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“The cosmological constant problem is the 
unwanted child of  two pillars of  twentieth century 

physics: quantum field theory and general relativity.” 

Tony Padilla
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The CC problem in a nutshell
The energy of  the vacuum gravitates as a 
cosmological constant: 

Massive fields: ρvac ~ m4 

Electron vacuum energy alone would lead to de 
Sitter horizon ~ 106 km 

Pauli: the radius of  the world “nicht einmal bis 
zum Mond reichen würde” (would not even reach 
the Moon!)

Tμν ∼
ρvac

M2
Pl

gμν
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Where is the vacuum energy?
The problem gets worse with more particle species: 

“The worst theoretical prediction in the history of  
physics!”

ρvac,electron

ρvac,obs
∼ 1032

ρvac,SM

ρvac,obs
∼ 1054

ρvac,Planck

ρvac,obs
∼ 10121
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Cosmological constant problems old and new

Can split into two (logically distinct?) CC problems: 

“Old problem”: why does an enormous vacuum energy 
not gravitate? 

“New problem”: why is there some residual acceleration 
anyway? 

Often treated separately! Solve one while ignoring the 
other 

This talk: focus on the old problem
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Some approaches to the old problem

Anthropics: if  Λ were bigger, we wouldn’t be 
around to remark on it 

¯\_(ツ)_/¯ 

Could follow from string landscape + eternal 
inflation 

Dimopoulos: danger of  “premature 
application”
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Some approaches to the old problem

Modifications of  gravity: leave Λ alone, but 
change how it gravitates 

Degravitation: weaken gravitational response to 
long-wavelength sources 

Self-tuning: introduce new field(s) which 
dynamically counteract Λ



Adam R. Solomon (CMU)	 	 	 	 	 	 	 	 	 	    	 	 	 	          KITP 2/6/20

Self-tuning and our modest goal
We will set a modest goal: field equations solved by 
Minkowski for arbitrary Λ 

Necessary but not sufficient condition for solving old 
CC problem 

Other criteria: UV insensitivity, radiative stability, 
no pathologies, agreement with experiments, 
reproduce observed cosmological history, etc.! 

We’ll address some but not all of  these
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Weinberg’s famous no-go theorem
Weinberg (1988); see also Padilla review 1502.05296 

Self-tuning runs into a famous obstruction due to 
Weinberg 

Assume some fields φA “eat up” vacuum energy,  

Assume Poincaré-invariant vacua,
ϕA = const, gμν = ημν

Tϕ
μν = − TΛ

μν
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Weinberg’s famous no-go theorem: two 
possibilities

Fine-tuning: only cancels out one specific value of  
Λ 

Scaling symmetry: Particle masses also vanish; not 
physical
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Evading Weinberg’s theorem
Any no-go theorem has assumptions, pointing the way 
forward 

Common approach: break Poincaré invariance 

e.g., in cosmology, we might have fields with time dependence 

To get flat space, fields must be accompanied by derivatives 

To leading order in EFT, one derivative per field

ΦA = ΦA(xμ), gμν = ημν
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Warmup: one scalar
Can we degravitate with a single scalar? 

No. 

Why? 

At leading order in derivatives, most general action is 

NB: this is the EFT of  a zero-temperature superfluid

ℒ
−g

=
M2

Pl

2 [R − 2Λ + m2P(X)], X ≡ (∂Φ)2
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The total stress tensor is 

In order to have flat solutions for arbitrary Λ, this must vanish: 

1. PX = 0 

2. m2 P(X) = 2Λ 

The latter requires fine-tuning. 

e.g., ghost condensate, P(X) = X + λX2/2 

PX = 0 solved by X = -λ-1. But m2 P = 2Λ only if  λ is 
carefully tuned against Λ!

