Chaos and Complementarity in Cosmological Spacetimes

?

MIND THE GA

Gary Shiu University of Wisconsin-Madison

Image credit: KITP

Based on a paper to appear with:

arXiv:2002.01326 [hep-th]

MAD-TH-20-01

Chaos and Complementarity in de Sitter space

Lars Aalsma and Gary Shiu

laalsma@wisc.edu, shiu@physics.wisc.edu

Department of Physics, University of Wisconsin, Madison, WI 53706, USA

Motivation

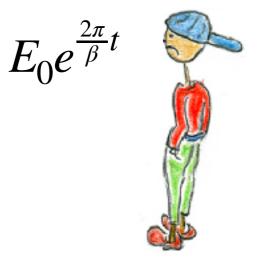
- A lot has recently been conjectured about de Sitter space and inflation in quantum gravity [more in KITP "Swampland" program].
- Can quantum information ideas put a bound on the lifetime of de Sitter space and inflation?
- Black holes are often considered the harmonic oscillator of quantum gravity. They are fast scramblers [Sekino, Susskind].
- The similarity between a BH horizon & the cosmological horizon has led [Susskind] to conjecture that dS is also a fast scrambler. We found interesting similarities & differences [Aalsma, GS].
- Recent studies of quantum chaos for BHs have offered a window into their microscopic description. We computed out-of-time-order correlators (OTOCs) to assess the chaotic nature of dS horizon and explore consequences for dS complementarity & inflation.

Quantum Chaos

The exponential blueshift in energy between an asymptotic and a freefalling observer is key in making black holes chaotic.

•

•



 β = inverse temperature of BH

A probe of chaos in quantum systems is the **double commutator**:

 $C(t) = \langle -[V(0), W(t)]^2 \rangle = 2 - 2 \langle V(0)W(t)V(0)W(t) \rangle \equiv 2 - 2F(t)$

V and W are Hermitian, unitary operators; F(t) is the **out-of-time-order correlator (OTOC)**. Chaotic behavior manifests in an exponential growth of C(t) or equivalently, an exponential decay of F(t).

Quantum Chaos for Black Holes

 In some thermal systems with a large # of dof N, e.g., holographic CFTs dual to black holes [Shenker,Stanford];[Roberts,Stanford]; [Maldacena,Shenker,Stanford]:

$$F(t) = 1 - \frac{f_0}{N} e^{\lambda_L t} + \mathcal{O}(N^{-2}) , \qquad (\beta/2\pi \ll t \ll \lambda_L^{-1} \log(N))$$

 The timescale when F(t) drops by an order 1 amount is known as the scrambling time:

$$t_* = \lambda_L^{-1} \log(N)$$

• The (quantum) Lyapunov exponent λ_{L} determines how fast chaos can grow and it has been argued to obey a universal bound:

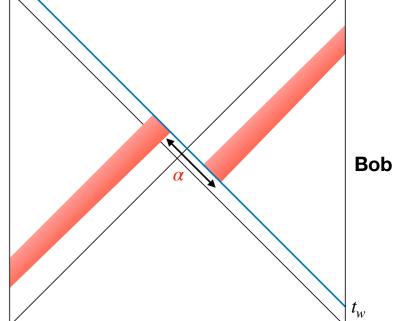
 $\lambda_L \leq 2\pi/\beta$ [Maldacena, Shenker, Stanford]

Black holes saturate this bound; they are fast scramblers [Susskind].

Quantum Chaos for de Sitter Space

- There is similarly a blueshift in energy between an observer at the center of the static patch and a free-falling one through its horizon.
- Like in the BH case, a perturbation released a scrambling time before the t=0 slice is highly boosted, creating a shockwave.
- This led [Susskind] to conjecture that dS is also a fast scrambler. But as we'll see, there are at least two interesting differences:
 - Geodesics crossing a positive-energy shockwave (generated by matter satisfying NEC) experience a gravitational time advance
 [Gao, Wald] rather than a time delay.

