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Figure 6. Future femtolensing sensitivity to primordial black holes compared to other probes. In
particular, we compare our projected limits (blue dashed contours) to limits based on extragalactic
background photons (EG�) from PBH evaporation [13], from the non-destruction of white dwarfs
(WD) [18], from microlensing searches by Subaru HSC [4], Kepler [57], MACHO [1], EROS [2], and
OGLE [3], from the dynamics of ultra-faint dwarf galaxies [58], and from CMB distortions due to
accretion onto PBHs [59]. (Stronger CMB limits are obtained if more aggressive assumptions on
accretion by PBHs are adopted [60].) The Subaru HSC limits are cut off at M ⇠ 10�11

M� because
below that mass, the geometric optics approximation employed in ref. [4] is not valid. We also do
not include neutron star limits [15] because of their dependence on controversial assumptions about
the DM density in globular clusters. We have taken the limits shown here from the compilation in
ref. [36]. In computing our projected limits, we have assumed the redshift of all GRBs in the sample
to be zS = 1, we have used the BAND model for the GRB spectrum, and we have assumed a 5%
systematic uncertainty, uncorrelated between energy bins.

is not true that photons travel from the source to the detector along one of just two discrete
paths. In fact, when the time delay becomes comparable to the inverse photon frequency
(which for point-like lenses is equivalent to the photon wave length becoming comparable
to the Schwarzschild radius of the lens), wave optics effects become non-negligible. It is
then necessary to integrate the photon amplitude over the whole lens plane. This leads to
O(1) corrections to the interference pattern at the lower end of the photon energy spectrum.
Second, while the approximation of a point-like lens works for primordial black holes, it is
not satisfied for ultra-compact mini-halos, and even less so for NFW-like structures. We
have therefore computed femtolensing effects for generic power-law density profiles, and have
explicitly shown numerical results for the self-similar infall profile with ⇢(r) / r

�9/4.
The most important correction in femtolensing of GRBs is coming from the non-negligible

size aS of the GRB source itself. In fact, we have argued that a GRB could only be treated
as point-like for the purpose of femtolensing if the photon emission region was smaller than
aS ⇠ 108 cm. And while estimates for the size of the emission region can vary by a few

– 18 –

Modified from Katz et al. 
1807.11495

Poulin et al.1707.04206

NS
WD

C
M
B

July 2018

NS
Femto

http://arxiv.org/abs/arXiv:1807.11495


Figure 6. Future femtolensing sensitivity to primordial black holes compared to other probes. In
particular, we compare our projected limits (blue dashed contours) to limits based on extragalactic
background photons (EG�) from PBH evaporation [13], from the non-destruction of white dwarfs
(WD) [18], from microlensing searches by Subaru HSC [4], Kepler [57], MACHO [1], EROS [2], and
OGLE [3], from the dynamics of ultra-faint dwarf galaxies [58], and from CMB distortions due to
accretion onto PBHs [59]. (Stronger CMB limits are obtained if more aggressive assumptions on
accretion by PBHs are adopted [60].) The Subaru HSC limits are cut off at M ⇠ 10�11

M� because
below that mass, the geometric optics approximation employed in ref. [4] is not valid. We also do
not include neutron star limits [15] because of their dependence on controversial assumptions about
the DM density in globular clusters. We have taken the limits shown here from the compilation in
ref. [36]. In computing our projected limits, we have assumed the redshift of all GRBs in the sample
to be zS = 1, we have used the BAND model for the GRB spectrum, and we have assumed a 5%
systematic uncertainty, uncorrelated between energy bins.

is not true that photons travel from the source to the detector along one of just two discrete
paths. In fact, when the time delay becomes comparable to the inverse photon frequency
(which for point-like lenses is equivalent to the photon wave length becoming comparable
to the Schwarzschild radius of the lens), wave optics effects become non-negligible. It is
then necessary to integrate the photon amplitude over the whole lens plane. This leads to
O(1) corrections to the interference pattern at the lower end of the photon energy spectrum.
Second, while the approximation of a point-like lens works for primordial black holes, it is
not satisfied for ultra-compact mini-halos, and even less so for NFW-like structures. We
have therefore computed femtolensing effects for generic power-law density profiles, and have
explicitly shown numerical results for the self-similar infall profile with ⇢(r) / r
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The most important correction in femtolensing of GRBs is coming from the non-negligible

size aS of the GRB source itself. In fact, we have argued that a GRB could only be treated
as point-like for the purpose of femtolensing if the photon emission region was smaller than
aS ⇠ 108 cm. And while estimates for the size of the emission region can vary by a few
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Figure 6. Future femtolensing sensitivity to primordial black holes compared to other probes. In
particular, we compare our projected limits (blue dashed contours) to limits based on extragalactic
background photons (EG�) from PBH evaporation [13], from the non-destruction of white dwarfs
(WD) [18], from microlensing searches by Subaru HSC [4], Kepler [57], MACHO [1], EROS [2], and
OGLE [3], from the dynamics of ultra-faint dwarf galaxies [58], and from CMB distortions due to
accretion onto PBHs [59]. (Stronger CMB limits are obtained if more aggressive assumptions on
accretion by PBHs are adopted [60].) The Subaru HSC limits are cut off at M ⇠ 10�11

M� because
below that mass, the geometric optics approximation employed in ref. [4] is not valid. We also do
not include neutron star limits [15] because of their dependence on controversial assumptions about
the DM density in globular clusters. We have taken the limits shown here from the compilation in
ref. [36]. In computing our projected limits, we have assumed the redshift of all GRBs in the sample
to be zS = 1, we have used the BAND model for the GRB spectrum, and we have assumed a 5%
systematic uncertainty, uncorrelated between energy bins.

is not true that photons travel from the source to the detector along one of just two discrete
paths. In fact, when the time delay becomes comparable to the inverse photon frequency
(which for point-like lenses is equivalent to the photon wave length becoming comparable
to the Schwarzschild radius of the lens), wave optics effects become non-negligible. It is
then necessary to integrate the photon amplitude over the whole lens plane. This leads to
O(1) corrections to the interference pattern at the lower end of the photon energy spectrum.
Second, while the approximation of a point-like lens works for primordial black holes, it is
not satisfied for ultra-compact mini-halos, and even less so for NFW-like structures. We
have therefore computed femtolensing effects for generic power-law density profiles, and have
explicitly shown numerical results for the self-similar infall profile with ⇢(r) / r

�9/4.
The most important correction in femtolensing of GRBs is coming from the non-negligible

size aS of the GRB source itself. In fact, we have argued that a GRB could only be treated
as point-like for the purpose of femtolensing if the photon emission region was smaller than
aS ⇠ 108 cm. And while estimates for the size of the emission region can vary by a few

– 18 –

NS

10�16M�
<latexit sha1_base64="bLdgy0o2W9xZbc1xvQ3th4jmd7M=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBiyWpoh6LXrwIFewHtDFsNtt26SYbdjeFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvCDhTGnH+bYKK6tr6xvFzdLW9s7unr1/0FQilYQ2iOBCtgOsKGcxbWimOW0nkuIo4LQVDG+nfmtEpWIiftTjhHoR7sesxwjWRvJt23WesjP3coLu/a4IhfbtslNxZkDLxM1JGXLUffurGwqSRjTWhGOlOq6TaC/DUjPC6aTUTRVNMBniPu0YGuOIKi+bXT5BJ0YJUU9IU7FGM/X3RIYjpcZRYDojrAdq0ZuK/3mdVPeuvYzFSappTOaLeilHWqBpDChkkhLNx4ZgIpm5FZEBlphoE1bJhOAuvrxMmtWKe16pPlyUazd5HEU4gmM4BReuoAZ3UIcGEBjBM7zCm5VZL9a79TFvLVj5zCH8gfX5A8iQkng=</latexit>

