Brane World Cosmology

 From Symmetry

Inflationary Reheating Meets Particle Physics Frontier KITP
Santa Barbara

Brane Worlds and Problems

 of Particle Physics- Extra dimensions large and small have proven to be rich troves for model building and phenomenology
- many interesting ways to address
- hierarchy problem
- flavor
- SUSY breaking
- New viewpoints on cosmological constant problem

Additionally, novel cosmological behaviors in presence of instability or macroscopic modulus displacement

Examples: Matter/Radiation
 Cosmologies from Rolling Branes

- The motion of branes in systems with no static and stable solution can have interesting consequences
- RS 2 brane model - mistuned tensions
- solutions include 4D ρ_{r}, ρ_{Λ} cosmologies
E.g. Csáki, Graesser, Kolda, Terning hep-ph/9906513
- Sen's Tachyon condensation: $D-\bar{D}$ brane collapse/ annihilation
e.g. Sen hep-th/0203265
- rolling tachyon stress-energy approaches matter domination from

Randall-Sundrum 2-Brare

static solution if $T_{1}=-T_{0}=\frac{\Lambda_{5}}{k}$ Fine Tuned

Time Dependent Solutions

Using EE's, can simplify metric depends only on one function, $a(y, t)$:

$$
d s^{2}=\left(\frac{\dot{a}}{\dot{a}_{0}}\right)^{2} d t^{2}-a^{2} d x_{3}^{2}-d y^{2}
$$

$a_{0}(t)$ is the scale factor observed on the UV brane, $a(y=0, t)$

t is proper time for UV
 brane observer

Can solve y-dependence:
$a^{2}=\Lambda_{+}(t) e^{2 y}+\Lambda_{-}(t) e^{-2 y}-\frac{1}{2} \dot{a}_{0}^{2}$

$$
\begin{gathered}
\quad \text { And relate } \Lambda \text { 's } \\
{\left[\left(\frac{\dot{a}_{0}}{2}\right)^{4}+\lambda\right] \frac{1}{\Lambda_{-}}} \\
\text {Integration constant }
\end{gathered}
$$

Impose UV brane metric junction condition and consistency relation

Radiation as an integration constant

Hubble on the UV brane:

$$
H^{2}=\left(\frac{\dot{a}_{0}}{a_{0}}\right)^{2}=\frac{4 \lambda}{a_{0}^{4}}+\delta_{0}\left(2+\delta_{0}\right) \quad \frac{\kappa^{2}}{6 k} T_{0} \equiv 1+\delta_{0}
$$

Without adding "stuff" beyond cosmological constants/tensions, system of branes has a big-bang

So far, we have ignored the IR brane its motion determined by IR brane metric junction conditions

$$
\frac{\frac{\dot{R}}{n} \frac{\dot{a}}{a n}+\frac{a^{\prime}}{a}}{\sqrt{1-\left(\frac{\dot{R}}{n}\right)^{2}}}=\frac{\kappa^{2}}{6} T_{1} \quad n=\dot{a} / \dot{a}_{0} \text { and metric functions evaluated at } \begin{gathered}
\mathbf{y}=\mathbf{R}(\mathbf{t})
\end{gathered}
$$

Big bang singularity = overlap of the branes, IR brane moving near the speed of light

Example behavior

Some $\mathbf{R}(\mathbf{t})$ solutions when $\delta_{0}=0$:
Rindler Horizon at $y=\frac{1}{2} \log (1+4 k t)$
Radiation a classical Unruh effect?

Big Bang

IR brane "comes into view" for our UV brane observer

Darkness from Brane-worlds: Radiation without Radiation

- Dark Radiation From RS brane world:
- Mis-tuning the UV or IR brane tensions can require big-bang cosmology without addition of matter (only cosmological constants)
- radiation term in Hubble evolution appears as integration constant
- Observer on UV brane sees Hubble law for radiation
- Radiation seems Unruh-like - Rindler style horizon in bulk recedes from UV brane with cosmological evolution
- however it appears classically from bulk gravity

The RS Radion

- Dynamics of the RS radion are well understood at the level of linear perturbation theory
- expand RS metric to first order in perturbations, solve EE's and identify spectrum
- 4D massless graviton, massless scalar (gains mass if radius is stabilized), massive tower of KK gravitons
- III-suited to macroscopic motion of branes
- all higher derivative/self interactions truncated
- Linearized theory completely fails to capture physics