Possible to send signals from otherwise causally disconnected regions



Quantum Chaos for de Sitter Space

- Another difference is the absence of a spatially asymptotic and non-gravitating boundary theory to probe the static patch.
- Nonetheless, we can study chaos by restricting to a single static observer. We calculated various OTOCs with operators inserted at the origin of different static patches to establish the chaotic behavior of dS & show that λ_{L} saturates the chaos bound.
- We found that the OTOC does not decay in the same way as that for BHs but behaves as [Aalsma, GS]:

$$F(t) \sim 1 - N^{-2} e^{2\lambda_L t}$$

• We then comment on the implications to de Sitter complementarity and the constraints on de Sitter and inflation.

de Sitter Space

- We carried out our analysis for de Sitter space, but it is straightforward to generalize our results to inflationary spacetimes.
- dS_d can be described as a hyperboloid embedded into d+1 dimensional Minkowski space using embedding coordinates:

$$\eta_{AB}X^A X^B = \ell^2$$

• In static coordinates, time translational symmetry is manifest:

$$ds^{2} = -\left(1 - r^{2}/\ell^{2}\right)dt^{2} + \left(1 - r^{2}/\ell^{2}\right)^{-1}dr^{2} + r^{2}d\Omega_{d-2}^{2}$$

where

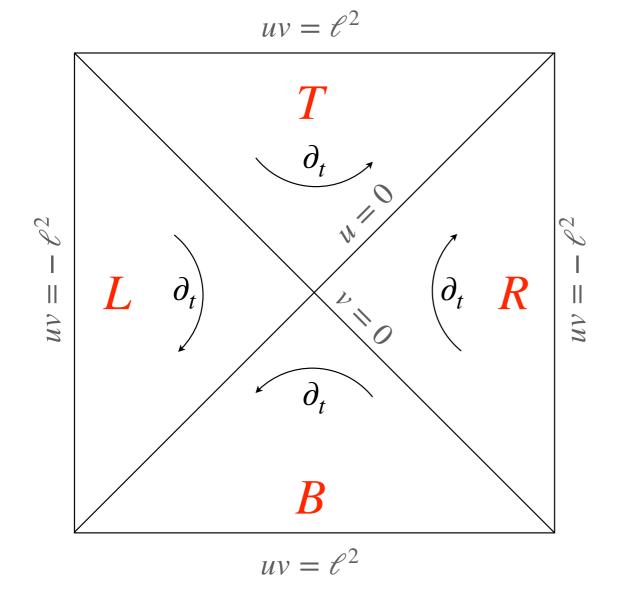
$$\begin{aligned} X^0 &= \sqrt{\ell^2 - r^2} \sinh(t/\ell) ,\\ X^d &= \sqrt{\ell^2 - r^2} \cosh(t/\ell) ,\\ X^i &= ry^i . \end{aligned}$$

 This metric only covers 1/4 of the global dS Penrose diagram, known as the static patch, surrounded by the horizon at r=l.

de Sitter Space

 By complexifying the time coordinates t_x = t + i ε_x, we can cover the 4 static patches of global dS space:

$$\epsilon_R = 0$$
, $\epsilon_L = -\pi \ell$, $\epsilon_T = -\frac{\pi}{2} \ell$, $\epsilon_B = \frac{\pi}{2} \ell$



In Kruskal-like coordinates that provide a global cover:

$$ds^{2} = \frac{4\ell^{4}}{(\ell^{2} - uv)^{2}}(-dudv) + \ell^{2}\frac{(\ell^{2} + uv)^{2}}{(\ell^{2} - uv)^{2}}d\Omega_{d-2}^{2}$$

Wightman Function

• 2-point function of scalar fields in a particular vacuum state $|\Omega\rangle$:

 $W(x,y) \equiv \left< \Omega \right| \varphi(x) \varphi(y) \left| \Omega \right>$

• The scalar field is described by the action:

$$S = -\frac{1}{2} \int d^d x \sqrt{-g} \left(\partial_\mu \varphi \partial^\mu \varphi + m^2 \varphi^2 + \xi R \varphi^2 \right)$$

- For states $|\Omega\rangle$ that preserve dS isometries, W(x,y) depends only on:

$$Z(x,y) = \frac{1}{\ell^2} \eta_{AB} X^A(x) X^B(y)$$

• For the **Bunch-Davies vacuum**:

$$W(x,y) = \frac{\Gamma(h_{+})\Gamma(h_{-})}{\ell^{d}(4\pi)^{d/2}\Gamma(d/2)} \,_{2}F_{1}\left(h_{+},h_{-},\frac{d}{2};\frac{1+Z(x,y)}{2}\right)$$

where

$$h_{\pm} = \frac{1}{2} \left(d - 1 \pm \sqrt{(d - 1)^2 - 4\ell^2 \tilde{m}^2} \right) \qquad \tilde{m}^2 = m^2 + \xi R.$$

Wightman Function

• The distinction between the real and imaginary regimes of h_{\pm} :

Complementary series (h_± real) $0 < \tilde{m}^2 \ell^2 < \frac{(d-1)^2}{4}$ Principal series (h_± complex) $\tilde{m}^2 \ell^2 \geq \frac{(d-1)^2}{4}$