10�11M�
<latexit sha1_base64="stCX2rYkVyY8VwqBrV4GY25zAaw=">AAAB+XicbVDLSgMxFM34rPU16tJNsAhuLJMq6LLoxo1QwT6gHYdMJtOGZpIhyRTK0D9x40IRt/6JO//GtJ2Fth64cDjnXu69J0w508bzvp2V1bX1jc3SVnl7Z3dv3z04bGmZKUKbRHKpOiHWlDNBm4YZTjupojgJOW2Hw9up3x5RpZkUj2acUj/BfcFiRrCxUuC6yHvKzxGawPugJyNpArfiVb0Z4DJBBamAAo3A/epFkmQJFYZwrHUXeanxc6wMI5xOyr1M0xSTIe7TrqUCJ1T7+ezyCTy1SgRjqWwJA2fq74kcJ1qPk9B2JtgM9KI3Ff/zupmJr/2ciTQzVJD5ojjj0Eg4jQFGTFFi+NgSTBSzt0IywAoTY8Mq2xDQ4svLpFWrootq7eGyUr8p4iiBY3ACzgACV6AO7kADNAEBI/AMXsGbkzsvzrvzMW9dcYqZI/AHzucPwM+Scw==</latexit>



Primordial black hole formation



H
�1

<latexit sha1_base64="2mUk98xg3kOTYzWH8sg89yGa8EE=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWJIq6LLopssK9gFtLJPppB06mYSZSaGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W2vrG5tb26Wd8u7e/sGhfXTcVlEiCW2RiEey62NFORO0pZnmtBtLikOf044/uc/9zpRKxSLxqGcx9UI8EixgBGsjDWy7H2I9JpinjewpvXSzgV1xqs4caJW4BalAgebA/uoPI5KEVGjCsVI914m1l2KpGeE0K/cTRWNMJnhEe4YKHFLlpfPkGTo3yhAFkTRPaDRXf2+kOFRqFvpmMs+plr1c/M/rJTq49VIm4kRTQRaHgoQjHaG8BjRkkhLNZ4ZgIpnJisgYS0y0KatsSnCXv7xK2rWqe1WtPVxX6ndFHSU4hTO4ABduoA4NaEILCEzhGV7hzUqtF+vd+liMrlnFzgn8gfX5A1vNk3k=</latexit>

�
<latexit sha1_base64="JQcAzWaAuoYAXQfxggm9zL/KhUk=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDabTbt2sxt2J0Ip/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVpyppUCaU7ITFMcMmayFGwTqoZSULB2uHodua3n5g2XMkHHKcsSMhA8phTglZq9SImkPTLFa/qzeGuEj8nFcjR6Je/epGiWcIkUkGM6fpeisGEaORUsGmplxmWEjoiA9a1VJKEmWAyv3bqnlklcmOlbUl05+rviQlJjBknoe1MCA7NsjcT//O6GcbXwYTLNEMm6WJRnAkXlTt73Y24ZhTF2BJCNbe3unRINKFoAyrZEPzll1dJq1b1L6q1+8tK/SaPowgncArn4MMV1OEOGtAECo/wDK/w5ijnxXl3PhatBSefOYY/cD5/AJLajyA=</latexit>



PBH



�
<latexit sha1_base64="EMMHKZ/MhfYHZW8h7UFl5pv5DNQ=">AAAB73icbVBNS8NAEN3Ur1q/qh69BIvgqSR+oMeiF48V7Ae0oWw2k3bpZhN3J0IJ/RNePCji1b/jzX/jps1BWx8MPN6bYWaenwiu0XG+rdLK6tr6RnmzsrW9s7tX3T9o6zhVDFosFrHq+lSD4BJayFFAN1FAI19Axx/f5n7nCZTmsXzASQJeRIeSh5xRNFK3H4BAWqkMqjWn7sxgLxO3IDVSoDmofvWDmKURSGSCat1znQS9jCrkTMC00k81JJSN6RB6hkoagfay2b1T+8QogR3GypREe6b+nshopPUk8k1nRHGkF71c/M/rpRheexmXSYog2XxRmAobYzt/3g64AoZiYghliptbbTaiijI0EeUhuIsvL5P2Wd09r1/eX9QaN0UcZXJEjskpcckVaZA70iQtwoggz+SVvFmP1ov1bn3MW0tWMXNI/sD6/AEA449L</latexit>

P (�)
<latexit sha1_base64="TuaezjJNQVB5Iqhpw3TvcV8Wp18=">AAAB8nicbVDLSsNAFJ34rPFVdelmsAh1UxIf6LLoxmUF+4A0lMlk0g6dTMLMjVBCP8ONC0Xc+jXu/BsnbRbaeuDC4Zx7ufeeIBVcg+N8Wyura+sbm5Ute3tnd2+/enDY0UmmKGvTRCSqFxDNBJesDRwE66WKkTgQrBuM7wq/+8SU5ol8hEnK/JgMJY84JWAkr1Xvh0wAObPtQbXmNJwZ8DJxS1JDJVqD6lc/TGgWMwlUEK0910nBz4kCTgWb2v1Ms5TQMRkyz1BJYqb9fHbyFJ8aJcRRokxJwDP190ROYq0ncWA6YwIjvegV4n+el0F04+dcphkwSeeLokxgSHDxPw65YhTExBBCFTe3YjoiilAwKRUhuIsvL5POecO9aFw9XNaat2UcFXSMTlAduegaNdE9aqE2oihBz+gVvVlgvVjv1se8dcUqZ47QH1ifP2sSkAo=</latexit>

�c ⇠ 0.45
<latexit sha1_base64="OGVWnK4rjwBeV0mN2sAx/SL1av4=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFchURbdFl047KCfUATwmQybYfOTMLMRCyhv+LGhSJu/RF3/o2TNgttPXDhcM693HtPlDKqtOt+W2vrG5tb25Wd6u7e/sGhfVTrqiSTmHRwwhLZj5AijArS0VQz0k8lQTxipBdNbgu/90ikool40NOUBByNBB1SjLSRQrvmx4RpFGJfUQ5dp9Gshnbdddw54CrxSlIHJdqh/eXHCc44ERozpNTAc1Md5EhqihmZVf1MkRThCRqRgaECcaKCfH77DJ4ZJYbDRJoSGs7V3xM54kpNeWQ6OdJjtewV4n/eINPD6yCnIs00EXixaJgxqBNYBAFjKgnWbGoIwpKaWyEeI4mwNnEVIXjLL6+S7oXjXTrN+0a9dVPGUQEn4BScAw9cgRa4A23QARg8gWfwCt6smfVivVsfi9Y1q5w5Bn9gff4ADOmTJA==</latexit>

� ' 10�5

<latexit sha1_base64="VLXIoJdJurovOZB7q5sL978H7Jk=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AR3FhmpKLLohuXFewD2rFk0kwbmmTGJCOUoeCvuHGhiFu/w51/Y/pYaOuByz2ccy+5OWHCmTae9+3klpZXVtfy64WNza3tHXd3r67jVBFaIzGPVTPEmnImac0ww2kzURSLkNNGOLge+41HqjSL5Z0ZJjQQuCdZxAg2Vuq4B23NegIj2wR9QL53n52ejzpu0St5E6BF4s9IEWaodtyvdjcmqaDSEI61bvleYoIMK8MIp6NCO9U0wWSAe7RlqcSC6iCbnD9Cx1bpoihWtqRBE/X3RoaF1kMR2kmBTV/Pe2PxP6+VmugyyJhMUkMlmT4UpRyZGI2zQF2mKDF8aAkmitlbEeljhYmxiRVsCP78lxdJ/azkl0vl23KxcjWLIw+HcAQn4MMFVOAGqlADAhk8wyu8OU/Oi/PufExHc85sZx/+wPn8Ado5lMU=</latexit>



2

where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh

aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219 Ω0h ; (3)

Heq = 5.25 × 106 h3 Ω2
0H0 ; (4)

H0 = 1.75 × 10−61 h mPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh

ρend
+

1

4
ln

ρeq

ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.

Inflation

Rad
iat

ion
Matter

LambdaPresent horizon scale

ln a

Reheating

lnH   /a−1

FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection II D, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of

Adapted from Liddle and Leach, 2003

Matter PBH ln 1/kPBH

Reheating

Dark energy
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In the next section we review the relevant formulae for the calculation of the mass and abun-
dance of PBHs from the primordial spectrum of perturbations generated by inflation. In Section 3
we describe the inflationary set-up that we explore and provide the details of the method that we
use to compute the spectrum of primordial perturbations. In Section 4 we list the requirements
that a model must satisfy for successful inflation and generating PBHs that may account for the
DM of the Universe. In that section we also describe the strategy we follow to look for such models.
Then, in Sections 5 and 6 we discuss our results for the potentials (1.4) and (1.3), respectively. We
present our conclusions in Section 7.