AdS/CFT relates the 5D radion to the dilaton of a spontaneously broken 4D CFT

4D conformally invariant actions:

$$
g_{\mu \nu}=e^{2 \tau(x)} \eta_{\mu \nu} \quad \begin{gathered}
\text { flat space rescaled by coordinate } \\
\text { dependent conformal factor }
\end{gathered}
$$

Build actions consistent with general covariance:
E.g. $S=-\int d^{4} x \sqrt{g}\left(\Lambda+\frac{1}{12} R\right)+$ higher derivatives

Expanding, performing a field redefinition, get:

$$
S=\int d^{4} x \frac{1}{2}(\partial \phi)^{2}-\lambda \phi^{4} \quad \begin{gathered}
\text { no higher derivatives } \\
= \\
\text { no "speed limit" }
\end{gathered}
$$

Radion is NOT a simple realization of the dilaton-5D causality requires specific pattern of higher derivative operators (constraints on interacting CFTs)

The Truncated Radion

Linearization of 5D gravity theory plus calculation of classical static effective potential gives:

$$
S=\int d^{4} x \frac{1}{2}(\partial \phi)^{2}-\underset{\text { IR brane mistune }}{\lambda} \phi^{4}
$$

Might couple this minimally to gravity, and then could seemingly use this as a (now non-viable) theory for the inflaton

Actual cosmology is not even inflationary - instead is epoch of radiation domination

Any finite order truncation of theory would miss this

Nambu-Goto Brane Action

- Action of a thin co-dim 1 brane in a spacetime parametrized by embedding functions $X^{M}\left(\xi^{\mu}\right)$, where ξ are coordinates on world-volume of brane:

$$
\begin{aligned}
S_{\mathrm{brane}} & =\int d^{d} \xi T \sqrt{-\operatorname{det} g^{\mathrm{ind}}} \\
g_{\mu \nu}^{\mathrm{ind}} & =\eta_{M N} \frac{\partial X^{M}}{\partial \xi^{\mu}} \frac{\partial X^{N}}{\partial \xi^{\nu}}
\end{aligned}
$$

Choose coordinates, $g_{\mu \nu}^{\text {ind }} \approx \eta_{M N}+\partial_{M} \phi \partial_{N} \phi$ where ϕ captures motion of brane

Sqrt encodes causality limit on classical motion of brane
Single massless degree of freedom living on the brane - Goldstone mode
Radion action should be similar - IR brane can't move faster than c
(Saw this in the dark radiation analysis)

Nambu-Goto From Symmetry Principles

- Embedding of a (d-1) dimensional brane into ddimensional space endowed with Poincaré algebra, ISO(d-1,1)
- brane spontaneously breaks subset of translations and rotations/boosts: ISO(d-1,1) \rightarrow ISO(d-2,1)
- low energy action should be described by coset construction, Goldstone bosons parametrize coset G/H

Making brane bumps:

We should thus be unsurprised that naive counting of Goldstone bosons gets "wrong" answer
In spontaneous beating of spacetime symmetries, counting (and spectruM) of Goldstone modes is modified Removal of modes - constraint relating Φ^{N} to derivatives of ξ

Aside: Not always a redundancy - brane (order parameter) not necessarily a scalar

Callan, Coleman, Wess, Zumino taught us how to build phenomenological lagrangians:

Low energy theory non-linearly realizes the broken symmetries via Goldstones

$$
g=e^{i \Pi^{\hat{a}} T^{\hat{a}}}
$$

Formalism to build G-invariant Lagrangians:
find objects that transform nicely under $g_{0} \in G$, and make invariants

$$
\begin{gathered}
\text { Maurer-Cartan form: } \\
\Omega_{\mu} \equiv g^{-1} \partial_{\mu} g=\Omega_{\mu}^{\hat{a}} T^{\hat{a}}+\Omega_{\mu}^{a} T^{a} \\
\text { Takes values on the algebra of } \mathrm{G}
\end{gathered} \text { break into components along broken/unbroken directions }
$$

Broken part transforms linearly, trace/contract
unbroken part transforms non-linearly, like gauge field: invariant couplings of NGB's to light matter fields in reps of \mathbf{H}