• W(x,y) is analytic everywhere in the complex Z plane except at a **branch cut** along the line $Z \ge 1$, the correct is prescription:

$$W(x,y) = \frac{\Gamma(h_{+})\Gamma(h_{-})}{\ell^{d}(4\pi)^{d/2}\Gamma(d/2)} {}_{2}F_{1}\left(h_{+},h_{-},\frac{d}{2};\frac{1+Z(x,y)+i\epsilon\operatorname{sgn}(x,y)}{2}\right)$$

where sgn (x,y) = +1 if x is in the future of y and sgn (x,y) = -1 if x is in the past of y [See e.g., Einhorn, Larsen, '03]

Shockwaves

Consider the R patch: the relation between static & global coords.:

•

$$u = -\ell e^{-t/\ell} \sqrt{\frac{\ell - r}{\ell + r}} \ , \quad v = \ell e^{t/\ell} \sqrt{\frac{\ell - r}{\ell + r}}$$

• Time translation $t \rightarrow t + c$ corresponds to a boost in Kruskal coords

$$u \to e^{-c/\ell} u , \quad v \to e^{c/\ell} v$$

- A particle released from the origin of the static patch in the past is highly blueshifted when it crosses the t=0 slice: shockwave geometry.
- A shockwave traveling at the past horizon v=0 is given by the metric:

$$ds^{2} = \frac{4\ell^{4}}{(\ell^{2} - uv)^{2}}(-dudv) - 4\alpha\delta(v)dv^{2} + \ell^{2}\left(\frac{\ell^{2} + uv}{\ell^{2} - uv}\right)^{2}d\phi^{2}$$

 We focus on 2+1 dim though it is easy to generalize our results to higherdim. dS shockwave geometries which are known [Hotta, Tanaka];[Sfetos].

Shockwaves

This is a solution to Einstein's equations with a stress tensor:

•

•

•

$$T_{vv} = \frac{\alpha}{4\pi G_N \ell^2} \delta(v)$$

- The NEC enforces $\alpha > 0$, and thus geodesics crossing the past horizon at v=0 experiences a time advance by an amount α .
- If this shockwave is generated by a particle with a thermal energy in its rest frame $E_0 = \beta^{-1} = 1/(2\pi l)$, α is given by the blueshifted energy

$$\alpha = \frac{G_N}{2} e^{t_w/\ell} \qquad \qquad t = -t_w \qquad \text{(time particle released)}$$

Useful to consider the coord. transformed ($u = \tilde{u} - \alpha \theta(v)$) metric:

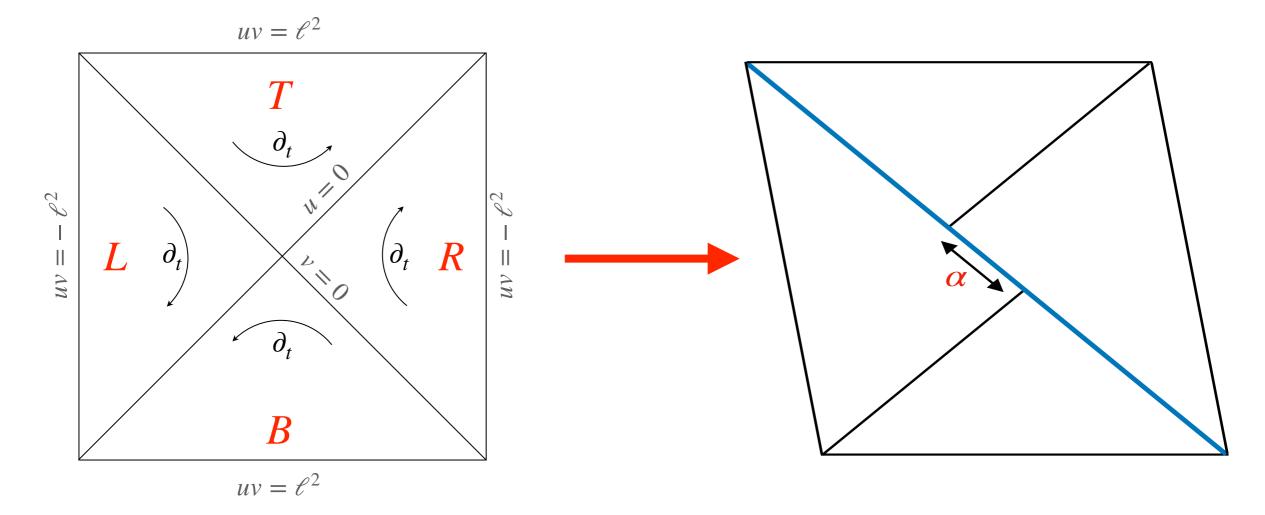
$$ds^{2} = \frac{4\ell^{4}}{(\ell^{2} - (\tilde{u} - \alpha\theta(v))v)^{2}}(-d\tilde{u}dv) + \ell^{2}\left(\frac{\ell^{2} + (\tilde{u} - \alpha\theta(v))v}{\ell^{2} - (\tilde{u} - \alpha\theta(v))v}\right)^{2}d\phi^{2}$$

