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Particle Production During Inflation

What good is producing particles during inflation?
Aren’t they diluted away?

Backreact on the inflaton, sourcing inflaton perturbations δφ

Source metric perturbations as well
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Particle Production During Inflation

CMB power spectrum measurements ↔ two-point correlation
function

〈
δφ2
〉

Limits on non-gaussianity ↔ three-point function
〈
δφ3
〉

Tensor-to-scalar ratio ↔ two-point function 〈γγ〉
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Specific Model
K. Freese, et. al.

Phys. Rev. Lett. 65 (1990) 3233

Axion (Psuedoscalar) Inflation

Inflaton is an axion field

Flat potential ensured by a weakly-broken shift symmetry

Lowest dimensionality couplings:
I (φ/f )F F̃ to gauge field
I (∂µφ/f )Ȳ γµγ5Y to fermion field

During inflation, exponential production of gauge fields...

What about fermions?
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Specific Model
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Phys.Rev.Lett. 116 (2016) no.9, 091301

Axion (Psuedoscalar) Inflation

Inflaton is an axion field

Flat potential ensured by a weakly-broken shift symmetry

Lowest dimensionality couplings:
I (φ/f )F F̃ to gauge field
I (∂µφ/f )Ȳ γµγ5Y to fermion field

During inflation, exponential production of gauge fields...

What about fermions?
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Fermion Production

Typically ignored because:

Due to Pauli blocking, cannot get exponential amplification (unlike
gauge bosons)

Massless fermions are conformal → no gravitational production during
inflation

Heavy fermions decouple

Only option: m ∼ H, leading to energy density ∼ H4- too small to be
interesting

But in axion inflation, we have a new scale: ∂tφ/f ...
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Our Set-Up

Lagrangian

L =
1

2
a2ηµν∂µφ∂νφ− a4V (φ)+Ȳ [iγµ∂µ −ma]Y−1

f
∂µφ Ȳ γ

µγ5Y

φ: Inflaton field
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φ: Inflaton field
Y : Dirac fermion field

Coupling between them
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Our Set-Up

Lagrangian

L =
1

2
a2ηµν∂µφ∂νφ− a4V (φ)+Ȳ [iγµ∂µ −ma]Y−1

f
∂µφ Ȳ γ

µγ5Y

φ: Inflaton field
Y : Dirac fermion field

Notation: µ ≡ m/H, ξ ≡ (∂tφ0)/2Hf ,
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Particle Production

Start by calculating number of particles produced during inflation

Use the Bogoliubov method:

Time-dependent creation & annihilation operators found by diagonalizing
the free (quadratic) Hamiltonian
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Original Basis

Elements of diagonal free fermionic Hamiltonian:

ωr = k

√
µ2

x2
+

(
1 + r

2ξ

x

)2
r = ±1 helicity
µ = m/H
ξ: New scale

During inflation:
Conformal time τ goes from −∞ towards 0
x = −kτ goes from ∞ towards 0

For one of the helicities, (1 + 2rξ/x) crosses zero in finite time

At this time, ω ∝ m (Doesn’t go to k as m→ 0?)

Interaction vertices don’t scale with m

Expansion is not under perturbative control for small fermion mass
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New Basis

Performed a non-linear change of basis:

ψ = e iγ
5φ/f Y

New Lagrangian:

L =
a2

2
∂µφ∂µφ− a4V (φ)+iψ̄γµ∂µψ

−amψ̄
[

cos

(
2φ

f

)
− iγ5 sin

(
2φ

f

)]
ψ
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− iγ5 sin
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Same inflaton field terms
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ψ = e iγ
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New Lagrangian:

L =
a2

2
∂µφ∂µφ− a4V (φ)+iψ̄γµ∂µψ

−amψ̄
[

cos

(
2φ

f

)
− iγ5 sin
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Fermion kinetic energy
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New Basis

Performed a non-linear change of basis:

ψ = e iγ
5φ/f Y

New Lagrangian:

L =
a2

2
∂µφ∂µφ− a4V (φ)+iψ̄γµ∂µψ

−amψ̄
[

cos

(
2φ

f

)
− iγ5 sin

(
2φ

f

)]
ψ

Coupling explicitly decouples as m→ 0
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New Basis