CCWZ and the brane

Delacrétaz, Endlich, Monin, Penco, Riva 1405.7384
A general (but with redundancies) representative of the coset

$$
g=e^{i Y^{M}(x) P_{M}} e^{i \Phi^{N}(x) M_{\hat{A} N}}
$$

Expand out the MC form: $\Omega_{\mu}=i \partial_{\mu} Y^{A} \Lambda_{A}^{B} P_{B}+\frac{i}{2}\left(\Lambda^{-1}\right)_{C}^{A} \partial_{\mu} \Lambda^{C B} M_{A B}$ Φ dep. local lorentz transform
Can express MC form in manner where geometric interpretation clear:

$$
\left.\Omega_{\mu}=i e_{\mu}^{N}\left[\bar{P}_{N}\right)+\nabla_{N} \xi \hat{P}+\nabla_{N} \Phi^{M} M_{\hat{A} M}\right]+i A_{\mu}^{M N} M_{M N}
$$

Set to zero - removes redundancy
(relates Φ 's and derivatives of ξ - "Inverse Higgs Constraints)
Can create invariant action using the "vielbein" $e \sim \partial Y$

Simplest Brane Action

Reproduces Nambu-Goto action:

$$
S=-T \int d^{d} x \operatorname{det} e=-T \int d^{d} x \sqrt{-\operatorname{det} \partial_{\mu} Y^{M} \partial_{\nu} Y_{M}}
$$

From symmetry considerations, have built up the action for a brane that automatically includes bulk symmetry constraints (Causality)

Perturbation theory: relations between S-matrix elements for goldstone (branon) scattering

Relativistic constraints arose from structure of Maurer-Cartan form: vielbein - Goldstone dependent volume element

Also: gives a formalism for adding higher derivative interactions (extrinsic curvature), couplings to matter fields on the brane, all with corresponding geometric structures

Would like to see this applied to realistic brane-worlds, RS type models know radion must be analog of this

Brane in global AdS

Isometries of AdS match 4D conformal algebra

$$
\text { 4D Poincaré }+D, K_{\mu}
$$

A "more natural" basis for AdS brane coset:
R is AdS radius
Might like $R \rightarrow \infty$ to reproduce usual basis for ISO(1,4) - Poincaré algebra of 5D Mink.

$$
\hat{D}=\frac{D}{R} \quad \hat{K}_{\mu}=\frac{K_{\mu}}{R}-2 R P_{\mu}
$$

Important for parametrization of the coset:

$$
g_{\text {brane }}=e^{x^{\mu} P_{\mu}} e^{\eta(x) \hat{D}} e^{\zeta^{\mu}(x) \hat{K}_{\mu}} \quad g_{\text {dilaton }}=e^{y^{\mu} P_{\mu}} e^{\Phi(x) D} e^{\Sigma^{\mu}(x) K_{\mu}}
$$

Non-linear map (field redefinition) from $x, \eta, \zeta \rightarrow y, \Phi, \Sigma$

Translates between AdS brane action and boundary dilaton action

Simplest AdS Action

P_{μ} component of MC form transforms as vierbein
Minimal invariant encodes causality :
$S=\int d^{4} x e^{-4 m \eta}(\operatorname{det} E-1)=\int d^{4} x e^{-4 m \eta}\left(\sqrt{1-\frac{1}{2} e^{2 m \eta}(\partial \eta)^{2}}-1\right)$
What is this on the CFT (dilaton) side?
Bellucci, Ivanov, Krivonos hep-th/0206126

$$
S_{\text {dilaton }}=\frac{1}{4} \int d^{4} x e^{-4 R \Phi} \frac{(\partial \Phi)^{2}}{1-1 / 8 e^{2 R \Phi}(\partial \Phi)^{2}} \operatorname{det}\left(\delta_{\nu}^{\mu}+\frac{1}{2} D_{\mu} \Omega^{\nu}\right)
$$

A non-minimal dilaton EFT - many higher derivative interactions

Similarly, simplest dilaton theory has very complicated AdS image (additional extrinsic curvature terms)

Instabilities of branes:
 Have we classified all phenomena?