Shockwaves

•

•

A **positive energy shockwave** generates a discontinuity in the metric by an amount α that brings the L and R patch into causal contact.



The shockwave is generated by an operator W(t) with t < 0. For inflation applications, we can think of it as the flux of inflaton energy exiting the horizon.

OTOC in the Geodesic Approximation

 We computed the OTOC that was previously studied in the context of black holes [Shenker, Stanford]:

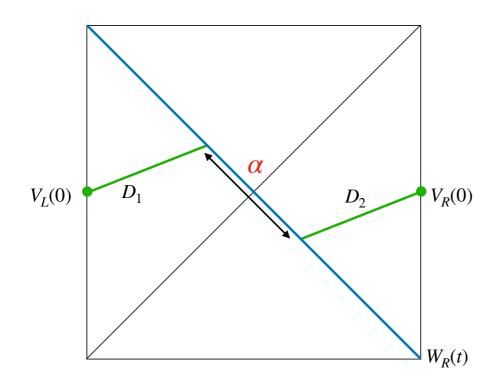
 $F(t) = \langle W_R(t) V_L(0) V_R(0) W_R(t) \rangle$

- W_R and V_{L,R} are operators inserted at the origin of a static patch indicated by the subscript; we can also view this as a purely right-sided correlator by evaluating V_L(0) = V_R(-i πl).
- We first evaluate this OTOC in the **geodesic approximation**, valid when V corresponds to inserting a massive field with ml >> 1.
- F(t) is the 2-point function in the shockwave background, given by the sum of geodesics with the location of V at the endpoints:

$$F(t) \simeq \sum_{\text{geodesics}} e^{-mD}$$
 with $\cos\left(\frac{D(x,y)}{\ell}\right) = Z(x,y)$

OTOC in the Geodesic Approximation

- **Caution:** F(t) is only defined for geometries with a real analytic continuation. Shockwaves introduce non-analyticities in the metric.
- Adding the geodesic distances D_1 and D_2 :



$$\cos\left(\frac{D_1}{\ell}\right) = \frac{u}{\ell} , \quad \cos\left(\frac{D_2}{\ell}\right) = \frac{\alpha - u}{\ell}$$

$$D = D_1 + D_2 = \ell \arccos\left(\frac{u}{\ell}\right) + \ell \arccos\left(\frac{\alpha - u}{\ell}\right)$$

Extremizing D over u gives u= $\alpha/2$

In the geodesic approximation, the OTOC behaves as:

$$F(\alpha) = e^{-2m\ell \arccos\left(\frac{\alpha}{2\ell}\right)} \longrightarrow 1 + \frac{mG_N}{2}e^{t_w/\ell} + \mathcal{O}\left(\frac{G_N}{\ell}e^{t_w/\ell}\right)^2$$
$$\alpha \ll 2\ell$$

OTOC in the Geodesic Approximation

- The expansion is valid for: $t_w \ll t_* = \ell \log (4\ell/G_N)$
- We recognize the upper bound as the scrambling time:

$$t_* = \ell \log S$$
 with $S = \frac{\pi \ell}{2G_N} \gg 1$

- The OTOC does not decay but grows exponentially: A positive shockwave causally connects the L and R patches and so V_L and V_R are only spacelike when $\alpha < 2l$.
- Above t_* , F(t) picks up an imaginary part and starts to oscillate:

$$\operatorname{Re}(F(t_w)) = +\cos\left(2m\ell\left|\operatorname{arccos}\left(\frac{G_N}{4\ell}e^{t_w/\ell}\right)\right|\right) \xrightarrow{4000}_{2000} -\operatorname{Re}[F(t_w)]$$

$$\operatorname{Im}(F(t_w)) = -\sin\left(2m\ell\left|\operatorname{arccos}\left(\frac{G_N}{4\ell}e^{t_w/\ell}\right)\right|\right) \xrightarrow{-2000}_{-4000} -\operatorname{In}\left(\frac{1.2}{1.4}\right) \xrightarrow{-1.4} \operatorname{In}\left(\frac{1.6}{1.8}\right) \xrightarrow{-2.0}_{2.0} t_w \xrightarrow{-2.0}_{-1.6} \operatorname{In}[F(t_w)]$$

