Superfluids and the Cosmological Constant Problem

Adam R. Solomon Carnegie Mellon University

With Justin Khoury (UPenn) & Jeremy Sakstein (Hawaii) 1805.05937 (JCAP) "The cosmological constant problem is the unwanted child of two pillars of twentieth century physics: quantum field theory and general relativity."

Tony Padilla

The CC problem in a nutshell

* The energy of the vacuum gravitates as a cosmological constant: $T_{\mu\nu} \sim \frac{\rho_{\text{vac}}}{M_{\text{Pl}}^2} g_{\mu\nu}$

* Massive fields: $\rho_{vac} \sim m^4$

 Electron vacuum energy alone would lead to de Sitter horizon ~ 10⁶ km

 Pauli: the radius of the world "nicht einmal bis zum Mond reichen würde" (would not even reach the Moon!)

Where is the vacuum energy?

The problem gets worse with more particle species:

$$\frac{\rho_{\text{vac,electron}}}{\rho_{\text{vac,obs}}} \sim 10^{32}$$

$$\frac{\rho_{\text{vac,SM}}}{\rho_{\text{vac,SM}}} \sim 10^{54}$$

$$\frac{\rho_{\text{vac,obs}}}{\rho_{\text{vac,obs}}} \sim 10^{121}$$

$$\frac{\rho_{\text{vac,obs}}}{\rho_{\text{vac,obs}}}$$

* "The worst theoretical prediction in the history of physics!"

Cosmological constant problems old and new

Can split into two (logically distinct?) CC problems:

- * "Old problem": why does an enormous vacuum energy not gravitate?
- * "New problem": why is there some residual acceleration anyway?
- Often treated separately! Solve one while ignoring the other
- This talk: focus on the old problem

Some approaches to the old problem

Anthropics: if Λ were bigger, we wouldn't be around to remark on it

Could follow from string landscape + eternal inflation

Dimopoulos: danger of "premature application"

Some approaches to the old problem

 Modifications of gravity: leave Λ alone, but change how it gravitates

 Degravitation: weaken gravitational response to long-wavelength sources

Self-tuning: introduce new field(s) which dynamically counteract Λ

Self-tuning and our modest goal

 We will set a modest goal: field equations solved by Minkowski for arbitrary Λ

 Necessary but not sufficient condition for solving old CC problem

 Other criteria: UV insensitivity, radiative stability, no pathologies, agreement with experiments, reproduce observed cosmological history, etc.!

We'll address some but not all of these

Weinberg's famous no-go theorem

Weinberg (1988); see also Padilla review 1502.05296

 Self-tuning runs into a famous obstruction due to Weinberg

* Assume some fields ϕ^{A} "eat up" vacuum energy, $T^{\phi}_{\mu\nu} = -T^{A}_{\mu\nu}$

* Assume Poincaré-invariant vacua,

$$\phi^A = \text{const}, \qquad g_{\mu\nu} = \eta_{\mu\nu}$$

Weinberg's famous no-go theorem: two possibilities

Fine-tuning: only cancels out one specific value of
 Λ

Scaling symmetry: Particle masses also vanish; not physical

Evading Weinberg's theorem

Any no-go theorem has assumptions, pointing the way forward

* Common approach: break Poincaré invariance

$$\Phi^A = \Phi^A(x^{\mu}), \quad g_{\mu\nu} = \eta_{\mu\nu}$$

* e.g., in cosmology, we might have fields with time dependence

* To get flat space, fields must be accompanied by derivatives

* To leading order in EFT, one derivative per field

Warmup: one scalar

Can we degravitate with a single scalar?

- * No.
- * Why?

* At leading order in derivatives, most general action is $\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\text{Pl}}^2}{2} \left[R - 2\Lambda + m^2 P(X) \right], \quad X \equiv (\partial \Phi)^2$ * NB: this is the EFT of a zero-temperature superfluid The total stress tensor is

$$\frac{1}{M_{\rm Pl}^2} T_{\mu\nu} = \frac{1}{2} m^2 \left(P g_{\mu\nu} - 2 P_X \partial_\mu \Phi \partial_\nu \Phi \right) - \Lambda g_{\mu\nu}, \quad P_X \equiv \frac{\partial P}{\partial X}$$

* In order to have flat solutions for arbitrary Λ , this must vanish:

1. $P_X = 0$

2. $m^2 P(X) = 2\Lambda$

* The latter requires fine-tuning.