1
M2

Pl
Tμν =

1
2

m2 (Pgμν − 2PX∂μΦ∂νΦ) − Λgμν, PX ≡
∂P
∂X

λ = −
m2

4Λ
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Warmer up: Four scalars
Fine-tuning not a problem with four scalars ΦA 

Consider a simple (and trivially wrong) model:  
 

The stress tensor no longer has an inhomogeneous 
term when ΦA ~ xA:

ℒ
−g

=
M2

Pl

2 [R − 2Λ − m2ηAB∂μΦA∂μΦB]

1
M2

Pl
Tμν =

1
2

m2 (−ηAB∂αΦA∂αΦBgμν + 2ηAB∂μΦA∂νΦB) − Λgμν
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This admits flat solutions ΦA = αxA, with 

Degravitates any negative Λ without fine-tuning! 

Key: instead of  tuning theory parameters 
against Λ, tune integration constant α to Λ 

Tuning is achieved dynamically

α =
−Λ
m
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Fatal problem: Φ0 is a ghost 
 
 
 
 

Direct result of  internal Lorentz symmetry, which is 
what we used to remove inhomogeneous term! 

Blessing and a curse 

Can we self-tune without a ghost?

ℒ
−g

=
M2

Pl

2 [R − 2Λ − m2ηAB∂μΦA∂μΦB]

=
M2

Pl

2 [R − 2Λ + m2(∂Φ0)2 − m2
3

∑
i=1

(∂Φi)2]
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Ghosts and massive gravity
The ghost is easy to understand if  we recognize this is a 
theory of  massive gravity 

Why? Consider adding to GR a non-derivative interaction 

This breaks diff  invariance due to ημν. Can restore diffs by 
introducing Stückelberg fields ΦA, 

And we recover the action discussed in the previous slides

ℒ
−g

=
M2

Pl

2 [R − 2Λ − m2gμνημν]

ημν → ηAB∂μΦA∂νΦB
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Massive gravity and degravitation
This connects to an old and venerable story:  
 
Massive graviton  
→ finite range of  gravity  
→ gravity acts as “high-pass filter” screening out sources with 
wavelengths >> m-1 

Λ is infinite-wavelength source! 

Massive gravity at linear level: Fierz-Pauli (1939) 

Other linear mass terms have ghosts, just like the example we 
discussed

hμνhμν − (hμ
μ)2
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Massive gravity and degravitation
Non-linear: ghost re-emerges! (Boulware-Deser, 1972) 

Unique non-linear, ghost-free, Lorentz-invariant massive 
gravity: de Rham-Gabadadze-Tolley (dRGT, 2010) 

Ghost-free massive gravity cannot degravitate large Λ 
without violating solar system tests of  GR (1010.1780) 

This means we cannot use a Lorentz-invariant theory,  
  ℒ

−g
=

M2
Pl

2 [R − 2Λ + m2U(∂μΦA, ηAB, εABCD)]
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Is Lorentz invariance too strong a 
requirement?

For cosmology, we only need SO(3), not SO(3,1) 

Idea: break internal boosts 

Aim: use newfound freedom to avoid ghosts (and other 
pathologies) while retaining degravitation 

Look for: for physically sensible degravitating models with  
 

ℒ
−g

=
M2

Pl

2 [R − 2Λ + m2U(∂μΦ0, ∂μΦi, δij, εijk)]

Φ0 = αt, Φi = βxi such that TΦ
μν = M2

PlΛgμν
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Interpreting our theory
Complementary physical interpretations of  this 
type of  theory: 

1. Lorentz-violating massive gravity 

2. Low-energy EFT of  self-gravitating fluid 

Difference hinges only on coordinate choice
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Lorentz-violating massive gravity as a fluid 
EFT

Consider the fields ΦA = ΦA(t,x) to be comoving 
(Lagrangian) coordinates of  a fluid 

Fluid rest frame is a coordinate system in which 
ΦA = αxA 

EFT describing excitations of  fluid is a derivative 
expansion in ΦA obeying any relevant symmetries
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Building blocks and symmetry
At leading order in derivatives, action is built out of  

Choice of  operators determines symmetry-breaking 
pattern and hence fluid, e.g., 

Solids: 

Zero-temperature superfluids: 

Finite-temperature superfluids:  

CAB ≡ gμν∂μΦA∂νΦB ⟹ ℒ = U(C00, C0i, Cij)

ℒ = U(Cij)

ℒ = U(C00)