2 Primordial black hole production

PBHs are formed when H becomes comparable to the wavelength of a sufficiently large primordial
density fluctuation, after inflation. Their mass (M) is assumed to be directly proportional to the
mass inside one Hubble volume at that time:

M = �MH = �
4

3
⇡⇢H

�3
, (2.1)

where the factor � depends on the details of the gravitational collapse. The precise relation between
M and MH is uncertain. Here we take � = 0.2, as suggested by the analytical model described
in [29] for PBHs formed during the radiation era, which is the situation we assume in what follows.
The relation between the comoving wavenumber, k, and the mass of the corresponding PBHs can
be obtained using the conservation of entropy, d(gs(T )T 3

a
3)/dt = 0, and the scaling of the energy

density, ⇢ / g(T )T 4, with the temperature, T , during the radiation era:

M = �MH(eq)

✓
g(Tf )

g(Teq)

◆1/2✓
gs(Tf )

gs(Teq)

◆
�2/3✓

k

keq

◆
�2

, (2.2)

where g(T ) and gs(T ) are the effective number of degrees of freedom in the radiation and the
entropy densities, respectively; and the subscripts eq and f refer to the times of matter-radiation
equality and PBH formation. The quantity MH(eq) = 4⇡⇢eqH�3

eq /3 is the horizon mass at equality.
Assuming g(T ) = gs(T ), which for our purposes is a good approximation even beyond electron-
positron annihilation, one gets:

M = 1018 g
⇣

�

0.2

⌘✓
g(Tf )

106.75

◆
�1/6✓

k

7⇥ 1013 Mpc�1

◆
�2

, (2.3)

where we have used that g(Teq) = 3.38, keq = 0.07⌦m h
2 Mpc�1 and we have written the result in

terms of the Standard Model (SM) number of relativistic degrees of freedom deep in the radiation
era, g(T ) = 106.75. Assuming the particle content of the SM, this expression then reduces to the
formula (1.1) of the Introduction.

In the context of the Press-Schechter model of gravitational collapse [45], the mass fraction in
PBHs of mass M , which we denote �(M), is given by the probability that the overdensity � is
above a certain threshold for collapse �c. Assuming that � is a random gaussian variable with mass-
(i.e. scale-) dependent variance, we have:

�(M) =
1p

2⇡�2(M)

Z
1

�c

d� exp

✓
��

2

2�2(M)

◆
. (2.4)
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phenomenological parametrizations of the relevant functions of time (cs, ✏,M). In Section 4 we
discuss the difficulty that arises for PBH formation within the context of the EFT of inflation. In
Section 5 we provide a toy model with ċs 6= 0 which displays several of the features discussed in
Section 3. In Section 6 we discuss PBH formation in solid inflation, we explain why the reheating
period after inflation is particularly important in this case and show, once more, the obstruction
posed by the consistency of the (slow-roll) EFT if one demands a large abundance of PBHs. We
present our conclusions in Section 7.

2 PBH formation from large primordial fluctuations

PBHs form after inflation ends whenever the comoving wavenumber, k, of a sufficiently large
density fluctuation becomes comparable to the Hubble scale, i.e. k ' aH, where a is the scale
factor of the Universe in a FLRW metric. The mass of the PBHs is approximately given by the
energy density contained inside a Hubble patch at the time of collapse: M / (4⇡/3)⇢/H3, where
⇢ is the average energy density of the Universe and the proportionality factor is . 1. For PBHs
formed during radiation domination this gives (see e.g. [44] and references therein):

M ' 10�15M�

✓
k

1014 Mpc�1

◆�2

. (2.1)

Given that H is approximately constant during inflation, this expression can be written in terms
of �N⇤, the number of e-folds elapsed from the time at which the scale k⇤ = 0.05 Mpc�1 (typically
used to measure the CMB parameters) exits the horizon during inflation [44]:

M ' M� e36.74�2�N
⇤
. (2.2)

The abundance of PBHs of a given mass is usually computed using an analogy of the Press-
Schechter formalism, according to which the mass fraction that collapses into PBHs of mass equal
or larger than M is

�(M) = (2⇡�2(M))�1/2

Z 1

�c

d� e��
2
/(2�

2
(M)) . (2.3)

This expression makes two important assumptions: that the collapse occurs over a threshold �c
and that the total density contrast � is a Gaussian variable. If they hold true and �c is known, what
ultimately determines �(M) is �2(M): the variance of the density contrast smoothed over a scale
R ⇠ 1/k. Clearly, �(M) is exponentially sensitive to �2(M) and therefore the density contrast
has to be very well-known to draw an accurate prediction from this expression. This implies that
the spectrum of primordial perturbations at horizon entry also has to be known precisely. In
radiation domination, the relation between � and the comoving curvature perturbation, R, that
is commonly used in the literature to connect the PBH abundance to the spectrum of R is

� =
4

9

✓
k

aH

◆
2

R . (2.4)

Then, the variance �2(M) is

�2(M) =
16

81

Z
dq
q

(qR)4�2

R(q)W (qR)2 , (2.5)

where �2

R(q) is the dimensionless power spectrum of R. For the smoothing window function,
a Gaussian: W (x) = exp(�x2/2), is usually chosen for convenience; although other choices are
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In the in6ationary scenario of the early Universe the
spectrum of the primordial perturbations is determined
by the potential V(y) of the scalar field y ("inflaton").
Note that in more complicated theories it can be sev-
eral infiatons (see for example [9—14]). In the most sim-
ple theory with smooth, featureless V(y) the spectr»m
very slightly depends on scale [15—20] and cannot produce
PBH's in a large amount. The requirement that the spec-
trum increases with a decrease of scale as a power leads
to special "trigonometric" potentials [4] and also cannot
explain the large PBH production (see above and [4]).
The introduction of two or more infiatons or taking the
potential to have one break [21] may produce the bump
in the spectrum, but such a type of spectrum possesses
additional power at large scales [10,21]. Thus normal-
ized at COBE data, spectra of this type seem not to
produce a large amount of PBH's. From this discussion
it follows that the most natural way for large PBH pro-
duction to occur is to introduce the specially engineering
local feature to the infiation potential at PBH scales. Al-
though the known particle physics may not support such
features, the possible discovery of PBH's may turn the
problem around and demand the existence of such fea-
tures in any realistic particle physics. The purpose of our
paper is the following. We shall demonstrate that an in-
fiation potential V(y) leading to the formation of a great
number of PBH's must have a feature of the "plateau"-
type in some range yq & y & y2, and we shall calculate
the mass spectrum of PBH's for such a V(y).
Qualitatively the conclusion about the plateau in V(y)

follows from a well-known estimate for the spectrum of
primordial metric fiuctuations in the model of chaotic
infiation ass~+ning the friction-dominated and slow-roll
conditions, (y( « H~y( and y && V(y), respectively.
Here the overdot denotes differentiation with respect to
time, and H is the expansion rate. The power spectrum
P(k) in this case can be written as [9]

V3
P(k) k

k=aH(~)

0'
0

FIG. l. Schematic representation of the potential V(y) of
the scalar field y (infiaton). The potential has a plateau in
the range y~ ( y & yq and is of the power-law type outside
of this range. The breaks of the potential are smoothed out
in small ranges Ayq &( yq and Ayq &( yq around p~ and y2
correspondingly.

sky [21] (for a potential with one break), and Demiansky,
Ivanov, and Novikov [22] for any number of breaks. Sec.
III is devoted to the analysis of the mass spectrum of the
PBH's. In Sec. IV we discuss the possible role of the
"gas" of PBH's in the origin of the large-scale structure
of the Universe, and summarize the main conclusions.