* *e.g.*, ghost condensate, $P(X) = X + \lambda X^2/2$

* $P_X = 0$ solved by $X = -\lambda^{-1}$. But $m^2 P = 2\Lambda$ only if λ is carefully tuned against Λ !

$$\lambda = -\frac{m^2}{4\Lambda}$$

Warmer up: Four scalars

* Fine-tuning not a problem with four scalars Φ^A

Consider a simple (and trivially wrong) model:

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda - m^2 \eta_{AB} \partial_\mu \Phi^A \partial^\mu \Phi^B \right]$$

* The stress tensor no longer has an inhomogeneous term when $\Phi^{A} \sim x^{A}$:

$$\frac{1}{M_{\rm Pl}^2} T_{\mu\nu} = \frac{1}{2} m^2 \left(-\eta_{AB} \partial_\alpha \Phi^A \partial^\alpha \Phi^B g_{\mu\nu} + 2\eta_{AB} \partial_\mu \Phi^A \partial_\nu \Phi^B \right) - \Lambda g_{\mu\nu}$$

* This admits flat solutions $\Phi^A = \alpha x^A$, with

$$\alpha = \frac{\sqrt{-\Lambda}}{m}$$

* Degravitates any negative Λ without fine-tuning!

* Key: instead of tuning theory parameters against Λ , tune *integration constant* α to Λ

Tuning is achieved dynamically

* Fatal problem: Φ^0 is a **ghost**

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda - m^2 \eta_{AB} \partial_\mu \Phi^A \partial^\mu \Phi^B \right]$$

$$= \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 (\partial \Phi^0)^2 - m^2 \sum_{i=1}^3 (\partial \Phi^i)^2 \right]$$

Direct result of internal Lorentz symmetry, which is
 what we used to remove inhomogeneous term!

Blessing and a curse

Can we self-tune without a ghost?

Ghosts and massive gravity

The ghost is easy to understand if we recognize this is a theory of massive gravity

* Why? Consider adding to GR a non-derivative interaction

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda - m^2 g^{\mu\nu} \eta_{\mu\nu} \right]$$

* This breaks diff invariance due to $\eta_{\mu\nu}$. Can restore diffs by introducing Stückelberg fields Φ^A ,

 $\eta_{\mu\nu} \to \eta_{AB} \partial_{\mu} \Phi^A \partial_{\nu} \Phi^B$

* And we recover the action discussed in the previous slides

Massive gravity and degravitation

* This connects to an old and venerable story:

Massive graviton

→ finite range of gravity

 \rightarrow gravity acts as "high-pass filter" screening out sources with wavelengths >> m⁻¹

* Λ is infinite-wavelength source!

* Massive gravity at linear level: Fierz-Pauli (1939) $h_{\mu\nu}h^{\mu\nu} - (h^{\mu}{}_{\mu})^2$

Other linear mass terms have ghosts, just like the example we discussed

Massive gravity and degravitation

- Non-linear: ghost re-emerges! (Boulware-Deser, 1972)
- Unique non-linear, ghost-free, Lorentz-invariant massive gravity: de Rham-Gabadadze-Tolley (dRGT, 2010)
- * Ghost-free massive gravity cannot degravitate large Λ without violating solar system tests of GR (1010.1780)
- * This means we cannot use a Lorentz-invariant theory,

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 U(\partial_\mu \Phi^A, \eta_{AB}, \varepsilon_{ABCD}) \right]$$

Is Lorentz invariance too strong a requirement?

* For cosmology, we only need SO(3), not SO(3,1)

Idea: break internal boosts

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 U(\partial_\mu \Phi^0, \partial_\mu \Phi^i, \delta_{ij}, \varepsilon_{ijk}) \right]$$

Aim: use newfound freedom to avoid ghosts (and other pathologies) while retaining degravitation

* Look for: for physically sensible degravitating models with

 $\Phi^0 = \alpha t$, $\Phi^i = \beta x^i$ such that $T^{\Phi}_{\mu\nu} = M^2_{\text{Pl}} \Lambda g_{\mu\nu}$

Interpreting our theory

Complementary physical interpretations of this type of theory:

1. Lorentz-violating massive gravity

2. Low-energy EFT of self-gravitating fluid

* Difference hinges only on coordinate choice

Lorentz-violating massive gravity as a fluid EFT

- * Consider the fields $\Phi^A = \Phi^A(t,x)$ to be comoving (Lagrangian) coordinates of a fluid
- * Fluid rest frame is a coordinate system in which $\Phi^{A} = \alpha x^{A}$
- ◆ EFT describing excitations of fluid is a derivative expansion in Φ^A obeying any relevant symmetries

Building blocks and symmetry

* At leading order in derivatives, action is built out of $C^{AB} \equiv g^{\mu\nu}\partial_{\mu}\Phi^{A}\partial_{\nu}\Phi^{B} \implies \mathscr{L} = U(C^{00}, C^{0i}, C^{ij})$

 Choice of operators determines symmetry-breaking pattern and hence fluid, e.g.,

* Solids: $\mathcal{L} = U(C^{ij})$

* Zero-temperature superfluids: $\mathcal{L} = U(C^{00})$

* Finite-temperature superfluids: $\mathscr{L} = U(C^{00}, \det C^{ij}, \det C^{AB})$

