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“I'he cosmological constant problem 1s the

unwanted child of two pillars of twentieth century
physics: quantum field theory and general relativity.”

lTony Padilla
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1T'he GG problem 1n a nutshell

<= T'he energy of the vacuum gravitates as a

. , Pvac
cosmological constant: 7 ~ 73 8

o

> Massive fields: pyac ~ m*

<= Electron vacuum energy alone would lead to de
siiter-horizon ~ 10° km

<= Pauli: the radius ot the world “nicht eimnmal bis
zum Mond reichen wiirde” (would not even reach

the Moon!)

Adam R. Solomon (CMU) KI'EP:276720




Where 1s the vacuum energy?

<= 'T'he problem gets worse with more particle species:

P vac,electron

G 1032

pvac,obs
P vac,.SM

=3 1054
pvac,obs

pvac,Planck
16 121

pvac,obs

<= “T'he worst theoretical prediction 1n the history of
physics!”
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Cosmological constant problems old and new

<= (an split into two (logically distinct?) GG problems:

= “Old problem”: why does an enormous vacuum energy
not gravitate?

<= “New problem”: why 1s there some residual acceleration
anyway?

= Often treated separately! Solve one while 1ignoring the
other

<= 'T'his talk: focus on the old problem
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Some approaches to the old problem

= Anthropics: it A were bigger, we wouldn’t be
around to remark on 1t

<= (Could follow from string landscape + eternal
inflation

<= Dimopoulos: danger of “premature
application™

Adam R. Solomon (CMU) KI'EP:276720




Some approaches to the old problem

<= Modifications ot gravity: leave A alone, but
change how 1t gravitates

= Degravitation: weaken gravitational response to
long-wavelength sources

= Seli-tuning: introduce new field(s) which
dynamically counteract A
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Self-tuning and our modest goal

= We will set a modest goal: field equations solved by
Minkowski for arbitrary A

<= Necessary but not sutficient condition for solving old

CC problem

<= Other criteria: UV 1nsensitivity, radiative stability,
no pathologies, agreement with experiments,
reproduce observed cosmological history, etc.!

< We’ll address some but not all of these
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Weinberg’s famous no-go theorem

<= Weinberg (1988); see also Padilla review 1502.05296

<= Self-tuning runs into a famous obstruction due to

Weinberg

<= Assume some fields ¢ “eat up” vacuum energy,
o _ _ TA
<= Assume FPomncaré-invarant vacua,

A
¢” = const, St
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Weinberg’s tamous no-go theorem: two
possibilities

SF
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ine-tuning: only cancels out one specific value of

<= Scaling symmetry: Particle masses also vanish; not

physical
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Evading Weinberg’s theorem

<= Any no-go theorem has assumptions, pointing the way
torward

<= Gommon approach: break Poincaré invariance
A _ AA ==
O =d (-xﬂ)a g,uy g4 ’/]/,w
<= ¢.g, In cosmology, we might have fields with time dependence
= 'lo get flat space, fields must be accompanied by derivatives

<= 'To leading order in EFT] one derivative per field
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Warmup: one scalar

<= (an we degravitate with a single scalar?
<+ No.
<= Why?

<= At leading order 1n derivatives, most general action 1s
Z MPI

e

= NB: this 1s the EF' T of a zero-temperature superfluid

R—2A+m*P(X)|, X=(0®)
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< The total stress tensor 1s

e 2<P 2Pac1>ac1>> e
S = —m — s : e
MI%I 1224 2 g,uv XY u U gﬂy * 0X

<= In order to have flat solutions for arbitrary /A, this must vanish:
=0

2. m2P(X) = 2A

¢
%

The latter requires fine-tuning

¢
%

e.2., ghost condensate, P(X) = X + AX2/2

= Px =0solved by X = -A-l. Butm?P = 2A only i A1s
carefully tuned against Al

=
4N
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Warmer up: Four scalars

<= Fine-tuning not a problem with four scalars ®4

<= Consider a simple (and trivially wrong) model:

A
Y i
<= 'T'he stress tensor no longer has an inhomogeneous
term when dA ~ xA:

1 1
el Emz <_’7ABaa‘I’A0“CDB v T Z”ABaﬂq)Aa”q)B> ~ A
Pl

Ml%l 2 A uenB
== R —2A — m*nyp0, P"0" O
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< 'T'his admuits flat solutions ®4 = axs, with

e

m

0=
<= Degravitates any negative /A without fine-tuning!

<= Key: instead of tuning theory parameters
against /\, tune wtegration constant a to /\

<= Tuning 1s achieved dynamically

Adam R. Solomon (CMU) KI'EP:276720




<= Fatal problem: @Y is a ghost
= MPl

\/Tg 2

B _
— [R 2A + m*(09°)? — m? Z (0D")
2 =1

[R A — m2n, 0 @Aaﬂch]

<= Direct result of internal Lorentz symmetry, which 1s
what we used to remove inhomogeneous term!

<= Blessing and a curse

<= (an we self-tune without a ghost?
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(Ghosts and massive gravity

= T'he ghost 1s easy to understand 1f we recognize this 1s a
theory of massive gravity

<= Why? Consider adding to GR a non-derivative interaction
< Mg
=% )

<+ 'T'his breaks diff invariance due to n. Gan restore ditts by
introducing Stuckelberg fields ®A,

H Uv = nABa,ucDAav(DB

[R — 2\ — ng/“‘”nﬂy]

<= And we recover the action discussed 1n the previous shdes
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Massive gravity and degravitation

<= 'T'his connects to an old and venerable story:

Massive graviton

— finite range of gravity

— gravity acts as “high-pass filter” screening out sources with
wavelengths >> m-!

= /A 15 infinite-wavelength source!
= Massive gravity at linear level: Fierz-Pauli (1939) k" — (h* )?