II. SPECTRUM OF SCALAR METRIC
PERTURBATIONS IN THE INFLATIONARY
SCENARIO W'ITH A "PLATEAU" IN THE

POTENTIAL V(y)

The simple approach to the in6aton based on one
scalar field y is to specify the physics by choosing an
appropriate form for V(y) and assuming the friction-
dominated and slow-roll conditions [9]:

Iyl «»lyl, (y)'«2V(y),
where H(y) is the value of the Hubble parameter at the
moment when the Universe has the value p of the in-
fiaton field and a is the scale factor. If the potential
V(y) has a plateau in the range yq & y & y2, V(y) =
const and BV/By ~ 0, then the spectral amplitude P(k)
is strongly increased [see the formula (1)]. Outside the
range yq & y & y2, V(y) has a standard (for example
a power law) shape. In the range k « k2 and k )) kq,
where k; = a(y;)H(y;), the corresponding P(k) has also
a standard shape [for example it can be the Harrison-
Zeldovich spectr»~ P(k) = A2k, with A = 5 x 10 s].
The structure of the paper is the following. In Sec. II

the mo+Rcation of the in8aton scenario with the plateau-
type peculiarity in V(y) is discussed, and we calculate the
distortion of the spectr»m of the primordial metric Buc-
tuations due to this peculiarity. For simplicity we shall
use the simple approximation with two breaks for poten-
tial form (see Fig. 1). The spectrum of adiabatic pertur-
bations in such type theories was calculated by Starobin-

where H = a/a; a(t) is the scale factor. In this regime
Fourier components of the scalar metric perturbations
are b-correlated random values with a Gaussian distribu-
tion.
Our task is to increase the spectral amplitude in some

range k2 ( k ( kq, where k is a wave number, without
changing the standard spectrum of perturbations outside
this range. We propose to introduce the potential V(y) of
the inaaton p, which is depicted in Fig. 1. This potential
has a plateau in the range yq & y ( y2 and is a power-
law type outside of this range.
There are two breaks of the potential at p = yq and

y = y2. We suppose that these breaks are smoothed out
in small ranges Ayg &( pg and Ap2 (& (p2 around yg and
y2 correspondingly (see Fig. 1).
The conditions (2) are violated in these ranges.

Starobinsky has pointed out [10] that this violation re-
sults is a nonmonotonic spectrum of perturbations. In
the vicinities of breaks of the potential V(y), but outside
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We discuss the hypothesis that a large (or even a major) fraction of dark matter in the Universe
consists of primordial black holes (PBH's). PBH's may arise &om adiabatic quantum Suctuations
appearing during inSation. We demonstrate that the inSation potential V(rp) leading to the for-
mation of a great number of PBH's should have a feature of the "plateau"-type in some range
y~ & y g yq of the inaation Beld y. The mass spectrum of PBH's for such a potential is calculated.
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I. INTRODUCTION

The nature of dark matter (DM) in the Universe is one
of the greatest puzzles of modern cosmology. The DM
may consist of baryons, weakly interacting massive exotic
particles predicted by grand»nified theory (GUT), pri-
mordial black holes, or some combination of these species.
In this paper we shall consider the hypothesis that the

DM consists mainly of primordial black holes (PBH's).
(The earlier works on PBH's are [1,2] see also [3] and [4].)
Recently the possible discovery of microlensing of stars

in the Large Magellanic Cloud by massive compact halo
objects (MACHO's) with probable masses 0.1 solar
mass was reported [5,6]. It was supposed (among other
possibilities) that such objects might be black holes. We
would like to emphasize that black holes with masses
of the order of 0.1MD can only be of primordial origin.
Thus, this discovery gives additional ar@|~ents for con-
sidering the possibility of the PBH nature of DM.
Let us consider the conditions for PBH formation in

the early Universe. The simple estimates (see, for exam-
ple, [4,7]) show that for the formation of PBH's with a
total mass density close to the critical one (OpsH = 1),
and with a mass MpgH around 0.1MG one needs a
rms amplitude h, ,(0.1Mo) of the Gaussian distribu-
tion of the scalar metric auctuations of the order of
h;" (0.1M~) 0.06. This estimate depends on OpsH and
MpBH only logarit&rnically. For example, h;"~ = 0.04 at
10 g and her't = 0.08 at 10 Mo. On the other hand, the

Cosmic Background Explorer (COBE) measurements of
the anisotropy of the cosmic microwave background ra-
diation and other satellite, balloon, and ground-based
radio telescope measurements, and also deep surveys of
galaxy distributions, strongly indicate that on scales of
galaxies and greater scales (up to the horizon scale) the
amplitude of b,~, was significantly less, probably around
10 -5 x 10
It is worth noting that COBE data are compatible

with a power spectral' of the adiabatic perturbations
P(k) oc k" with n = 1.15+a'ss (see [8]). This means
that a direct extrapolation of the COBE data to smaller
scales even with the maximal possible value n 1.6, can
give b, , great enough for the formation of an essential
nnmber of black holes only for MpsH less than 10 g
[4]. However, such small PBH's would have evaporated a
long time ago and could not contribute to DM [1].~ No-
tice that if we believe that the main part of a PBH has
some specific mass M„ then the spectrum of the primor-
dial fiuctuations must have a decrease or a cutoff from
the side of smaller mass at MpsH M, .
Thus, for the hypothesis of PBH DM one needs the fol-

lowing behaviors of the spectrum of the primordial scalar
metric perturbations. The rms amplitude must be the or-
der of 10 at large scales, must increase by a factor 104
at the scales corresponding to the masses of the PBH,
and must decrease at smaller scales.

Permanent address.

Note that if one supposes that evaporating PBH's leave
stable Planck mass relics, these relics could contribute to DM
and constrain the spectrum [32], but we shall not discuss this
possibility helot.
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Figure 2. Schematic representation of the kind of inflationary potential required to fit the CMB data,
produce PBHs and reheat the Universe after inflation.

that is approximately given by4

As =
1

24⇡2M2
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, (1.2)

V and V
0 are the inflationary potential and its first derivative and MP = 1/

p
8⇡G = 2.8435 ⇥

1018 GeV is the reduced Planck mass. Therefore, the mass of the PBHs is determined by the
dynamics of the Universe during inflation and can be linked to the number of e-folds of expansion
elapsed since the largest observable distance today became equal to H�1 during inflation.

The CMB constrains As to be of the order of 10�9 at those scales, whereas the values required
for creating PBHs are much larger, typically As ⇠ 10�3–10�2. If we assume that the potential
V is nearly constant during inflation (which is indeed the case in standard slow-roll, leading to a
quasi-de Sitter universe), the expression (1.2) tells that the required enhancement of As may be
achieved by significantly reducing the value of the slow-roll parameter ✏V . Since this parameter
quantifies the flatness of the potential, PBHs are produced provided that the rolling field encounters
a sufficiently flat region of the potential during the course of inflation, which generates a peak in
the spectrum of primordial fluctuations. To the best of our knowledge, this idea was first proposed
in [35], where it was pointed out that a single-field inflationary potential that produces a PBH
population capable of accounting for the DM must feature a near-inflection point.

A renormalizable potential that can have an inflection point is (see e.g. [36, 37]):

V (�) = a2 �
2 + a3 �

3 + a4 �
4
, (1.3)

where the ai can be considered constant. This potential vanishes at its absolute minimum in � = 0,
in agreement with the fact that the current cosmological constant is negligible in comparison with

4We will later show that this approximation cannot be safely used in the cases of interest, and we will indeed
require a more accurate expression. However, it is sufficient to illustrate well the point we want to convey now.
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With this choice of renormalization scale, a straightforward redefinition of the coeffi-

cients of (2.4) allows to write this expression as follows:

λ(φ) = λ(φ0) +
1

2
c1(φ0) log

φ2

φ20
+

1

8
c2(φ0)

(
log

φ2

φ20

)2

+ · · · , (2.5)

where the coefficients λ0(φ0), c1(φ0), . . . , are functions of the original λ̃0(µ), c̃1(µ), etc.

evaluated at µ0. Thus, the equations (2.1) are solved at φ = φ0 if

c2(φ0) = −4 c1(φ0) = 16λ(φ0) . (2.6)

The reason for the relative signs in (2.6) can be easily understood. Since the potential

has to be positive at the plateau, i.e. around the inflection point φ0, the effective quartic

coupling λ0(φ0) has to be positive. A negative first derivative of λ(φ) with respect to log φ

at the plateau, i.e. c1(φ0), tends to drive the effective quartic coupling to negative values,

flattening the potential. In order to avoid the appearance of an instability, c2(φ0) has to

be positive.

Using the conditions (2.6) into the expression (2.5), the effective potential becomes

V (φ) ≃ λ(φ0)

4!

(
1− 2 log

φ2

φ20
+ 2

(
log

φ2

φ20

)2

+ · · ·
)
φ4 , (2.7)

where the ellipsis stand for higher powers of the logarithm, coming from higher order loops,

which we are neglecting. Therefore, we see that a plateau may arise from the interplay of the

one- and two-loop corrections to the effective potential. Actually, the expression (2.7) shows

that a plateau can arise already at the two-loop leading log level, as we will discuss next.