F(f)

Beyond the Geodesic Approximation

- This OTOC does not display chaotic behavior; not a surprise as positive energy shockwaves in dS make $V_L \& V_R$ more correlated.
- The oscillatory behavior of F(t) follows from that of the Wightman function which oscillates for massive fields in the principal series reps. (in the geodesic approximation, ml >> 1).
- For light fields (complementary series reps.), the Wightman function doesn't oscillate. We expect qualitative different behavior of the OTOC.
- We computed the OTOC beyond the geodesic approximation, focussing on conformally coupled scalars (for analytic expressions, and also to illustrate the non-oscillatory behavior):

$$\tilde{m}^2 \ell^2 = 3/4$$

 The OTOC displays chaotic behavior; the oscillations are absent and the imaginary part of OTOC has a nice interpretation in terms of info exchange between different static patches.

Beyond the Geodesic Approximation

 The OTOC for BHs was computed beyond the geodesic approximation in [Shenker, Stanford] as an overlap between:

 $|\Psi\rangle = V_R(t_3)W_L(t_4) |\text{TFD}\rangle , |\Psi'\rangle = W_R(t_2)^{\dagger}V_L(t_1)^{\dagger} |\text{TFD}\rangle$

• In an elastic Eikonal approximation,

 $\langle V_{x_1}(t_1)W_{x_2}(t_2)V_{x_3}(t_3)W_{x_4}(t_4)\rangle = \frac{16}{\pi^2} \int \mathcal{D}e^{i\delta(s,|x-x'|)} \left[p_1^u\psi_1^*(p_1^u,x)\psi_3(p_1^u,x)\right] \left[p_2^v\psi_2^*(p_2^v,x')\psi_4(p_2^v,x')\right]$

• For dS space, the result can be adopted with some modifications:

$$\begin{split} \psi_1(p^u, x) &= \int dv e^{2ip^u v} \left\langle V(u, v, x) V_{x_1}(t_1)^{\dagger} \right\rangle \Big|_{u=0} ,\\ \psi_2(p^v, x) &= \int du e^{2ip^v u} \left\langle W(u, v, x) W_{x_2}(t_2)^{\dagger} \right\rangle \Big|_{v=0} ,\\ \psi_3(p^u, x) &= \int dv e^{2ip^u v} \left\langle V(u, v, x) V_{x_3}(t_3) \right\rangle \Big|_{u=0} ,\\ \psi_4(p^v, x) &= \int du e^{2ip^v u} \left\langle W(u, v, x) W_{x_4}(t_4) \right\rangle \Big|_{v=0} . \end{split}$$

(...) are Wightman functions
 in the BD vacuum instead of AdS
 bulk-to-boundary propagators

Beyond the Geodesic Approximation

• The Wightman function greatly simplifies for $\tilde{m}^2 \ell^2 = 3/4$

$$W(x,y) = \frac{1}{4\sqrt{2}\ell^3 \pi} \frac{1}{\sqrt{1 - Z(x,y) - i\epsilon \operatorname{sgn}(x,y)}}$$

• The **Eikonal phase** is given by the classical action:

$$\delta = \frac{1}{2} \int d^3x \sqrt{-g} \left[\frac{1}{16\pi G_N} h_{uu} \mathcal{D}^2 h_{vv} + h_{uu} T^{uu} + h_{vv} T^{vv} \right] = -\frac{1}{4} \pi G_N \ell p^u p^v \cos(\phi' - \phi'')$$

The OTOC can be solved analytically in terms of special functions:

$$F(t) = g \left(\pi H_0(2g) + 2\mathcal{F}(g^2) + 2\log(-g) J_0(2g) \right)$$

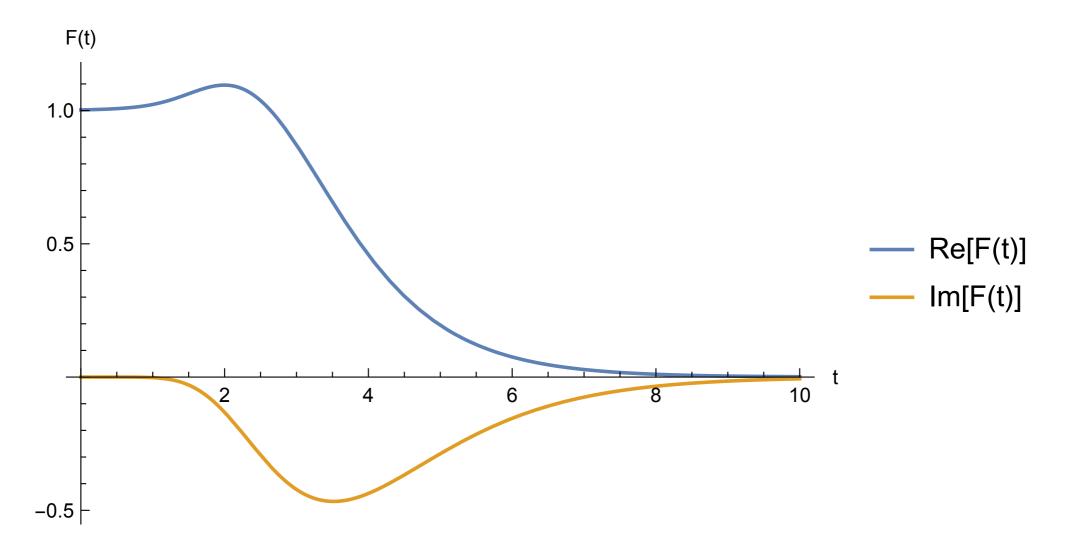
with Struve function $H_n(z)$, Bessel function of the 1st kind $J_n(z)$,

$$\mathcal{F}(z) = \lim_{a \to 1} \partial_a \left(\frac{{}_0 F_1(a, -z)}{\Gamma(a)} \right) ,$$

$$\epsilon_{ij} = i \left(e^{i\epsilon_i/\ell} - e^{i\epsilon_j/\ell} \right) , \quad g(t) = \frac{8\ell \delta_{13}\epsilon_{13}\epsilon_{24}^* e^{-t/\ell}}{\pi G_N} , \quad \delta_{13} = -1 \quad \text{for} \quad 0 \le \arg(\epsilon_{13}) - \frac{\pi}{2} < \pi ,$$

Chaotic Behavior

 To compare with the geodesic approximation, we send one of the V operators to the L patch. The OTOC as a function of t:



 The real part of the OTOC initially rises but at later times decreases and goes to zero.

Traversability

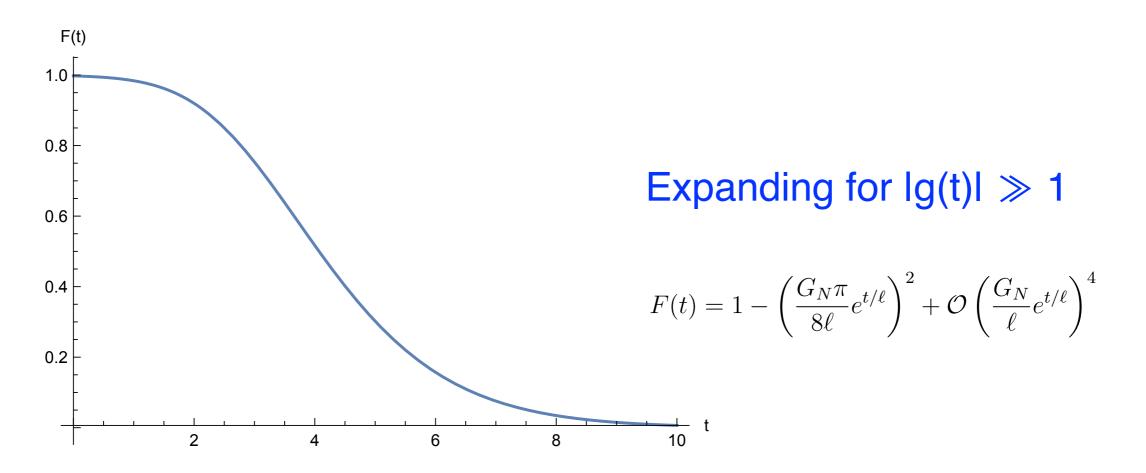
 A geodesic crossing a positive null energy shockwave in dS experiences a time advance: it is possible to send signals between the L and R patches. To confirm traversability, consider:

 $\langle e^{-i\epsilon_R V_L(0)} W(t) V_R(0) W(t) e^{i\epsilon_R V_L(0)} \rangle =$ $\langle W(t) V_R(0) W(t) \rangle + 2\epsilon_R \operatorname{Im}(\langle V_L(0) W(t) V_R(0) W(t) \rangle) + \mathcal{O}(\epsilon_R^2)$

- The imaginary part of the OTOC is thus indicative of a signal being exchanged between the L and R patches.
- de Sitter space share similarities with traversable wormholes in AdS [Gao, Jafferis, Wall]; [Maldacena, Stanford, Yang] except that there is no need for a non-local coupling between the poles.

de Sitter as a Fast Scrambler

• We can also consider the purely right-sided OTOC:



- For $l < t < l \log(S)$, this OTOC decreases exponentially. The Lyapunov exponent $\lambda_{L} = 2\pi/\beta$ saturates the chaos bound.
- The scrambling time is $l \log(S)$ but the first order term in the expansion of F(t) goes as $1/S^2$ (for BHs, this term goes as 1/S).