Repeat the calculation in new basis

Because our change of basis is non-linear, terms that were quadratic
in Y are not in ψ → different quadratic (free) Hamiltonian

Diagonal elements: ±ω with:

ω =
√
k2 + a2m2

No problems with validity of perturbative expansion
ξ = ��� μ = �

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

ξ = ��� μ = ���

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

Lauren Pearce (PSU-NK) 9 / 22



New Basis

Repeat the calculation in new basis

Because our change of basis is non-linear, terms that were quadratic
in Y are not in ψ → different quadratic (free) Hamiltonian

Diagonal elements: ±ω with:

ω =
√
k2 + a2m2

No problems with validity of perturbative expansion
ξ = ��� μ = �

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

ξ = ��� μ = ���

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

Lauren Pearce (PSU-NK) 9 / 22



New Basis

Repeat the calculation in new basis

Because our change of basis is non-linear, terms that were quadratic
in Y are not in ψ → different quadratic (free) Hamiltonian

Diagonal elements: ±ω with:

ω =
√
k2 + a2m2

No problems with validity of perturbative expansion

ξ = ��� μ = �

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

ξ = ��� μ = ���

�-

�+

��-�

��-�

��-�

��-�

��-�

���

N
r

� �� �� �� �� ��

�/��

Lauren Pearce (PSU-NK) 9 / 22



New Basis

Total number ∫
d3k N(k) ≈ 52H3µ2ξ2, 1, µ� ξ

can be large when new scale ξ � 1!

ξ = ��� μ = �

�-

�+

��-�
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Cosmological Correlation Functions

In-In Formalism

Cosmological correlation functions calculated with in-in formalism:

〈O〉 =
∞∑
N=0

(−i)N
∫ τ

dτ1· · ·
∫ τN−1

dτN
〈[[

. . .
[
O(0)(τ),Hint(τ1)

]
, . . .

]
,Hint(τN)

]〉
0

Impose conditions only in the asymptotic past (not interested in
transition between asymptotic “in” and asymptotic “out” state)

Need:

I φ0: Background inflaton solution
I δφ(0): Vacuum inflaton perturbations
I Hint : Interaction terms
I ψ mode functions
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transition between asymptotic “in” and asymptotic “out” state)

Need:
I φ0: Background inflaton solution
I δφ(0): Vacuum inflaton perturbations
I Hint : Interaction terms
I ψ mode functions

Lauren Pearce (PSU-NK) 10 / 22



Ingredients

Inflaton

Usual slow roll solution for the inflaton zero mode φ0

Usual vacuum fluctuations δφ(0):

δφ
(0)
k (τ) =

H√
2k

(
i τ +

1

k

)
e−ikτ
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Usual slow roll solution for the inflaton zero mode φ0

Usual vacuum fluctuations δφ(0):

δφ
(0)
k (τ) =

H√
2k

(
i τ +

1

k

)
e−ikτ

Interactions

Hint ⊃−
2am

f

∫
d3x ψ̄

[
sin

(
2r
φ0
f

)
+ i γ5 cos

(
2
φ0
f

)]
ψ δφ cubic

− 2am

f 2

∫
d3x ψ̄

[
cos

(
2
φ0
f

)
− i γ5 sin

(
2
φ0
f

)]
ψ δφ2 quartic

+ . . .
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k
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Fermions

Solve for mode functions:

Solutions are sums of Whittaker functions:

sr (x) = e−πrξW 1
2
+2irξ, i

√
µ2+4ξ2

(−2ix)

dr (x) = −i µ e−πrξW− 1
2
+2irξ, i

√
µ2+4ξ2

(−2ix)
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Power Spectrum

Power Spectrum

Zeroth order in the interaction:
δφ

P
(0)
ζ = H4/4π2φ̇20 (Standard)

Lowest order in the interaction (∼ 1/f 2):

Quartic:

Can evaluate exactly analytically!

