 1.6⇥ 10�11 Hz . (40)

In going to the last line, we have used H0 ' 67.8 ⇥

3.24 · 10�20 Hz, ⌦(0)
rad ' 9 · 10�5, and gs,0 ' 3.91, g⇤,0 =

g⇤,BBN ' 3.36. In order to respect the BBN bound from
Eq. (20), we need to demand that the high frequency part
of Eq. (28) satisfies

h
2⌦GW(f � fRD) < 1.12⇥ 10�6

, (41)

where we have used the most recent constraint on the
number of extra relativistic species �N⌫ . 0.2 at

8 Tensor modes with super-horizon wavelengths do not act as rela-
tivistic dof since they do not propagate as waves, so they do not
a↵ect the expansion rate of the Universe at the onset of BBN.
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1, the total amount of energy stored in all these fields at
the end of inflation would read

⇢rad ⇠ 10�2
H

4
⇤

 
N1 +

N2X

i=1

(1� 6⇠i)
2

!
. (3)

If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.

In addition to non-adiabatic production of particles,
spectator scalar fields with potential V = 1

2m
2
'
2 and

mass m
2
⌧ H

2
⇤ , i.e. free light scalar dof , can also be

excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX

i

✓
mi

H⇤

◆2

, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,

�⇤ ⌘
⇢rad

3m2
p
H2

⇤
=

�

300

✓
H⇤
mp
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(7)

⇠ � · 10�12
⇥
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H⇤

Hmax

◆2

⌧ 1 ,

where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never
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sti↵, say w̄ & 1/3, we obtain �c ' 37.5, whereas for
w̄ ' 1, we obtain �c ' 48. In other words, we always
need � & 40 � 50. This reinforces the conclusion that
GW reheating scenarios with the natural values �  1
are ruled out.

The remarkable fact that the critical value �c in
Eq. (48) does not depend on H⇤ stems from the fact
that the high frequency end of the GW energy spec-
trum ⌦GW(t0, k⇤), which determines whether the BBN
constraint is satisfied, is independent of H⇤. This fol-
lows simply from Eq. (38), where it is manifest that the
energy density of GWs scales exactly as radiation, and
furthermore that both the tensor spectrum and the ini-
tial energy of the radiation sector exhibit the same de-
pendence on the Hubble scale / (H⇤/mp)2. Since by

construction �(t0) ⌘ ⌦(0)
rad, we can obtain today’s GW

energy spectrum of the mode k⇤ from Eq. (38), sim-

ply as ⌦GW(k⇤, t0) ⇠
25A↵
⇡2�

⌦(0)
rad ⇠

5
�
⌦(0)

rad. Therefore,
⌦GW(t0, k⇤) depends only on � and ↵. When we impose
the BBN bound we obtain a constraint on � that depends
only mildly on ↵ (as A↵ changes only slightly with ↵).
This leads to a GW spectrum that always ends on the
same end point (modulo a mild dependence on ↵), inde-
pendently of H⇤ and w̄, see the top panel of Fig. 3. Only
if we change �, we can appreciate a change (linearly in-
verse with �) in the amplitude of the high frequency point
of the GW spectrum, see the bottom panel of Fig. 3.

In Fig. 4, we show the region in the parameter space
{w̄, fRD} compatible with the BBN constraint for H⇤ =
1013 GeV, i.e. w̄  wBBN(fRD, H⇤ = 1013 GeV). In the
same figure, we also plot the corresponding values of w̄ as
a function of fRD forH⇤ = 1013 GeV and the three values
of �, namely � = 0.01, 1, 48. As we can see, the curves
of w̄ as a function of fRD always lie above the coloured
region for the natural values �  1. Since the critical
value �c in Eq. (48) does not depend on H⇤, analogous
plots for di↵erent values of H⇤ exhibit trajectories of w̄ as
a function of fRD lying always above the coloured regions
for �  1, independently of H⇤. Only if � & 50, we can
then guarantee that the GW spectrum does not violate
the BBN constraint.