Stringy Corrections

- Because of the blueshift experienced by the perturbations, one might wonder if stringy effects can modify the OTOC.
- For BHs in AdS, such stringy effects were argued to be mild [Shenker, Stanford]. They increase the scrambling time due to the soft UV behavior of string amplitudes.

$$t_* = \frac{\beta}{2\pi} \left(1 + \frac{d(d+1)}{4} \frac{\ell_s^2}{\ell^2} + \dots \right) \log(S)$$

 In dS, the mass of the higher-spin states satisfy the Higuchi bound, in order to fall into unitary reps. of the isometry group:

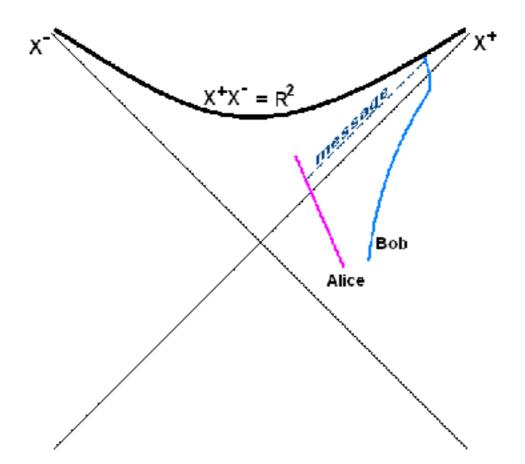
$$m^2 \ell^2 \ge (J-1)(d-4+J)$$

• A linear Regge trajectory $(ml_s)^2 = J$ violates this bound for $J \ge (l/l_s)^2$. The higher-spin states can Reggeize the amplitude up to the Planck scale if $H \le m_s^2/M_{P.}$ The soft UV behavior may increase the scrambling time.

Black Hole Complementarity

•

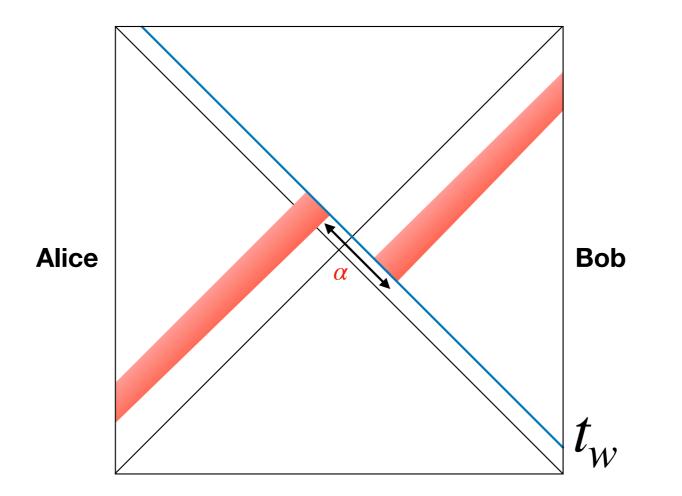
For black holes, observer complementarity [Susskind, Thorlacius, Uglum];['t Hooft] suggests that the infalling and asymptotic observer have a different but "complementary" experience.



 The scrambling time is just long enough to avoid a naive violation of no-cloning [Sekino, Susskind];[Hayden, Preskill].

de Sitter Complementarity

 Positive energy perturbations in dS open up a wormhole connecting different static patches:



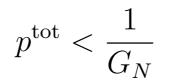
• Complementarity suggests that Bob can access at most S_{dS} states. If Bob applied the perturbation that opens the wormhole at early enough time t_w , could Alice send as much info as she likes?