ψ

δφ δφ

Cubic:
Evaluate with approximations
Subdominant

δφ δφ
ψ
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Analytic Results

Renormalization

Adiabatic regularization:
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P
(0)
ζ

∝
∫

dxp xp
∑

r

Re [d∗r (xp) sr (xp)]

(xp = −pτ1)
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Non-Gaussianity

Three-Point Function

To leading order (∼ 1/f 3):

δφ δφ

ψ

δφ δφ

ψ

δφδφ

ψ

δφ δφ

δφ

Can evaluate exactly analytically!
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Results

Sourced power spectrum:
For µ . 1, ξ � 1:

δPquar
ζ (k)

P
(0)
ζ

=
32m2ξ2 log ξ

3π2f 2
log(H/k)

Non-gaussianity parameter:

f eqNL =
160H2µ2ξ3

9πf 2
log(H/k)

(
1 + 32H2 µ2 ξ2 log ξ

3π2 f 2
log(H/k)

)2

log(H/k): Regulated by finite number of e-foldings between when
mode left horizon and end of inflation
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Results

ϕ
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. P
ζ

↑Vacuum
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↓
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fNL=1
fNL=10

↑
μ≥ ξ

μ< ξ ↓

��-�
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��-�

m
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ξ

Red region: EFT for interaction term breaks down or strong
backreaction

Grey region: Other diagrams contribute to fNL (O(1) uncertainty)
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Dot-dashed line:

Left: Vacuum perturbations dominate power spectrum

Right: Sourced perturbations dominate power spectrum

Consistent with Planck non-gaussianity limit (fNL = −4± 43)

Lauren Pearce (PSU-NK) 16 / 22



Results
Plank Collaboration

Astron.Astrophys. 594 (2016) A17

arXiv:1502.01592

ϕ

>��π� � �

�>����ϕ


Source
Dom

. P
ζ

↑Vacuum
Dom

. P
ζ

↓

fNL=0.01

fNL=0.1

fNL=1
fNL=10

↑
μ≥ ξ

μ< ξ ↓

��-�

��-�

��-�

m
/f

��� ��� ��� ���

ξ

Dot-dashed line:

Left: Vacuum perturbations dominate power spectrum

Right: Sourced perturbations dominate power spectrum

Consistent with Planck non-gaussianity limit (fNL = −4± 43)
Lauren Pearce (PSU-NK) 16 / 22



Results

ϕ

>��π� � �

�>����ϕ


Source
Dom

. P
ζ

↑Vacuum
Dom

. P
ζ

↓

fNL=0.01

fNL=0.1

fNL=1
fNL=10

↑
μ≥ ξ

μ< ξ ↓

��-�

��-�

��-�

m
/f

��� ��� ��� ���

ξ

Unlike bosonic production:

Exponential growth of a single mode → large non-gaussianity
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Consider fixing µ and increasing ξ:

At first, populate more modes with non-gaussian perturbations
→ increasing fNL
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Consider fixing µ and increasing ξ:

But fNL depends on the sum of these modes, which are uncorrelated

As number of modes increases, sum becomes gaussian (by central
limit theorem) → decrease in fNL
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Other Observables?

How can we know if CMB perturbations are vacuum fluctuations or
sourced fluctuations?

Not non-gaussianity

Not spectral tilt

Tensor-to-scalar ratio?

Perhaps chiral gravitational waves?
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Gravitational Waves

Some components of metric are constrained degrees of freedom

When eliminated from action, generate fermion-graviton couplings

Use ADM decomposition of metric to find interaction vertices:

Quartic:

Seven quartic vertices generated

Can evaluate all of them exactly analytically!

ψ

γ γ

Cubic:
One cubic vertex generated
Additional approximations necessary

γγ

ψ

ψ
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Gravitational Waves

Ratio of sourced tensor power spectrum to vacuum:

δPt
Pvac
t
≈ O(0.01)

H4

M4
Pl

µ2ξ3 ln(H/k)

Ratio of fermion energy density to inflaton energy density:

ρψ
ρφ

= µ2ξ3
H2

M2
Pl

� 1

(or else no inflation)

Sourced contribution cannot dominate

Tensor-to-scalar ratio cannot distinguish this model (with foreseeable
observations)
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The lore is wrong: fermion production during inflation can have
interesting phenomenology!

In fact, CMB perturbations could be sourced fluctuations from
fermions backreacting on inflaton- not vacuum fluctuations!