Taken at face value, with the current constraint�N⌫ .
0.2, the upper limit in the rhs of the BBN constraint
Eq. (41) corresponds to a situation where ⇠ 90% of the
universe energy budget during RD correspond to photons
and neutrinos while the other ⇠ 10% to gravitons, which
is still a significant fraction. Hence, it is more realistic

to demand that h
2⌦(0)

GW ⌧ 10�6. For instance, simply
by considering that at the time of BBN the energy den-
sity of GWs does not represent more than say ⇠ 1% of
the energy density of photons, the constraint becomes

h
2⌦(0)

GW . 10�7 today, which, via Eq. (48) easily cranks
up the minimum � up to �c ⇠ 500. The problem with this
reasoning is that there is no clear value below the rhs am-
plitude given in Eq. (41), to be used as an upper bound.
A more precise argument can be obtained however from
the Hubble rate at the time of CMB decoupling, as this

w=1 (Hmax)
w=0.8 (Hmax)

w=1 (0.1Hmax)
w=0.6 (Hmax)

10-13 10-8 0.001 100.000 107 1012
10-19
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h
2 �
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FIG. 3: Di↵erent plots of the GW energy density spectrum
today h

2⌦GW(f). In the top figure we fix � = 1, and plot
spectra for H⇤ = Hmax and w̄ ' 1 (solid, red), w̄ = 0.8
(dotted-dashed, blue) and =̄0.6 (short-dashed, green), and
also for H⇤ = 0.1 · Hmax and w̄ = 1 (long-dashed, purple).
In the bottom figure we fix H⇤ = Hmax and w̄ ' 1, and plot
spectra for � = 1 (red), � = 0.1 (blue), and � = 1 (purple).
In both top and bottom figures, we indicate by horizontal
lines the BBN (solid line) and CMB (dashed line) bounds on
stochastic GW backgrounds, whereas the vertical dashed line
indicates f⇤ for � = 1.

can be also used to infer an upper bound on extra radia-
tion components parametrized by �N⌫ [40, 41, 70]. This
translates to an upper bound on the amount of GWs,
which actually extends to a greater frequency range than
the BBN bound, down to f . 10�15 Hz [40]. From such
analysis, Ref. [39] estimates the constraint implied by
the Planck satellite (under the hypothesis of GWs with

homogeneous initial conditions) as h
2⌦(0)

GW . 2 · 10�7.
Substituting this value in the rhs of Eq. (46), the critical
value from Eq. (48) transforms to

� � �c ⌘ 83.9 · 2↵A↵ � 1 . (48)

For an EoS w̄ ' 1, we obtain �c ' 213. In other
words, using the CMB constraint we conclude that we
need � > �c ⇠ 200 in order to have a consistent scheme.
This reinforces even further the idea that gravitational
reheating with natural values �  1 is inconsistent.
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1, the total amount of energy stored in all these fields at
the end of inflation would read

⇢rad ⇠ 10�2
H

4
⇤

 
N1 +

N2X

i=1

(1� 6⇠i)
2

!
. (3)

If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.

In addition to non-adiabatic production of particles,
spectator scalar fields with potential V = 1

2m
2
'
2 and

mass m
2
⌧ H

2
⇤ , i.e. free light scalar dof , can also be

excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX
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✓
mi
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, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,
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where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never
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Therefore…

1) Either we modify Grav. Reheating

2) We use modified gravity in Inflationary Sector

I’m very happy with General Relativity !
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1, the total amount of energy stored in all these fields at
the end of inflation would read

⇢rad ⇠ 10�2
H

4
⇤

 
N1 +

N2X

i=1

(1� 6⇠i)
2

!
. (3)

If N1 � 1 then most likely the contribution from the
first term would dominate over the second contribution.
However, requiring such a large number of fields to have
non-minimal couplings tuned to |6⇠ � 1| ⇠ 1 seems un-
appealing, as we will comment further in Section IIC.

In addition to non-adiabatic production of particles,
spectator scalar fields with potential V = 1

2m
2
'
2 and

mass m
2
⌧ H

2
⇤ , i.e. free light scalar dof , can also be

excited during inflation out of initially sub-Hubble quan-
tum fluctuations. By the end of inflation, these fields
would have accumulated an energy density of the order
of

⇢rad ⇠ 10�2
H

4
⇤ ⇥�N

NfX

i

✓
mi

H⇤

◆2

, (4)

where �N represents the total number of e-folds during
inflation, Nf the total number of these spectator fields,
and mi their masses. In general, unless the masses are
tuned to 1/

p
�N . mi/H⇤ . 1, we expect the fac-

tor �N
PNf

i
(mi/H⇤)2 to be ⌧ 1, modulo a possible

enhancement linear in the number of fields. It is how-
ever not particularly motivated to assume the existence
of many such free fields with a large mass, completely
decoupled from other dof . Hence, we rather expect in
general to have ⇢rad ⌧ 10�2