<= Other linear mass terms have ghosts, just like the example we
discussed
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Massive gravity and degravitation

<= Non-linear: ghost re-emerges! (Boulware-Deser, 1972)

<= Unique non-hnear, ghost-free, Lorentz-invariant massive

oravity: de Rham-Gabadadze-'lolley (dRG'1; 2010)

= (Ghost-free massive gravity cannot degravitate large A
without violating solar system tests ot GR (1010.1780)

<= 'T'his means we cannot use a Lorentz-invariant theory,

S MPI [

e
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Is Lorentz invariance too strong a
requirement?

<= For cosmology, we only need SO(3), not SO(3,1)

o

- Idea: break internal boosts

i —M—I%l BR—2AN+m U ® oD 0.
e ) (L i e Oyt

s
<= Aim: use newfound freedom to avoid ghosts (and other
pathologies) while retaining degravitation

<+ Look for: for physically sensible degravitating models with

(I)O = af, (I)i — ﬁxi such that T;I; = MI%IAgﬂV
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Interpreting our theory

<= Complementary physical interpretations of this
type ot theory:

. Lorentz-violating massive gravity
2. Low-energy EFT of self-gravitating fluid

<= Difterence hinges only on coordinate choice
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Lorentz-violating massive gravity as a fluid

EF T

= (Consider the fields ®A = DA(t,x) to be comoving
(Lagrangian) coordinates ot a fluid

<= Fluid rest frame 1s a coordinate system in which

= EFT describing excitations ot fluid 1s a derivative
expansion in P4 obeying any relevant symmetries
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Building blocks and symmetry

<= At leading order 1n derivatives, action 1s built out ot
£ 9000 — -0 &

<= (Choice of operators determines symmetry-breaking
pattern and hence fluid, e.g.,

= Solids: & = U(CY)
= Zero-temperature superfluids: & = U(C™")

<= Finite-temperature supertluids:

= T(C™ det €Y, det 25
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1'he importance of coordinates

<+ ]t we move to the fluid rest frame, ®A = ax4, then
we recover the Lorentz-violating massive gravity
PlEtlEE:

OA=qx4

e O, CY) U(hog, Moi 1))

<= 'T'his 15 unitary gauge

(DAZ A
< C.o = COO = g,uvaM(DOaD(DO ax} COO = aZgOO
£ fotcniialbior o

Adam R. Solomon (CMU) KI'EP:276720




Criteria for degravitation

= Existence of a Minkowski (degravitating)
solution: equations of motion must be solved by
o = 1 for arbitrary A

<= No fine-tuning: lune integration constants, not
model parameters, against /\

= Massless tensors: lensor mass generically 1s

huge, m ~ O(A!/2), unless they are exactly
massless. (LIGO: m < 1022 V)
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Criteria for degravitation

<= No pathologies: No ghosts, tachyons, gradient
instabilities, infinite strong coupling, instantaneous
modes

<= UV insensitivity: Higher-derivative EF 1
corrections should not introduce new modes at
low energy
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Strategy

. Identity parameter space ot Lorentz-violating
massive gravity which satisfies these criteria

2. Look for symmetries that protect our parameter
choice

3. Determine building blocks for non-linear action

4. Solve cosmological constant problem (incomplete)
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Analysis

<= Work 1n unitary gauge at hnear level,

DA = (at, ﬁxi), SN + h,uy

<= Most general SO(3)-1nvariant mass term
Dubovsky hep-th/0409124

M3,
i % ) il U 24 2

< Massless tensors: mo = 0

= Stability: = (see our paper for gory details! 1805.05937)
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Searching for a symmetry

<= With our parameter choice in hand, m; = my = 0, we need to
find a symmetry to protect it

<= (Otherwise we’re just fine-tuning and not solving anything!
=+ Several candidate symmetries
<= Most either don’t degravitate or are UV-sensitive

<= Again, details in 1805.05937

<= Only symmetry that works: time-dependent, volume-
preserving spatial diffeomorphisms
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T1me-dependent, volume-preserving spatial
ditfeomorphisms

<= Scalar language:
®' - (P, d) with det(d¥'/0d’) = 1
<= Massive gravity language: break ditts while leaving
S x +E(L ) with 08 =8

= (losely related to time-wndependent volume-preserving
spatial difts, which set mo = 0 and forbid massive tensors

<= Adding time dependence further restricts m; = 0, as
needed for stability
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Building blocks of degravitation

<= 'he building blocks invariant under our symmetry,
— [
det(0, @)
N
= Our degravitating theory 1s theretfore
Zz MPI
=

<= Unique theory that satisfies our criteria

e

IR — 2A + m*U(X, YD)

<= T'his describes a finite-temperature superfluid!
Nicolis 1108.2513
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Degravitating solutions in practice

<= Iinally, we can see how this all works! Example:
& 2 R
U(X, Yb) = —H(X + 1) + —H(Yb)

Ghost condensate plus term quadratic in Yb

<= Has degravitating solutions!

1/6
. 4A\ |
2 = d'=¢ O = x
K2m2

<= (an degravitate any positive A for Ko < 0 and vice versa

o

= No ghost: K1 > 0
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Degravitating solutions in practice

<= Another simple example:

A
UX, YD) = — X + yXYb — E(Yb)z

<= Degravitating solutions:

1740
= s 4 :
Suv = Muw> m2 22 & -\ m2 2 x

= (an degravitate any A > Am?2/4y?

> (Ghost-free: A > 0
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Summary

<= New method for self-tuning A by breaking Lorentz
= Circumvent (and extend) Weinberg

<= Unique theory: finite-temperature supertluid
N

SF
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ext step: see whether this cancellation can occur
dynamically
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