Information Exchange

• The proper time during which the wormhole is open:

$$\Delta \tau = \frac{2\ell^2}{\ell^2 - uv} \sqrt{\Delta u \Delta v} = 2\alpha \sim G_N$$

- In Alice's frame, this time is blueshifted to $\Delta \tau \simeq G_N e^{t_w/\ell}$
- Complementarity suggests that $N \leq S_{dS.}$
- What goes wrong if Alice tries to send more bits?
- For the message to not backreact too strongly, the total energy:

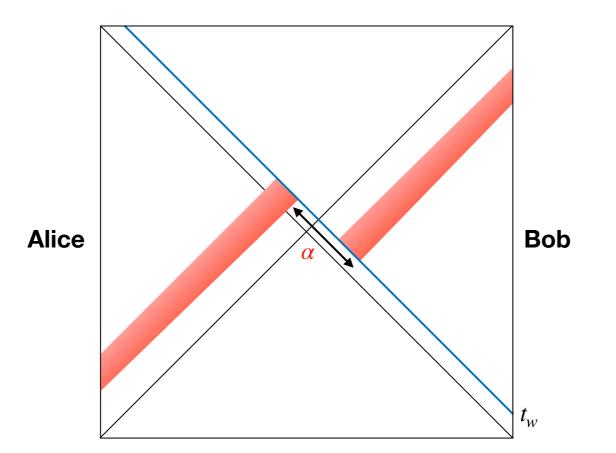


 The wormhole is open for a Planckian time so the signal has to be sufficiently blueshifted to fit through:

$$p^{\nu} > \frac{1}{\Delta \tau} \sim \frac{1}{\alpha}$$

Information Exchange

• If Alice tries to send > O(1) bits to Bob, her message either does not fit through the wormhole, or backreacts too strongly.



• If she tries to send her message with K species of fields, she can at most send S_{dS} bits to Bob, while satisfying the 2 conditions and the species bound K $\leq l/G_{N}$.

Implications to Inflation

 It has recently been conjectured that trans-Planckian quantum fluctuations should remain quantum [Bedroya,Vafa];[Bedroya, Brandenberger,LoVerde,Vafa], as a result the lifetime of (quasi) dS:

$$T \le \frac{1}{H} \log\left(\frac{M_P}{H}\right)$$

- It was remarked that this bound is similar to the scrambling time.
- Whether this Trans-Planckian Censorship Conjecture is true, the scrambling time is a longer time (*double* the # of e-folds):

$$T_{scrambling} = \frac{1}{H} log S_{dS4} = \frac{1}{H} \log\left(\frac{M_P^2}{H^2}\right)$$

 Our result also gives an interpretation of the scrambling time in an inflationary setting.

Implications to Inflation

 As the Hubble scale varies, the energy flux leaving the horizon is given by the thermodynamics relation dE = TdS [Frolov, Kofman]:

$$\dot{E} = \frac{\epsilon}{G_N}$$
 where $\epsilon = -\frac{H}{H^2}$

- For simplicity, take ϵ = constant, the energy that leaves the horizon in one Hubble time 1/H is E= ϵ (G_NH)⁻¹
- This can be described as a positive energy shockwave if $E \ge H$, or

$$\epsilon \ge \frac{H^2}{8\pi M_p^2}$$

• Info can enter a Hubble patch from a previously disconnected region after $N_e \ge \log S_{dS}$ due to the shockwaves. If O(1) bit of info enters per e-fold, backreaction may become important when $N_e \ge \log S_{dS}$ for single field and $N_e \ge S_{dS}$ for maximum allowed # fields.

Implications to Inflation

 As the Hubble scale varies, the energy flux leaving the horizon is given by the thermodynamics relation dE = TdS [Frolov, Kofman]:

$$\dot{E} = \frac{\epsilon}{G_N}$$
 where $\epsilon = -\frac{H}{H^2}$

- For simplicity, take ϵ = constant, the energy that leaves the horizon in one Hubble time 1/H is E= ϵ (G_NH)⁻¹
- This can be described as a positive energy shockwave if $E \ge H$, or

$$1 \ge \epsilon \ge \frac{H^2}{8\pi M_p^2}$$

• Info can enter a Hubble patch from a previously disconnected region after $N_e \ge \log S_{dS}$ due to the shockwaves. If O(1) bit of info enters per e-fold, backreaction may become important when $N_e \ge \log S_{dS}$ for single field and $N_e \ge S_{dS}$ for maximum allowed # fields.

Summary

- Perturbations in de Sitter that satisfy the NEC result in a shockwave geometry leading to a time advance for the geodesics crossing it.
- This time advance brings different static patches of dS into causal contact, much like a traversable wormhole in AdS.
- We computed OTOCs to assess the chaotic nature of the dS horizon;
 dS space is a fast scrambler but with differences from BHs.
- We discussed consequences of our results for dS complementarity and the implications to inflation.
- Other quantum informatic considerations may put a bound on inflation and the subsequent dark energy phase [Aalsma, GS, work in progress]