H
4
⇤ . In the presence of a

self-interaction potential V = �

4'
4, the fields would still

accumulate a total energy density by the end of inflation

⇢rad ⇠ Nsi ⇥ 10�2
H

4
⇤ , (5)

where Nsi is the total number of such fields. A natural
example of such a self-interacting spectator field (and ac-
tually one that we know for certain to exist) is the Higgs
field of the Standard Model [27, 45–47]. Notice that
Eq. (5) is actually independent of the self-couplings � of
these fields. The reason is that during inflation the self-
interaction of each of these fields provides a dynamical
mass m

2
'
⇠ �h'

2
i. The mass would grow until an equi-

librium distribution of the field fluctuations is achieved,
that is, when the condition �'

4
⇠ H

4
⇤ is satisfied [48].

Then the distribution is preserved during the remaining
e-folds of inflation, and hence the energy density of the
field is V ⇠ �'

4
⇠ H

4
⇤ , which is independent of �.

In summary, whenever light scalar dof that are free,
self-interacting, and/or non-minimally coupled to grav-
ity, exist during inflation, it is natural to expect that
they will be excited with a total energy density at the
end of inflation, which can be parametrized as

⇢rad = � ⇥ 10�2
H

4
⇤ , (6)

with � a dimension-less number characterizing the spe-
cific details of a given case. Based on the preceding dis-
cussions, we typically expect � ⌧ 1 or at most � . 1. As

we will explain in Sect. II C, even though it is possible to
conceive scenarios with � � 1, they correspond to ad hoc

constructions requiring the presence of hundreds of fields
during inflation, with couplings appropriately tuned. We
will therefore consider �  1 as a canonical range.
It is remarkable that even though the energy density

in Eq. (6) can be rather large for high energy models of
inflation, it is still very subdominant compared to the
energy density in the inflationary sector at the end of
inflation,

�⇤ ⌘
⇢rad

3m2
p
H2

⇤
=

�

300

✓
H⇤
mp

◆2

(7)

⇠ � · 10�12
⇥

✓
H⇤

Hmax

◆2

⌧ 1 ,

where in the second line we have normalized H⇤ to the
current upper bound on the inflationary scale

Hmax ' 6.6 · 1013 GeV , (8)

as set by the most recent measurement of the B-mode
polarization anisotropies of the CMB [1, 49], see discus-
sion below Eq. (25). Let us note that Eq. (8) indicates
the energy scale when the CMB scales left the Hubble
radius during inflation, 50-60 efoldings before the end of
inflation. In the case of slow-roll inflation, the Hubble
rate during inflation is not constant but decreasing very
slowly �Ḣ/H

2
' ✏ ⌧ 1. This implies that H⇤ at the end

of inflation can only be smaller than Hmax. Therefore,
our normalization in Eq. (7) is actually conservative, and
we rather expect typically �⇤ < � · 10�12.

B. Inverting the energy hierarchy

By definition, inflation occurs when the equation of
state (EoS) w satisfies w < �1/3. The EoS in the epoch
after inflation must fall in the range �1/3 < w < 1, and
even though it is common to assume that 0  w  1/3,
there is a priori no reason (theoretical or observational)
to exclude the sti↵ case 1/3 < w < 1. In fact, a post-
inflationary period with a sti↵ EoS can be realized easily
in a generic model of inflation. For example, in scalar
singlet driven inflation, the slow-roll condition is achieved
by simply demanding V � K, where V and K are the
inflaton potential and kinetic energy densities. Inflation
ends when the potential drops to V < K/2. If a feature
in the inflaton potential allows its value V to drop much
below the kinetic energy K, the EoS can become sti↵
after inflation, w = (K � V )/(K + V ) > 1/3.
The simplest realization of this Kination-dominated

(KD) regime is to assume a rapid transition of the po-
tential from V � K during inflation to some small value
V ⌧ K after inflation. The transition would actually
trigger itself the end of inflation, leading to a post-
inflationary EoS w ' 1 � O(V/K). In general we expect
that the EoS can approach unity from below, but never

� = �1 ⇥Nf , Nf & O(103)

Nf�⇤

� = �1 ⇥Nf , Nf & O(103)Ad hoc
tuning !

All       fields 
same properties !