- DGP gravity - interesting infrared modification of GR
- plagued by ghosts (e.g. radion instability)
- Unstabilized (or unstabilizable) configurations
- e.g. ~AdS tachyons: JH, Rigo, Eröncel 2018
- What are the resolutions of generic brane-world instabilities?

Lessons learned from examples: relativistic motion of branes is crucial ingredient picture of order parameter crucial (branes vs vevs) gravity is important (and still missing from CCWZ)

Everything is Goldstones

Radion with 4D gravity arises from two branes coupled to 5D gravity
Formalism must give not just the brane, but also its mixing and interactions with bulk metric fluctuations
(Radion interaction with both IR brane and UV brane degrees of freedom)

Gravity from cosets:

e.g. Goon, Hinterbichler, Joyce, Trodden 1412.6098

Gauge bosons and gravitons can be viewed as NGB's of infinite number of non-linearly realized space-time global symmetries

Try on KK theory (extra dimension compactified on S_{1}) - Graviton, Gauge Field, Dilaton

5D Kaluza Klein Theory:

$$
\begin{aligned}
P_{A}^{n \mu_{1} \ldots \mu_{k}} & =e^{i n y / R} x^{\mu_{1}} \ldots x^{\mu_{k}} P_{A} \\
Q_{A}^{\mu_{1} \ldots \mu_{k}} & =y x^{\mu_{1}} \ldots x^{\mu_{k}} P_{A} \\
J_{A B}^{n \mu_{1} \ldots \mu_{k}} & =e^{i n y / R} x^{\mu_{1}} \ldots x^{\mu_{k}} J_{A B} \\
K_{A B}^{\mu_{1} \ldots \mu_{k}} & =y x^{\mu_{1}} \ldots x^{\mu_{k}} J_{A B} .
\end{aligned}
$$

(inverse Higgs constraints)

KK modes
Dilatations of $\mathbf{S}_{\mathbf{1}}$

Maurer-Cartan:

Lots of components - lots of redundancies, but not hard to pick out terms of interest:

$$
\begin{aligned}
\Omega_{Q}^{A} & =\mathrm{d} \zeta^{A}-\mathrm{d} x^{\mu} \zeta_{\mu}^{A}+\left(\mathrm{d} \phi^{B}-\mathrm{d} x^{\mu} \phi_{\mu}^{B}\right) \tau_{B}^{A}+\left(\mathrm{d} \zeta^{B}-\mathrm{d} x^{\mu} \zeta_{\mu}^{B}\right) \tau_{B}^{A} c_{q}-\mathrm{d} y \zeta^{B} \tau_{B}^{A} \\
\Omega_{Q \mu}^{A} & =\mathrm{d} \zeta_{\mu}^{A}-2 \mathrm{~d} x^{\nu} \zeta_{\mu \nu}^{A}+\left(\mathrm{d} \phi_{\mu}^{B}-2 \mathrm{~d} x^{\nu} \phi_{\mu \nu}^{B}\right) \tau_{B}^{A}+\left(\mathrm{d} \phi^{B}-\mathrm{d} x^{\mu} \phi_{\mu}^{B}\right) \tau_{B \mu}^{A}+\left(\mathrm{d} \zeta^{B}-\mathrm{d} x^{\mu} \zeta_{\mu}^{B}\right) \theta_{B \mu}^{A} \\
& +\left(\mathrm{d} \zeta_{\mu}^{B}-2 \mathrm{~d} x^{\nu} \zeta_{\mu \nu}^{B}\right) \tau_{B}^{A} c_{q}+\left(\mathrm{d} \zeta^{B}-\mathrm{d} x^{\mu} \zeta_{\mu}^{B}\right) \tau_{B \mu}^{A} c_{q}-\mathrm{d} y\left(\zeta^{B} \tau_{B \mu}^{A}+\zeta_{\mu}^{B} \tau_{B}^{A}\right)
\end{aligned}
$$