Another way of understanding the potential is the following. Starting anew with the

Coleman-Weinberg expansion (2.3), we choose the renormalization scale to be µ = ε φ and

keep only the terms involving powers of φ4. With this choice, the logarithms are effectively

resummed into an effective quartic coupling λ(φ), which multiplies φ4, as we anticipated

in (2.2). This effective coupling λ(φ) includes the quartic terms at all orders, arising from

the the Coleman-Weinberg potential in the large field limit. Then, we expand λ(φ) around

the location of the plateau, φ0, obtaining an expression analogous to (2.5), i.e.

λ(φ) = λ(φ0) +
1

2
βλ(φ0) log

φ2

φ20
+

1

8
β′λ(φ0)

(
log

φ2

φ20

)2

+ · · · . (2.8)

This shows explicitly that the coefficients c1, c2, etc. of (2.5) are related to the beta function

of the effective quartic coupling,

βλ =
∂λ

∂ log µ
, (2.9)

and its logarithmic derivatives, indicated with primes in (2.8). Therefore, the condi-

tions (2.6) can be interpreted in terms of the variation of the beta function of the effective

quartic coupling at the plateau. The need of including two loops to describe a plateau

also becomes automatically apparent in this way, since β′λ is of order two in the loop ex-

pansion. By construction, evaluating the effective quartic coupling λ at φ0 corresponds to

– 5 –

� (µ0) ⇠ |�� (µ0)| ⇠ �0
� (µ0)

<latexit sha1_base64="WzuMDuTWhsfQCf9mb00b+SmZUVc="></latexit>



�EGB

Femto

WD

NS

HSC EROS
UFD

WB

X-rays

CMB

1016 1020 1024 1028 1032 1036
10-6
10-5
10-4
10-3
10-2
10-1
1
10-16 10-12 10-8 10-4 10 104

MPBH [g]

�
P
B
H
/�
D
M
MPBH [M�]

Figure 1. Fractional abundance of PBHs for the first example in table 1 (red curve) and observational
bounds (for a monochromatic mass spectrum). The constraints are from measurements of the extragalac-
tic gamma-ray background [17], femtolensing of gamma-ray bursts (Femto) [18], white dwarfs explosion
(WD) [19], neutron star capture (NS) [20], microlensing from Subaru (HSC) [21] and EROS/MACHO [22],
wide binaries observations (WB) [23], dynamical heating of ultra-faint dwarf galaxies (UFD) [24, 25] (we
have taken the solid back line in figure 4 of [24]), CMB measurements [26, 27] and radio and X-rays ob-
servations [28]. We show with a solid line the conservative constraints from Subaru while the dashed line
implies an extrapolation of the number of stars from the HST PHAT catalog (see figure 21 in [21]). For
the (orange) constraints from CMB anisotropies we also show conservative (solid) and stronger (dashed)
bounds (see figure 14 from [26]). The magenta lines refer to the CMB constraints derived in [27] assuming
that PBHs form with an accretion disk (dashed and dotted lines refer respectively to the blue and red areas
in their figure 4).

degrees of uncertainty, related in some cases to assumptions about the astrophysical parameters
involved in deriving each of them. The bounds that are particularly sensitive to astrophysical
uncertainties have been indicated in the plot with dashed/dotted lines.

The vast range of possible PBH masses is limited from below due to Hawking radiation, since
very light PBHs (. 10�17

M�) would have entirely evaporated by now [31]. At the large-mass end,
several upper bounds on PBHs as DM exist. Specifically, the dynamics of a star cluster in Eridanus
II [24] and stars in other dwarf galaxies [25] disfavour the possibility that the DM of the Universe
could be in the form of BHs of a few tens of M�. The same mass range is also constrained by radio
and X-ray observations, since emissions in these frequencies would be produced by the accretion of
interstellar gas onto the PBHs [28]. A severe upper bound comes from the non-observation of BH
accretion effects on the Cosmic Microwave Background (CMB); see [32] for an early analysis. This
was used in late 2016 to exclude PBHs of masses & 102M� as the main component of the DM [26].
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We consider the possibility that the majority of dark matter in our Universe consists of black holes of pri-
mordial origin. We determine the conditions under which such black holes may have originated from a
single-field model of inflation characterized by a quartic polynomial potential. We also explore the effect
of higher-dimensional operators. The large power spectrum of curvature perturbations that is needed for
a large black hole abundance sources sizable second order tensor perturbations. The resulting stochastic
background of primordial gravitational waves could be detected by the future space-based observatories
LISA andDECIGOor –as long aswe give up on the darkmatter connection– by the ground-basedAdvanced
LIGO-Virgo detector network.

I. MOTIVATIONS ANDMAIN RESULTS

Thepossibility that all darkmatter in ourUniverse consists of black holes of primordial origin (PBHs) is exciting. This
is a viable idea in themasswindow 10

17 . MPBH [ g ] . 10
21, as recently discussed in refs. [1–3]. Assuming themajority

of dark matter (or at least a sizable fraction) to be comprised of PBHs, in this work we will investigate the mechanism
that is responsible for its generation. We consider the case in which the inflaton potential features an approximate sta-
tionary inflection point a few e-folds before the end of inflation. As it is well-known, in this case it is possible to have a
peak in the power spectrum of comoving curvature perturbations at scalesmuch smaller than those probed by cosmic
microwave background (CMB) anisotropymeasurements, 0.005 . k [Mpc

�1
] . 0.2. If these fluctuations have a large

enough amplitude, they may trigger the collapse of Hubble-sized regions into PBHs upon horizon re-entry during the
radiation-dominated era; see ref. [4] for a recent review. What kindof inflatonpotential possesses the above-mentioned
property? An early attempt in the context of single-field inflation was already put forward for the production of PBH
dark matter in ref. [5]. More recently, a model based on a ratio of polynomials was proposed in [6], initiating a search
for single-field inflationmodels with an approximate stationary inflection point for PBH formation. Popular examples
that can accommodate this feature aremotivated by string theory and supergravity, such as axion-like potentials [7, 8].
Other examples are potentials constructed within the framework of type IIB flux compactifications [9] or supersym-
metric ↵-attractor models [10]. In the context of more standard (bottom-up) particle physics models, an interesting
possibility is offered by the case in which the approximate stationary inflection point has a radiative origin [11]. In this
case, the inflaton � has a classical potential that is dominated by the quartic term while at the quantum level an ap-
proximate stationary inflection point appears due to a precise balance between logarithmic and double-logarithmic
corrections. Embedding this last idea in the context of PBH formation [12] requires the addition of a non-minimal, but
completely general, coupling to gravity [13] that flattens the potential at large field values and allows us to fit the CMB
observations. In this note, we are interested in the simplest possible scenario, inwhich the potential is themost general
renormalizable one for a real scalar �:

V (�) = a2�
2
+ a3�

3
+ a4�

4 (1)

and the flattening at large field values is also due to the non-minimal quadratic coupling of � to the Ricci scalar [12].
Let us anticipate our results straight away in fig. 1. In the left panel, we show the fraction of the dark matter in the

form of PBHs as a function of their mass MPBH. We find acceptable inflationary solutions in which the majority of
darkmatter –in the case of fig. 1 up to a fraction of order 70%– is comprised of PBHs (region shaded in green with solid
boundary). The observationally excluded regions are depicted with diagonal vertical meshes and refer to limits based
onextragalacticbackgroundphotons fromPBHHawkingevaporation [14] (left side, red) andmicro-lensing searches [1]
(right side, orange). As far as the bound based onHawking evaporation is concerned, we assume Schwarzschild PBHs.
See ref. [15] for an extension of this bound including a non-zero spin distribution, ref. [16] for a recent re-analysis and
future prospects, and refs. [17–22] for additional constraints based on Hawking evaporation. Furthermore, it is worth
noticing that the Hawking evaporation bound reproduced in fig. 1 is strictly applicable only for amonochromatic PBH
mass function. However, our PBH mass distribution is well described by a log-normal function with width � ' 0.25,
and for such small value of � themonochromatic bound can be considered as approximately correct (see discussion in
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FIG. 1: Color code in this figure as in the rest of the paper. Colored regions with solid/dashed boundaries: signals. Gray region without
boundary and central dot-dashed line: stochastic gravitational wave background from binary black holes and binary neutron stars
with its uncertainty. Colored regions with dotted boundaries: projected experimental/observational sensitivities. Colored regions with
solid boundaries and diagonal meshes: existing bounds. Left panel: Fractional abundance of PBHs with respect to the dark matter
abundance as a function of the PBHmass for the parameter values discussed in the text, with and without higher-dimensional oper-
ators (HDO). Right panel: Fraction of the energy density in gravitational waves relative to the critical energy density of the Universe as
a function of the frequency (again, without and with HDO).