The importance of coordinates

 If we move to the fluid rest frame, Φ^A = αx^A, then we recover the Lorentz-violating massive gravity picture:

$$U(C^{00}, C^{0i}, C^{ij}) \xrightarrow{\Phi^A = \alpha x^A} U(h_{00}, h_{0i}, h_{ij})$$

* This is unitary gauge

Criteria for degravitation

Existence of a Minkowski (degravitating) solution: equations of motion must be solved by
 g = η for arbitrary Λ

* No fine-tuning: Tune integration constants, not model parameters, against Λ

 Massless tensors: Tensor mass generically is huge, m ~ O(Λ^{1/2}), unless they are exactly massless. (LIGO: m < 10⁻²² eV)

Criteria for degravitation

 No pathologies: No ghosts, tachyons, gradient instabilities, infinite strong coupling, instantaneous modes

 UV insensitivity: Higher-derivative EFT corrections should not introduce new modes at low energy

Strategy

- 1. Identify parameter space of Lorentz-violating massive gravity which satisfies these criteria
- 2. Look for symmetries that protect our parameter choice
- 3. Determine building blocks for non-linear action
- 4. Solve cosmological constant problem (incomplete)

Analysis

* Work in unitary gauge at linear level,

$$\Phi^A = (\alpha t, \beta x^i), \quad g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

Most general SO(3)-invariant mass term
 Dubovsky hep-th/0409124

$$\mathscr{L}_{\text{mass}} = \frac{M_{\text{Pl}}^2}{2} \left(m_0^2 h_{00}^2 + 2m_1^2 h_{0i}^2 - m_2^2 h_{ij}^2 + m_3^2 h_{ii}^2 - 2m_4^2 h_{00} h_{ii} \right)$$

* Massless tensors: $m_2 = 0$

* Stability: $m_1 = 0$ (see our paper for gory details! 1805.05937)

Searching for a symmetry

 With our parameter choice in hand, m₁ = m₂ = 0, we need to find a symmetry to protect it

* Otherwise we're just fine-tuning and not solving anything!

Several candidate symmetries

* Most either don't degravitate or are UV-sensitive

* Again, details in 1805.05937

 Only symmetry that works: time-dependent, volumepreserving spatial diffeomorphisms

Time-dependent, volume-preserving spatial diffeomorphisms

Scalar language:

 $\Phi^i \to \Psi^i(\Phi^0, \Phi^i)$ with $\det \left(\partial \Psi^i / \partial \Phi^j \right) = 1$ \Rightarrow Massive gravity language: break diffs while leaving $x^i \to x^i + \xi^i(t, x^j)$ with $\partial_i \xi^i = 0$

* Closely related to time-*independent* volume-preserving spatial diffs, which set $m_2 = 0$ and forbid massive tensors

Adding time dependence further restricts m₁ = 0, as needed for stability

Building blocks of degravitation

* The building blocks invariant under our symmetry,

 $X = (\partial \Phi^0)^2$ $Yb = \frac{\det(\partial_\mu \Phi^A)}{\sqrt{-g}}$

Our degravitating theory is therefore

$$\frac{\mathscr{L}}{\sqrt{-g}} = \frac{M_{\rm Pl}^2}{2} \left[R - 2\Lambda + m^2 U(X, Yb) \right]$$

* Unique theory that satisfies our criteria

 This describes a finite-temperature superfluid! Nicolis 1108.2513

Degravitating solutions in practice

- * Finally, we can see how this all works! Example: $U(X, Yb) = \frac{K_1}{2}(X+1)^2 + \frac{K_2}{2}(Yb)^2$
 - Ghost condensate plus term quadratic in Yb
- * Has degravitating solutions! $g_{\mu\nu} = \eta_{\mu\nu}, \quad \Phi^0 = t, \quad \Phi^i = \left(-\frac{4\Lambda}{K_2m^2}\right)^{1/6} x^i$

* Can degravitate any positive Λ for $K_2 < 0$ and vice versa

* No ghost:
$$K_1 > 0$$

Degravitating solutions in practice

* Another simple example:

$$U(X, Yb) = -X + \gamma XYb - \frac{\lambda}{2}(Yb)^2$$

Degravitating solutions:

$$g_{\mu\nu} = \eta_{\mu\nu}, \quad \Phi^0 = \sqrt{\frac{2\Lambda}{m^2} - \frac{\lambda}{2\gamma^2}}t, \quad \Phi^i = \left(\frac{2\gamma^2\Lambda}{m^2} - \frac{\lambda}{2}\right)^{-1/6} x^i$$

* Can degravitate any $\Lambda > \lambda m^2/4\gamma^2$

* Ghost-free:
$$\lambda > 0$$

Summary * New method for self-tuning Λ by breaking Lorentz Circumvent (and extend) Weinberg Unique theory: finite-temperature superfluid * Next step: see whether this cancellation can occur dynamically