Right now, no way to rule out that possibility

But calculations are subtle:
I Need to work in basis where perturbation theory remains valid
I Unresolved questions about regularization in parts of parameter space
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Fermions Are Messy!

Expand fermion in terms of mode functions:

ψ =

∫
d3k

(2π)
3
2

e ik·x
∑

r=±

[
Ur ,k(τ) ar ,k + Vr ,−k(τ) b†r ,−k

]

Ur ,k(τ) =
1√
2

[
ur ,k(τ)χr (k)
rvr ,k(τ)χr (k)

]
, Vr ,k(τ) =

1√
2

[
v∗r ,k(τ)χ−r (k)
−ru∗r ,k(τ)χ−r (k)

]

where (x = −kτ):

ur (x) =
1√
2x

[
e irφ0(x)/f sr (x) + e−irφ0(x)/f dr (x)

]

vr (x) =
1√
2x

[
e irφ0(x)/f sr (x)− e−irφ0(x)/f dr (x)

]

sr (x) = e−πrξW 1
2+2irξ, i

√
µ2+4ξ2

(−2ix)

dr (x) = −i µ e−πrξW− 1
2+2irξ, i

√
µ2+4ξ2

(−2ix)
Wµ, λ(z):
Whittaker W function

Lauren Pearce (PSU-NK) 1 / 6



Power Spectrum

Quartic loop (exact):
For µ . 1, ξ � 1:

δPquar
ζ (k)

P
(0)
ζ

=
32m2ξ2 log ξ

3π2f 2
log(H/k)

Cubic loop (further approximations):

δPcub
ζ (k)

P
(0)
ζ

∝ m2

f 2
µ2
√
ξ | log(k/H)|

For µ . 1, ξ � 1, the quartic contribution dominates the cubic
contribution
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Power Spectrum

Quartic loop (exact):
For µ . 1, ξ � 1:

δPquar
ζ (k)

P
(0)
ζ

=
32m2ξ2 log ξ

3π2f 2
log(H/k)

log(H/k) dependence: Fermion energy density continues sourcing
inflaton perturbations, even outside horizon

Regulated by finite number of e-foldings between when mode left
horizon and end of inflation
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Non-Gaussianity

Non-gaussianity parameter:

f eqNL =
160H2µ2ξ3

9πf 2
log(H/k)

(
1 + 32H2 µ2 ξ2 log ξ

3π2 f 2
log(H/k)

)2

The analytic calculation is good for all µ, ξ, but consider regime
µ . 1, ξ � 1 (other diagrams subdominant & regularization good)

Fixing observed power spectrum Pζ = 2.2× 10−9 leaves two free
parameters: m/f and ξ

Lauren Pearce (PSU-NK) 3 / 6



Spectral Index

Slow roll: Assume each mode evolves with constant H, φ̇ & take
account of time-dependence when comparing modes

In regime where sourced contribution dominates power spectrum:

ns − 1 = −3ε− 1

N
+

2ε− η
log(ξ)

N: number of e-foldings

Get ns ≈ 0.97 for reasonable slow roll parameters

Lauren Pearce (PSU-NK) 4 / 6



Gravitational Waves

Gravitational Wave Power Spectrum

Dominant quartic contribution:

δPquar
t =

4H4

9π3M4
Pl

µ2ξ3 ln(H/k)

Chiral contribution (λ = ±1):

δPparity−odd
t = λ

H4

6πM4
Pl

µ2ξ2

Cubic contribution:

δPcub
t ∼ O(0.1)

H4

M4
Pl

µ2ξ3

No regime in which quartic dominates cubic

Lauren Pearce (PSU-NK) 5 / 6



CMB to Correlators

Power Spectrum and fNL

ζ: Spatial curvature of hypersurfaces of constant energy density

Power spectrum:

Pζ =
k3

2π2
〈ζζ〉′

fNL,eq:

〈ζζζ〉′ =
Pζ
k6
· 9

10
(2π)5/2 · fNL,eq

ζ connected to inflaton perturbations: ζ = −H δφ/φ̇0

Lauren Pearce (PSU-NK) 6 / 6
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