Will be the vielbein:

$$
\begin{array}{ll}
\text { the vielbein: } \\
\begin{aligned}
\Omega^{A} & \left.=\mathrm{d} \phi^{A}-\mathrm{d} x^{\mu} \phi_{\mu}^{A}+\left(\mathrm{d} \zeta^{B}\right)-\mathrm{d} x^{\mu} \zeta_{\mu}^{B}\right) \tau_{B}^{A} c_{0}-\mathrm{d} y \zeta^{A} \\
\Omega_{\mu}^{A} & =\mathrm{d} \phi_{\mu}^{A}-2 \mathrm{~d} x^{\nu} \phi_{\mu \nu}^{A}+\left(\mathrm{d} \phi^{B}-\mathrm{d} x^{\mu} \phi_{\mu}^{B}\right) \theta_{B \mu}^{A} \\
& +\left(\mathrm{d} \zeta^{B}-\mathrm{d} x^{\mu} \zeta_{\mu}^{B}\right) \tau_{B \mu}^{A} c_{0}-\mathrm{d} y \zeta_{\mu}^{A} \\
& \\
\Omega_{K}^{A B} & \left.=\mathrm{d} \zeta_{\mu}^{B}-2 \mathrm{~d} x^{\nu} \zeta_{\mu \nu}^{B}\right) \tau_{B}^{A} c_{0} \\
\Omega_{K \mu}^{A B} & =\mathrm{d} x_{\mu}^{\mu} \tau_{\mu}^{A B}-\mathrm{d} x^{\mu} \theta_{\mu}^{[A \mid C} \tau_{C}^{\mid B]}+\mathrm{d} \tau^{[A \mid C} \tau_{C}^{\mid B]} c_{q}-\mathrm{d} y \tau^{\nu} \tau_{\mu \nu}^{A B}+\left(\mathrm{d} \theta_{\mu}^{[A \mid C}-2 \mathrm{~d} x^{\nu} \tau_{\mu \nu}^{[A \mid C}\right) \tau_{C}^{\mid B]}-\mathrm{d} x^{\nu} \theta_{\nu}^{[A \mid C} \tau_{C \mu}^{\mid B]} \\
& +\left(\mathrm{d} \tau^{[A \mid C}-\mathrm{d} x^{\nu} \tau_{\nu}^{[A \mid C}\right) \tau_{C \mu}^{\mid B]} c_{q}-\mathrm{d} y \tau^{[A \mid C} \tau_{C \mu}^{\mid B]}
\end{aligned}
\end{array}
$$

The dilatation

$$
\begin{aligned}
& +\left(\mathrm{d} \tau^{[A \mid C}-\mathrm{d} x^{\nu} \tau_{\nu}^{[A \mid C}\right) \tau_{C \mu}^{\mid B]} c_{q}-\mathrm{d} y \tau^{[A \mid C} \tau_{C \mu}^{\mid B]} \\
\Omega^{A B} & =-\mathrm{d} x^{\mu} \theta_{\mu}^{A B}+\mathrm{d} \tau^{[A \mid C} \tau_{C}^{\mid B]} c_{0}-\mathrm{d} y \tau^{A B} \\
\Omega_{\mu}^{A B} & =\mathrm{d} \theta_{\mu}^{A B}-2 \mathrm{~d} x^{\nu} \theta_{\mu \nu}^{A B}-\mathrm{d} x^{\nu} \theta_{\nu}^{[A \mid C} \theta_{C \mu}^{\mid B}+\left(\mathrm{d} \tau^{[A \mid C}-\mathrm{d} x^{\nu} \tau_{\nu}^{[A \mid C}\right) \tau_{C \mu}^{\mid B]} c_{0}-\mathrm{d} y \tau_{\mu}^{A B} .
\end{aligned}
$$

Messy - but much of it can be ignored if interested in (e.g. gravitons, KK modes) det e makes the sqrt
Volume factor from funfbein will contain kinetics for the dilaton and gauge field DBI from pure gravity envisioned in: Maxfield, Sethi 1612.00427

Outlook

- Brane worlds are fascinating models for cosmology
- In most interesting regimes of models: relativistic motion of branes coupled to gravity
- truncations of EFT fail to capture basic physics
- Many interesting models with instabilities to drive these cosmologies
- Coset constructions potentially offer path to relevant physics without specifying details of symmetry breaking (soft vs hard wall, e.g.)
- An art to getting physics right for spacetime symmetry breaking
- inverse higgs constraints: non-scalar order parameters
- basis choice for different order parameters shapes building blocks for EFT
- Goal is to further develop toolkit for "chiral lagrangians" for extra dimensional physics/cosmology
- expand on and classify zoo, turn tools onto "pathological" models (ghosts and or tachyons)