ref. [23]). The region shaded in pink with dashed boundary refers to a projected sensitivity of femto-lensing searches
assuming 20 suitable gamma-ray burst events [2].
As we shall discuss in section III, all the inflationary solutions that are capable of producing a sizable fraction of the

dark matter in the form of PBHs obtained by means of the potential in eq. (1) are characterized by a spectral index at
CMB scales ns . 0.95. At face value, this number is slightly smaller compared to what is preferred by cosmological
measurements, namely ns ' 0.96, thus creating a 3� tension with the latest Planck constraints [24]. As it was already
pointed out in [12], and as we shall argue in more detail in section III, this is not necessarily enough to rule out our
solutions but it might be the indication (assuming the correctness of eq. (1)) of some non-standard cosmology beyond
the base ⇤CDMmodel. However, having a 3� tension may be unsettling, and invoking a non-standard cosmological
setup may not be the most appealing solution. For this reason, we will discuss in section IV a simple –and arguably
natural– way of circumventing the aforementioned ns tension. The latter is based on just a slight deformation of the
potential in eq. (1), by including higher-dimensional operators (HDO) of the form

V (�) = a2�
2
+ a3�

3
+ a4�

4
+

X

n>5

an�
n . (2)

We shall argue that a natural organization of the series of HDO leads to good inflationary solutions with a value of the
spectral index in perfect agreement with Planck data. In fact, a single five-dimensional operator with a naturally small
coefficient and negligible higher-order terms is sufficient. We show the abundance of PBHs generated by one of these
solutions in the left panel of fig. 1 (region shaded in cyan with dashed boundary). In this case we find that having 100%
of dark matter in the form of PBHs is in excellent agreement with CMB observations. It is also worth noticing that this
population of PBHs satisfies the bound discussed in refs. [20, 21] based on the observation of the 511 keV gamma-ray
line from positrons in the Galactic center, which is stronger than the Hawking evaporation bound obtained using the
isotropic gamma-ray background.
We also discuss gravitational wave signatures. In the right panel of fig. 1 –where we plot the gravitational wave en-

ergy density in units of the critical energy density as a function of frequency– we show the gravitational wave signal
that comoving curvature perturbations generate as a second-order effect [25–27]. We superimpose the signal (region
shaded in green with solid boundary for the quartic example in the left panel) on the expected sensitivity curves of
the future gravitational wave detectors LISA (assuming the C1 configuration, see ref. [28]), DECIGO [29] and MAGIS-
100 [30] (shaded regions with dashed boundaries, see caption for details). We find that the signal could be detected by
LISA and DECIGO, and it stands out over the stochastic gravitational wave background from binary black holes (BBH)

GB, Rey, Taoso, Urbano, 2020
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FIG. 3: Left panel: Inflaton velocity (solid red, units given on the left-side y-axis) as a function of the (canonically normalized) inflaton
field value (bottom x-axis). Physical potential (dashed blue, units given on the right-side y-axis) as a function of the (canonically
normalized) inflaton field value. Right panel: Power spectrum of comoving curvature perturbations as a function of the comoving
scale k. We show the result obtained by solving numerically the Mukhanov-Sasaki equation (solid black) and the approximation
given by eq. (9) (dashed red).

least from 50 to 60 e-folds of inflation are needed between the time that the largest observable scale, k ⇠ 0.001Mpc�1

exited theHubble horizon and the time at which inflation ended. In the numerical solution explored in this section, we
count�N0.001

e
' 55.4 e-folds. When the inflaton draws near the approximate stationary inflection point, its velocity

suddenly decreases almost to zero. The inflaton almost stops close to the approximate stationary inflection point of
the potential but it has just enough inertia to overcome the barrier. This part of the dynamics is called ultra-slow roll
(USR) phase [36]. It corresponds to the vertical region shaded in pink, which lasts for approximately�NUSR ' 2.45
e-folds. The USR phase is formally defined by the condition ⌘H > 3 on the Hubble parameter ⌘H defined by

✏H ⌘ �
Ḣ

H2
=

1

2

✓
dh

dNe

◆2

, ⌘H ⌘ �
Ḧ

2HḢ
= ✏H �

1

2

d log ✏H
dNe

. (8)

It is also possible to introduce the so-called Hubble-flow parameters defined (for i > 1) by ✏i ⌘ ✏̇i�1/(H✏i�1), with the
first parameter of the series given by ✏0 ⌘ 1/H . In this case we have ✏1 = ✏H and ✏2 = 2✏H � 2⌘H , and, alternatively,
the USR phase can be identified with the region where ✏2 < �6.
Thepresenceof theUSRphaseboosts significantly thepower spectrumof comoving curvatureperturbations,PR(k).

At the linear order in the Hubble parameters (in the slow-roll approximation), we have

PR(k) =
H2

8⇡2✏H

✓
k

aH

◆�4✏H+2⌘H

= As

✓
k

aH

◆ns�1

, (9)

with spectral index ns = 1 � 4✏H + 2⌘H and amplitude As = H2/8⇡2✏H . Although these expressions are only ap-
proximate, they indicate that when the inflaton almost stops at the approximate stationary inflection point (where it
accumulates almost 5 e-folds and we have ✏H / (dh/dNe)

2
' 0) a sudden increase of PR(k) / 1/✏H occurs. This

happens for comoving scales of order k ⇠ 10
14 Mpc�1. As it is well known, eq. (9) is not enough to fully describe the

power spectrum at small scales in the presence of an USR phase [12, 37–39]. To account accurately for the dynamics,
we solve numerically, for each mode k, the Mukhanov-Sasaki equation in Fourier space

d2uk

dN2
e

+ (1� ✏H)
duk

dNe

+


k2

a2H2
+ (1 + ✏H � ⌘H)(⌘H � 2)�

d

dNe

(✏H � ⌘H)

�
uk = 0 , (10)

where uk is related to the gauge-invariant comoving curvature perturbation R by means of the relation (in position
space)R = �u/z, with z = a(dh/dNe). We impose standard Bunch-Davies initial conditions. The power spectrum of
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In what follows, we will assume that ✏H < 3. From the previous equation we see that ⌘H 6 3 are the possible values
attainable for a monotonically increasing potential, with ⌘H = 3 corresponding, for instance, to the presence of a
stationary inflection point. Therefore, in the presence of an approximate stationary inflection point, the USR phase
⌘H > 3 is confined to the small region in between the local minimum and the subsequent maximum of the potential
(see the pink strip in the left panel of fig. 3), where the second term on the right side of eq. (12) becomes positive and
enhances ⌘H . As far as the behavior of perturbations in eq. (10) is concerned, however, the condition ⌘H > 3 is not
immediately illuminating. It is more instructive to look at the equation for the comoving curvature perturbation in
Fourier spaceRk for the mode with comoving wavenumber k, which we write in the exact form

d2Rk

dN2
e

+ (3 + ✏H � 2⌘H)
dRk

dNe

+
k2

a2H2
Rk = 0 . (13)

This is the differential equation of a damped harmonic oscillator. After horizon crossing (k = aH) during inflation,
and for a standard positive friction term, the solution to eq. (13) freezes exponentially fast to a constant value. This is
because in the limit k2/a2H2

⌧ 1, in which we neglect the last term in eq. (13), the solution has first derivative given
by dRk/dNe / e�(3�2⌘H)Ne (assuming ✏H ⌧ |⌘H | and the latter constant) withNe the number of e-folds after horizon
crossing. However, if the condition 2⌘H � ✏H > 3 is met during the subsequent evolution of the inflaton field, a phase
during which the friction term is negative (driving force) takes place. In such a situation, an exponential growth (or
suppression) of themode is possible. To better illustrate this point, let us define⇥ ⌘ 3+ ✏H � 2⌘H and ✏2

k
⌘ k2/a2H2.

We indicate with Nin (Nend) the e-fold time at which the negative friction phase starts (ends). For simplicity, we take
⇥ to be a negative constant in this range, and assume a constant ✏2

k
equal, for instance, to the value it takes at Nin.