Nf
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1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

L� = (@�)2 + ��4 � ⇠�2R

Standard Grav. RH wrong ! 
             @ Stiff Period, but
self-interactions regularize
m2

� < 0
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Therefore…

1) Either we modify Grav. Reheating

Radiation field is the SM Higgs ? We need non-min coupling

L� = (@�)2 + ��4 � ⇠�2R � ⇠ O(103)
⇠2

�
� 1 ,� > 0, ⇠ & 1

Grav. 
Reheating  

OK !
Standard Grav. RH wrong ! 

Phys.Lett. B767 (2017) 272-277
Arxiv: 1604.03905

Corrected in DGF & Byrnes '16
See also                      for generic ��4

� > 0 (stability) , ⇠ & 1

1803.07399
1905.06823
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BBN/CMB constraints: 
further implications
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Part 5 

Outlook 
(+ take-home message)



0) Reheating w/o couplings requires imagination:
                  Grav. Reheating or Modified Gravity

1) (Standard) Grav. Reheating is inconsistent
   Too many GWs (violates BBN/CMB bounds)

2) Inf. sectors only (minimally) coupled 
    to gravity inconsistent unless:

   i) Inflation ~ Modify gravity: I don’t want to 
  ii) O(1000) spectator fields identical: ad hoc tuning
 iii) SM Higgs + Non-Min coupling: works (not observable)

3) Stiff Era (in general): not observable @ LIGO, barely @ LISA 

OUTLOOK



TAKE HOME MESSAGE

If you go stiff … 
check LIGO/BBN/CMB



Part 6 
Muchas gracias

por vuestra atención !
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Inflationary GW background

Transfer Funct. Stiff Period 

where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2

pH
2
RD. This and the scaling law of radiation

energy density implies

✓
aRD

a0

◆4✓HRD

H0

◆2

=
8⇡G⇢rad(⌧0)

3H2
0

= ⌦(0)
rad

✓
g⇤,k
g⇤,0

◆✓
gs,0
gs,k

◆4/3

. (3.22)

Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain

⌦(0)
GW(f) = ⌦(0)

GW

���
plateau

⇥W(f/fRD)⇥As

✓
f

fRD

◆2(1�↵s)

, (3.23)

where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant

As ⌘
�2 (↵s + 1/2)

22(1�↵s)↵2↵s
s �2(3/2)

, (3.24)

which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain

W(f/fRD ⌧ 1) �! A�1
s

✓
f

fRD

◆�2(1�↵s)

, W(f/fRD � 1) �! 1 , (3.25)

and hence

⌦(0)
GW(f) ' ⌦(0)

GW

���
plateau

⇥

8
><

>:

1 , f ⌧ fRD

As

⇣
f

fRD

⌘2(1�↵s)
, f � fRD

(3.26)

What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,

nt ⌘
d log⌦(0)

GW

d log f
= 2(1� ↵s) = 2

✓
3!S � 1

3!S + 1

◆
> 0 , (3.27)

which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.

4
As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.

– 11 –

Rad. 
Plateau

} }

factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
Hubble radius, they become a stochastic background of gravitational waves (GWs). In order
to quantify the ability of GW direct detection experiments to measure the inflationary GW
background, it is costumary to express the amount of GWs in terms of their energy density
spectrum (at sub-horizon scales) ⌦GW, defined as the GW energy density ⇢GW per unit
logarithmic comoving wavenumber interval, normalized to the critical density ⇢crit = 3m2

pH
2

[17]

⌦GW(⌧, k) ⌘ 1

⇢crit

d⇢GW(⌧, k)

d ln k
=

k2

12a2(⌧)H2(⌧)
�2

h
(⌧, k) , (2.9)

It is costumary to factorize the tensor power spectrum at arbitrary times as a function of the
primordial inflationary spectrum �2

h,inf(k) [c.f. Eq. (2.6)] by means of a transfer function

�2
h
(⌧, k) ⌘ Th(⌧, k)�

2
h,inf(k) , Th(⌧, k) ⌘

1

2

✓
ak
a(⌧)

◆2

, (2.10)

which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
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being we simply consider an identical suppression of all the modes crossing during RD as

/ g⇤,kg
�4/3
s,k

⇠ g�1/3
k

⇠ 100�1/3 ' 0.2.
Eq. (2.11) describes the amplitude of the plateau of the inflationary GW (quasi-)scale

invariant energy density spectrum today, corresponding to the modes that crossed the horizon

– 5 –

factor ⇠ (1026)�0.008 ⇠ 0.6 during the ln(e60) ⇠ 26 orders of magnitude separating the
CMB scale and the Hubble radius at the end of inflation. Therefore, for simplicity, we will
consider from now on an exact scale-invariant inflationary spectrum, as this gives an excellent
approximation. We will comment on deviations from this assumption in Sect. 4.3.1.