ℒ = U(C00, det Cij, det CAB)
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The importance of  coordinates
If  we move to the fluid rest frame, ΦA = αxA, then 
we recover the Lorentz-violating massive gravity 
picture: 

This is unitary gauge 

e.g., 

→ Potential for g00

U(C00, C0i, Cij) ΦA=αxA
U(h00, h0i, hij)

X = C00 = gμν∂μΦ0∂νΦ0 ΦA=αxA
C00 = α2g00
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Criteria for degravitation
Existence of  a Minkowski (degravitating) 
solution: equations of  motion must be solved by 
g = η for arbitrary Λ 

No fine-tuning: Tune integration constants, not 
model parameters, against Λ 

Massless tensors: Tensor mass generically is 
huge, m ~ O(Λ1/2), unless they are exactly 
massless. (LIGO: m < 10-22 eV)
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Criteria for degravitation
No pathologies: No ghosts, tachyons, gradient 
instabilities, infinite strong coupling, instantaneous 
modes 

UV insensitivity: Higher-derivative EFT 
corrections should not introduce new modes at 
low energy
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Strategy
1. Identify parameter space of  Lorentz-violating 

massive gravity which satisfies these criteria 

2. Look for symmetries that protect our parameter 
choice 

3. Determine building blocks for non-linear action 

4. Solve cosmological constant problem (incomplete)
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Analysis
Work in unitary gauge at linear level,  

Most general SO(3)-invariant mass term  
Dubovsky hep-th/0409124 

Massless tensors: m2 = 0 

Stability: m1 = 0 (see our paper for gory details! 1805.05937)

ΦA = (αt, βxi), gμν = ημν + hμν

ℒmass =
M2

Pl

2 (m2
0h2

00 + 2m2
1h2

0i − m2
2h2

ij + m2
3h2

ii − 2m2
4h00hii)
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Searching for a symmetry
With our parameter choice in hand, m1 = m2 = 0, we need to 
find a symmetry to protect it 

Otherwise we’re just fine-tuning and not solving anything! 

Several candidate symmetries 

Most either don’t degravitate or are UV-sensitive 

Again, details in 1805.05937 

Only symmetry that works: time-dependent, volume-
preserving spatial diffeomorphisms
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Time-dependent, volume-preserving spatial 
diffeomorphisms

Scalar language: 

Massive gravity language: break diffs while leaving 

Closely related to time-independent volume-preserving 
spatial diffs, which set m2 = 0 and forbid massive tensors 

Adding time dependence further restricts m1 = 0, as 
needed for stability

Φi → Ψi(Φ0, Φi) with det (∂Ψi /∂Φ j) = 1

xi → xi + ξi(t, xj) with ∂iξi = 0
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Building blocks of  degravitation
The building blocks invariant under our symmetry,  
 
 

Our degravitating theory is therefore 

Unique theory that satisfies our criteria 

This describes a finite-temperature superfluid!  
Nicolis 1108.2513

X = (∂Φ0)2

Yb =
det(∂μΦA)

−g

ℒ
−g

=
M2

Pl

2 [R − 2Λ + m2U(X, Yb)]
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Degravitating solutions in practice

Finally, we can see how this all works! Example:  
 
 
Ghost condensate plus term quadratic in Yb 

Has degravitating solutions! 

Can degravitate any positive Λ for K2 < 0 and vice versa 

No ghost: K1 > 0

U(X, Yb) =
K1

2
(X + 1)2 +

K2

2
(Yb)2

gμν = ημν, Φ0 = t, Φi = (−
4Λ

K2m2 )
1/6

xi
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Degravitating solutions in practice

Another simple example: 

Degravitating solutions: 

Can degravitate any Λ > λm2/4γ2 

Ghost-free: λ > 0

U(X, Yb) = − X + γXYb −
λ
2

(Yb)2

gμν = ημν, Φ0 =
2Λ
m2

−
λ

2γ2
t, Φi = ( 2γ2Λ

m2
−

λ
2 )

−1/6

xi
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Summary
New method for self-tuning Λ by breaking Lorentz 

Circumvent (and extend) Weinberg 

Unique theory: finite-temperature superfluid 

Next step: see whether this cancellation can occur 
dynamically


