

HIDDEN THERMAL HISTORIES

Jessie Shelton UIUC KITP Inflationary Reheating meets Particle Physics Frontier February 4, 2020

- ➤ Why dark sectors?
 - broad, generic class of models
 - many interesting signatures, both celestial and terrestrial

- Dark radiation baths contain a macroscopic amount of stuff: energy, entropy
 - must come from somewhere
 - must go somewhere

➤ Minimal cosmologies for dark sectors?

> asymmetric reheating: new signatures in decoupled sectors

➤ Minimal cosmologies for dark sectors?

- > asymmetric reheating: new signatures in decoupled sectors
- seeded by stochastic evolution: isocurvature

Minimal cosmologies for dark sectors?

- > asymmetric reheating: new signatures in decoupled sectors
- seeded by stochastic evolution: isocurvature
- ➤ from Standard Model: predictive; interesting sizes of couplings

MINIMAL COSMOLOGY I: ASYMMETRIC REHEATING

reheating populates HS, SM directly

- \blacktriangleright generally $T_{HS} \neq T_{SM}$
- > coupling sectors to same physics in UV necessarily implies interactions
- how important is scattering? Depends on whether m_ϕ is light compared to T_{RH}

FATE OF A DECOUPLED RADIATION BATH

- What happens to the entropy in a dark radiation bath?
 - Cosmologically allowable fates depend on mass of lightest particle(s)
 - ➤ if sufficiently light, can be stable: N_{eff}
 - ➤ if too massive: must decay
 - ➤ BBN or later: signals!
 - ➤ pre-BBN? Can easily come to dominate expansion of universe: early matter-dominated era

DECOUPLED DARK SECTORS: EARLY MATTER DOMINATION

➤ Pre-BBN slowdown in expansion rate gives matter a head start on clustering on very small scales:

- But relic dark radiation bath might not act as simply matter: may have interesting self-interactions
- ➤ Cannibalism: number-changing self-interactions can keep particle in thermal equilibrium after it becomes non-relativistic
 - $\rightarrow \phi^4$ theory exhibits cannibalism
 - ➤ hidden glueballs

➤ Cannibals cool down slowly:

$$\rho \sim 1/(a^3 \ln a)$$

matter:

$$\rho \sim 1/a^3$$

$$\frac{a_{sfz}}{a_{10m}} \sim \text{few} \times 10^4 \alpha_c^{2/3} \left(\frac{\text{GeV}}{m}\right)^{2/9}$$

- ➤ Imprint of cannibal self-interactions in the distribution of dark matter on very small scales?
- ➤ Difficulty cooling → pressure support:

[Erickcek, Ralegankar, JS (to appear)]

MINIMAL COSMOLOGY II: SPECTATOR DESCENT

➤ Radiation bath descended from stochastic vev:

one major motivation for scalars in hidden sectors: spontaneously break dark gauge groups

- \blacktriangleright Evolution of scalar vev χ described by Fokker-Planck equation for probability distribution $\rho(\chi)$
- ➤ Generalize to field in linear rep of continuous symmetry:

$$\frac{\partial \rho}{\partial t} = \frac{1}{3H} \left[\rho \frac{\partial^2 V}{\partial \chi^2} + \frac{\partial V}{\partial \chi} \frac{\partial \rho}{\partial \chi} \right] + \frac{H^3}{8\pi^2} \frac{\partial^2 \rho}{\partial \chi^2}$$

- \blacktriangleright Evolution of scalar vev χ described by Fokker-Planck equation for probability distribution $\rho(\chi)$
- ➤ Generalize to field in linear rep of continuous symmetry:

$$\frac{\partial \rho}{\partial t} = \frac{1}{3H} \left[\rho \nabla^2 V + \vec{\nabla} V \cdot \vec{\nabla} \rho \right] + \frac{H^3}{8\pi^2} \nabla^2 \rho$$