From theoretical perspective, it is convenient to work with the power spectrum�2
h
(k), as

it is precisely this quantity that is predicted by inflation to be approximately scale invariant.
During the evolution of the Universe after inflation, when the tensor modes cross inside the
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which characterizes the expansion history between the moment of horizon re-entry ⌧ = ⌧k of
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where in the last step we have introduced inflationary tensor power spectrum (2.6) (with
nt = 0), and used  ⌘ k/kRD, kRD = aRDHRD, and ⇡ = 4�2(3/2). Since here we consider an
abrupt SD-to-RD transition, the radiation energy density is equal to the critical density at
the start of RD4, ⇢rad(⌧RD) = ⇢crit(⌧RD) = 3m2
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Plugging this into Eq. (3.21), using Eq. (2.11) for the inflationary plateau, and expressing
the result as a function of present-day frequencies f = k/(2⇡a0), we finally obtain
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where fRD ⌘ kRD/(2⇡a0) the frequency corresponding to horizon scale at the onset of RD
kRD = aRDHRD, W(x) is the window function defined in Eq. (3.20), and we have introduced
the constant
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which ranges as 1 < As < 25/2/⇡ ' 1.8 for 1/3 < wS < 1. The window function W(x) varies
smoothly around the frequencies f ⇠ fRD, and its asymptotic limits at large frequencies
f � fRD (corresponding to modes crossing during SD) and small frequencies f ⌧ fRD

(corresponding to modes crossing during RD) determine the asymptotic behaviour of the
energy denisty spectrum. In particular we obtain
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What matters from the point of view of a potential detection of this signal, is the fact that
the high-frequency branch of the spectrum raises with frequency, exhibiting a significant blue
tilt for a sti↵ EoS !S > 1/3,
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which approaches unity nt �! 1 as we take !S �! 1. It is precisely this large tilt that
lead us to consider the ability of GW detectors to measure this signal: as we will discuss
later, a significant fraction of the parameter space characterizing the shape of the spectrum,
{!S, fRD, Hinf} lead to the high-frequency part of the spectrum being above the sensitivity
of LISA and LIGO at their corresponding key frequencies.
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As we will see later on, an analogous relation in the smooth transition case di↵ers by a factor of 2.
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a given mode k, defined as akHk ⌘ k where ak ⌘ a(⌧k), Hk ⌘ H(⌧k), and a later moment
⌧ > ⌧k [5]. For the power spectrum today we will use the notation Th(k) ⌘ Th(k, ⌧0). Note
that the factor 1

2 in Eq. (2.10) is simply due to averaging over harmonic oscillations of the
modes deep inside the horizon.

If we assume that immediately after inflation, the Universe became radiation domination
(RD) with equation of state w = 1/3, the resulting present-day GW energy density spectrum
is (quasi-)scale invariant for the frequency range corresponding to the modes crossing the
Hubble radius during RD. Setting nt = 0 and averaging over oscillations, the amplitude of
the plateau characterizing the energy density spectrum today is [5]
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have used ⌦(0)
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Note that for simplicity we have assumed gs,k ' g⇤,k to be of the order of the Standard
Model (SM) degrees of freedom before the electroweak symmetry breaking and independent
of k, even though in reality the number of relativistic degrees of freedom change with the
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Figure 2. Comparison among di↵erent forms of the present-day GW energy density spectra: full
form in the instant transition case (blue) found (exactly) analytically in Eq. (3.32), full form in the
smooth transition case (red) evaluated numerically, oscillation-averaged in the instant transition case
() found (exactly) analytically in Eq. (3.23), oscillation-averaged in the smooth transition case ()
found (approximately) analytically in Eq. (3.30), and

For completeness, we also plot the GW spectrum without averaging over oscillations. In the
instant transition this corresponds to
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whereas in a smooth transition we need to obtain the spectrum fully numerically as
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where a(⌧) and Hk(⌧) are the solution to the di↵erential equations
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, (3.37)

with ✏ ⌧ 1 an arbitrary small (positive) number guaranteeing that the evolution of the tensor
modes start at super-horizon scales, and � ⌘ ⇢⇤rad/⇢⇤ is the initial fraction of the radiation
energy density. We observe that if we average the expression of Wosc() from Eq. (3.33) over
mode oscillations, we recover the expression for W() from Eq. (3.20), as it should.
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