We also impose the boundary conditionsRk(Nin) = R0 and dRk/dNe(Nin) = 0, which simulate a mode freezing at
some early time before the negative friction phase. These approximations are enough for a qualitative understanding
of eq. (13).3 Accordingly, we find the solution

R̃k(Ne) =
R0e�⇥(Ne�Nin)/2

p
⇥2 � 4✏2

k| {z }
e�⇥Ne/2 growth if ⇥<0

⇢q
⇥2 � 4✏2

k
cosh


(Ne �Nin)

2

q
⇥2 � 4✏2

k

�
+⇥ sinh


(Ne �Nin)

2

q
⇥2 � 4✏2

k

�

| {z }
Non�oscillating superposition of e

±
p

⇥2�4✏2
k
Ne/2

functions if ⇥2�4✏
2
k
>0

�
.

(16)

To avoid confusion, let us remark that the real function R̃k defined by the solution above must be considered as a
proxy for either the real or the imaginary part of the actualRk (which is a complex variable). Even though the solution
in eq. (16) is not fully representative of the actual numerical results, it is possible to extract some interesting insights. We
will now examine the qualitative behavior of this solution in four different regimes, ✏2

k
⌧ ⇥

2/4, ✏2
k
. ⇥

2/4, ✏2
k
& ⇥

2/4,
and ✏2

k
� ⇥

2/4. Note that in the last two cases we must consider a non-zero initial velocity. 4

� For modes with ✏2
k
⌧ ⇥

2/4, we have the approximation

R̃k ⇡ R0


1�

✏2
k

⇥2
e�⇥(Ne�Nin)

�
, (18)

3 A slightly better approximation can be obtained if we rewrite eq. (13) in the form

d
2Rk

dN2
e

+⇥
dRk

dNe

+ ✏̄
2

k
e
�2NeRk = 0 , with ✏̄

2

k
⌘

✓
k

k⇤
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with k⇤ = 0.05 Mpc�1 the pivot scale at which NCMB = 0 where we fit CMB observables and H⇤ ⌘ H(NCMB). In this approximation,
H = Hin is constant during the negative friction phase (equal to the value it takes atNin). Eq. (14) admits the general solution
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with c1,2 integration constants, J↵(x) Bessel functions of the first kind and � the Euler’s gamma function. However, considering this solution
does not really add much to the qualitative results based on the simpler approximation in eq. (16), which we have thus preferred for the main
discussion. Furthermore, Bessel functions cannot be represented in general throughelementary functions, and considering the solution in eq. (15)
as analytical would be a bit like cheating.

4 More precisely, in these cases we solve eq. (16) with a non-zero initial condition for the velocity dRk/dNe(Nin) = �R 6= 0 so that we have
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The precise value of �R is not relevant for the validity of our discussion.
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FIG. 3: Left panel: Inflaton velocity (solid red, units given on the left-side y-axis) as a function of the (canonically normalized) inflaton
field value (bottom x-axis). Physical potential (dashed blue, units given on the right-side y-axis) as a function of the (canonically
normalized) inflaton field value. Right panel: Power spectrum of comoving curvature perturbations as a function of the comoving
scale k. We show the result obtained by solving numerically the Mukhanov-Sasaki equation (solid black) and the approximation
given by eq. (9) (dashed red).

least from 50 to 60 e-folds of inflation are needed between the time that the largest observable scale, k ⇠ 0.001Mpc�1

exited theHubble horizon and the time at which inflation ended. In the numerical solution explored in this section, we
count�N0.001
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' 55.4 e-folds. When the inflaton draws near the approximate stationary inflection point, its velocity

suddenly decreases almost to zero. The inflaton almost stops close to the approximate stationary inflection point of
the potential but it has just enough inertia to overcome the barrier. This part of the dynamics is called ultra-slow roll
(USR) phase [36]. It corresponds to the vertical region shaded in pink, which lasts for approximately�NUSR ' 2.45
e-folds. The USR phase is formally defined by the condition ⌘H > 3 on the Hubble parameter ⌘H defined by
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It is also possible to introduce the so-called Hubble-flow parameters defined (for i > 1) by ✏i ⌘ ✏̇i�1/(H✏i�1), with the
first parameter of the series given by ✏0 ⌘ 1/H . In this case we have ✏1 = ✏H and ✏2 = 2✏H � 2⌘H , and, alternatively,
the USR phase can be identified with the region where ✏2 < �6.
Thepresenceof theUSRphaseboosts significantly thepower spectrumof comoving curvatureperturbations,PR(k).

At the linear order in the Hubble parameters (in the slow-roll approximation), we have

PR(k) =
H2

8⇡2✏H

✓
k

aH

◆�4✏H+2⌘H

= As

✓
k

aH

◆ns�1

, (9)

with spectral index ns = 1 � 4✏H + 2⌘H and amplitude As = H2/8⇡2✏H . Although these expressions are only ap-
proximate, they indicate that when the inflaton almost stops at the approximate stationary inflection point (where it
accumulates almost 5 e-folds and we have ✏H / (dh/dNe)

2
' 0) a sudden increase of PR(k) / 1/✏H occurs. This

happens for comoving scales of order k ⇠ 10
14 Mpc�1. As it is well known, eq. (9) is not enough to fully describe the

power spectrum at small scales in the presence of an USR phase [12, 37–39]. To account accurately for the dynamics,
we solve numerically, for each mode k, the Mukhanov-Sasaki equation in Fourier space
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where uk is related to the gauge-invariant comoving curvature perturbation R by means of the relation (in position
space)R = �u/z, with z = a(dh/dNe). We impose standard Bunch-Davies initial conditions. The power spectrum of
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field value (bottom x-axis). Physical potential (dashed blue, units given on the right-side y-axis) as a function of the (canonically
normalized) inflaton field value. Right panel: Power spectrum of comoving curvature perturbations as a function of the comoving
scale k. We show the result obtained by solving numerically the Mukhanov-Sasaki equation (solid black) and the approximation
given by eq. (9) (dashed red).
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FIG. 2: Left panel: Fraction of theUniverse’smass in PBHs at their formation time as a function of the PBHmass. The bounds are taken
from ref. [14]. Right panel. Fraction of the energy density in gravitational waves relative to the critical energy density of the Universe
as a function of the frequency. The inflationary solution shown in this plot provides a good fit to all cosmological observables at CMB
scales and can be obtained either with the quartic polynomial potential or with its generalization that includes HDO. In the first case,
the solution is characterized by a spectral index ns ' 0.955 while in the second case we find ns ' 0.965, the latter in full agreement
with the central value indicated by Planck data.

and binary neutron stars (BNS), which has been computed following ref. [31].
The position of the peak amplitude of the power spectrum of curvature perturbations, the peak height in the PBH

mass distribution and the frequency of the peak of the gravitational wave signal are related by:
✓
MPBH

1017 g

◆�1/2

'
k

2 · 1014 Mpc
�1

'
f

0.3Hz
. (3)

A peak in the power spectrum of curvature perturbations at k ' 2 · 10
16 Mpc�1 generates a gravitational wave signal

with frequency f ' 30 Hz. This is an interesting frequency for the ground-based Advanced LIGO-Virgo detector net-
work, which already placed important limits on the energy density in gravitational waves by combining data from the
first (O1) and second (O2) observing runs [32] (region shaded in yellow with diagonal meshes and solid boundary in
fig. 1; we also show the design sensitivity with dashed boundary). A gravitational wave signal at frequency f ' 30 Hz
would correspond to PBHs withmassMPBH ' 10

13 g. These PBHs cannot constitute the observed abundance of dark
matter since they would have completely evaporated through the emission of Hawking radiation from their formation
to the present day. Nevertheless, a population of PBHswithmass aroundMPBH ' 10

13 g, although extinct today, is still
subject to experimental constraints associated with the effects of their evaporation on big bang nucleosynthesis [14].
In the left panel of fig. 2we consider the case inwhich the PBHmass distribution peaks atMPBH ' 10