- \blacktriangleright Evolution of scalar vev χ described by Fokker-Planck equation for probability distribution $\rho(\chi)$
- ➤ Generalize to field in linear rep of continuous symmetry:

$$\frac{\partial \rho}{\partial t} = \frac{1}{3H} \left[\rho \nabla^2 V + \vec{\nabla} V \cdot \vec{\nabla} \rho \right] + \frac{H^3}{8\pi^2} \nabla^2 \rho$$

> or in terms of the magnitude of the vev alone:

$$\rho_{\text{eff}}(\chi) \equiv \chi^{N-1} \rho(\chi) \Omega^{N-1}$$

$$\frac{8\pi^2}{H^3} \frac{\partial \rho_{\text{eff}}}{\partial t} = \frac{8\pi^2}{3H^4} \left(\frac{\partial^2 V}{\partial \chi^2} + \frac{(N-1)}{\chi^2} \right) \rho_{\text{eff}} + \frac{8\pi^2}{3H^4} \left(\frac{\partial V}{\partial \chi} - \frac{(N-1)}{\chi} \right) \frac{\partial \rho_{\text{eff}}}{\partial \chi} + \frac{\partial^2 \rho_{\text{eff}}}{\partial \chi^2}$$

- Consequences of enlarged field space:
 - larger mean vevs, energy densities
 - ▶ quartic: $\langle \chi^2 \rangle \sim \sqrt{N} H^2$ $\langle V \rangle \sim N H^4$
 - ➤ faster approach to equilibrium distribution

- What about unitary gauge?
- New counter-term needed to remove spurious UV divergences:

$$--\underbrace{+}$$

$$\int \frac{d^4k}{(2\pi)^4} \frac{k^2}{k^2 - m^2} \sim i\Lambda_{UV}^4 \implies \mathcal{L}_{ct} = (N-1)\Lambda_{UV}^4 \ln(\chi)$$

- ➤ What happens during inflation?
 - Stochastic approach:

ightharpoonup with IR cutoff (subhorizon four-volume)-1: $\delta L_{ug} = (N-1) \frac{3H^4}{8\pi^2} \ln{(\chi)}$

➤ This adds new terms to the Fokker-Planck equation:

$$\frac{8\pi^2}{H^3} \frac{\partial \rho_{\text{eff}}}{\partial t} = \frac{8\pi^2}{3H^4} \left(\frac{\partial^2 V}{\partial \chi^2} + \frac{(N-1)}{\chi^2} \right) \rho_{\text{eff}} + \frac{8\pi^2}{3H^4} \left(\frac{\partial V}{\partial \chi} - \frac{(N-1)}{\chi} \right) \frac{\partial \rho_{\text{eff}}}{\partial \chi} + \frac{\partial^2 \rho_{\text{eff}}}{\partial \chi^2}$$

ightharpoonup But this is exactly the Fokker-Planck equation that governs the PDF for the radial mode of an N-dimensional field $\vec{\chi}$

➤ As the vev gets larger, so does the mass gap:

 \Rightarrow expect spectators with a gauge symmetry to smoothly interpolate from *N*-d to 1-d

➤ Apply to SM Higgs:

$$V(h) = -b_0 \ln \left(\frac{H^2 + h^2}{\sqrt{e}\Lambda_{\text{max}}^2}\right) \frac{h^4}{4}$$

SUMMARY AND CONCLUSIONS

- ➤ Many possible dark thermal histories
 - > most of them do not predict terrestrially relevant interaction rates with SM particles
 - ➤ look instead to astrophysics/cosmology for signals
- ➤ Decoupled dark sectors
 - > minimal population with asymmetric reheating, mild conditions on reheating (T_{RH}/m_{ϕ})
 - early cannibal domination: novel imprint of dark particle interactions in small-scale structure
- Stochastic spectators
 - stochastic population depends on dimensionality of field space (linear reps)
 - ➤ recover in unitary gauge
- Population from SM:
 - ➤ direct detection now sensitive to cosmic history, not just particle content
 - ➤ predictive, fun phenomenology: sub-GeV DM, self-interacting DM, ...