13 g. We show the
corresponding bounds in terms of the quantity �(MPBH)which is related to the fraction of theUniverse’smass in PBHs
at their formation time (see ref. [14] for details). In the right panel of fig. 2 we show the corresponding second-order
gravitational wave signal. In agreement with the scaling of eq. (3), the frequency of the peak is around f ' 30Hz. This
signal can be an appealing target for the updated Advanced LIGO sensitivity, as shown in fig. 2, where we superimpose
on the signal the bound obtained by combining the first and second observing runs [32] (region shaded in yellow with
diagonal meshes) and the design sensitivity curve (region shaded in brown with dotted boundary) [33]. To make con-
tact with the analysis in ref. [32], we have used the explicit valueH0 = 67.9 km s�1Mpc�1 for the present day Hubble
expansion rate. To fully establish the relevance of the proposed signal, it is important –if not crucial– to understand
to what extent it can be distinguished from the expected astrophysical stochastic gravitational wave background from
coalescing (astrophysical) binary black holes (BBH) and binary neutron stars (BNS). A comprehensive analysis of this
issue is left for future work. In the present note, we just compare the signal with the prediction of the astrophysical
stochastic BBH+BNS background. The latter is shown in the right panel of fig. 2 with a purple dashed line together with
a gray band that represents the statistical Poisson uncertainty in the local binary merger rate [32, 34]. As this graphical
comparison suggests, we may expect to be able to detect these signals, because the stochastic background from light
PBHs (if present) lies well above the astrophysical one.
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FIG. 1: Color code in this figure as in the rest of the paper. Colored regions with solid/dashed boundaries: signals. Gray region without
boundary and central dot-dashed line: stochastic gravitational wave background from binary black holes and binary neutron stars
with its uncertainty. Colored regions with dotted boundaries: projected experimental/observational sensitivities. Colored regions with
solid boundaries and diagonal meshes: existing bounds. Left panel: Fractional abundance of PBHs with respect to the dark matter
abundance as a function of the PBHmass for the parameter values discussed in the text, with and without higher-dimensional oper-
ators (HDO). Right panel: Fraction of the energy density in gravitational waves relative to the critical energy density of the Universe as
a function of the frequency (again, without and with HDO).

ref. [23]). The region shaded in pink with dashed boundary refers to a projected sensitivity of femto-lensing searches
assuming 20 suitable gamma-ray burst events [2].
As we shall discuss in section III, all the inflationary solutions that are capable of producing a sizable fraction of the

dark matter in the form of PBHs obtained by means of the potential in eq. (1) are characterized by a spectral index at
CMB scales ns . 0.95. At face value, this number is slightly smaller compared to what is preferred by cosmological
measurements, namely ns ' 0.96, thus creating a 3� tension with the latest Planck constraints [24]. As it was already
pointed out in [12], and as we shall argue in more detail in section III, this is not necessarily enough to rule out our
solutions but it might be the indication (assuming the correctness of eq. (1)) of some non-standard cosmology beyond
the base ⇤CDMmodel. However, having a 3� tension may be unsettling, and invoking a non-standard cosmological
setup may not be the most appealing solution. For this reason, we will discuss in section IV a simple –and arguably
natural– way of circumventing the aforementioned ns tension. The latter is based on just a slight deformation of the
potential in eq. (1), by including higher-dimensional operators (HDO) of the form

V (�) = a2�
2
+ a3�

3
+ a4�

4
+

X

n>5

an�
n . (2)

We shall argue that a natural organization of the series of HDO leads to good inflationary solutions with a value of the
spectral index in perfect agreement with Planck data. In fact, a single five-dimensional operator with a naturally small
coefficient and negligible higher-order terms is sufficient. We show the abundance of PBHs generated by one of these
solutions in the left panel of fig. 1 (region shaded in cyan with dashed boundary). In this case we find that having 100%
of dark matter in the form of PBHs is in excellent agreement with CMB observations. It is also worth noticing that this
population of PBHs satisfies the bound discussed in refs. [20, 21] based on the observation of the 511 keV gamma-ray
line from positrons in the Galactic center, which is stronger than the Hawking evaporation bound obtained using the
isotropic gamma-ray background.
We also discuss gravitational wave signatures. In the right panel of fig. 1 –where we plot the gravitational wave en-

ergy density in units of the critical energy density as a function of frequency– we show the gravitational wave signal
that comoving curvature perturbations generate as a second-order effect [25–27]. We superimpose the signal (region
shaded in green with solid boundary for the quartic example in the left panel) on the expected sensitivity curves of
the future gravitational wave detectors LISA (assuming the C1 configuration, see ref. [28]), DECIGO [29] and MAGIS-
100 [30] (shaded regions with dashed boundaries, see caption for details). We find that the signal could be detected by
LISA and DECIGO, and it stands out over the stochastic gravitational wave background from binary black holes (BBH)

GB, Rey, Taoso, Urbano, 2020
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FIG. 2: Left panel: Fraction of theUniverse’smass in PBHs at their formation time as a function of the PBHmass. The bounds are taken
from ref. [14]. Right panel. Fraction of the energy density in gravitational waves relative to the critical energy density of the Universe
as a function of the frequency. The inflationary solution shown in this plot provides a good fit to all cosmological observables at CMB
scales and can be obtained either with the quartic polynomial potential or with its generalization that includes HDO. In the first case,
the solution is characterized by a spectral index ns ' 0.955 while in the second case we find ns ' 0.965, the latter in full agreement
with the central value indicated by Planck data.

and binary neutron stars (BNS), which has been computed following ref. [31].
The position of the peak amplitude of the power spectrum of curvature perturbations, the peak height in the PBH

mass distribution and the frequency of the peak of the gravitational wave signal are related by:
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. (3)

A peak in the power spectrum of curvature perturbations at k ' 2 · 10
16 Mpc�1 generates a gravitational wave signal

with frequency f ' 30 Hz. This is an interesting frequency for the ground-based Advanced LIGO-Virgo detector net-
work, which already placed important limits on the energy density in gravitational waves by combining data from the
first (O1) and second (O2) observing runs [32] (region shaded in yellow with diagonal meshes and solid boundary in
fig. 1; we also show the design sensitivity with dashed boundary). A gravitational wave signal at frequency f ' 30 Hz
would correspond to PBHs withmassMPBH ' 10

13 g. These PBHs cannot constitute the observed abundance of dark
matter since they would have completely evaporated through the emission of Hawking radiation from their formation
to the present day. Nevertheless, a population of PBHswithmass aroundMPBH ' 10

13 g, although extinct today, is still
subject to experimental constraints associated with the effects of their evaporation on big bang nucleosynthesis [14].
In the left panel of fig. 2we consider the case inwhich the PBHmass distribution peaks atMPBH ' 10

13 g. We show the
corresponding bounds in terms of the quantity �(MPBH)which is related to the fraction of theUniverse’smass in PBHs
at their formation time (see ref. [14] for details). In the right panel of fig. 2 we show the corresponding second-order
gravitational wave signal. In agreement with the scaling of eq. (3), the frequency of the peak is around f ' 30Hz. This
signal can be an appealing target for the updated Advanced LIGO sensitivity, as shown in fig. 2, where we superimpose
on the signal the bound obtained by combining the first and second observing runs [32] (region shaded in yellow with
diagonal meshes) and the design sensitivity curve (region shaded in brown with dotted boundary) [33]. To make con-
tact with the analysis in ref. [32], we have used the explicit valueH0 = 67.9 km s�1Mpc�1 for the present day Hubble
expansion rate. To fully establish the relevance of the proposed signal, it is important –if not crucial– to understand
to what extent it can be distinguished from the expected astrophysical stochastic gravitational wave background from
coalescing (astrophysical) binary black holes (BBH) and binary neutron stars (BNS). A comprehensive analysis of this
issue is left for future work. In the present note, we just compare the signal with the prediction of the astrophysical
stochastic BBH+BNS background. The latter is shown in the right panel of fig. 2 with a purple dashed line together with
a gray band that represents the statistical Poisson uncertainty in the local binary merger rate [32, 34]. As this graphical
comparison suggests, we may expect to be able to detect these signals, because the stochastic background from light
PBHs (if present) lies well above the astrophysical one.
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FIG. 8: Constraints on the Base⇤CDMmodel and some of its extensions. Contours show the 68%, 95% and 99% confidence regions for
Planck TT,TE,EE+lowE (grey), Planck TT,TE,EE+lowE+lensing (red), and Planck TT,TE,EE+lowE+lensing+BAO (blue). Left panel: We
use the 6-parameters Base ⇤CDMmodel, and we show the constraint in the plane (ns, As). Right panel: The running of the spectral
index is added to the 6-parameters Base⇤CDMmodel, and we show the constraint in the plane (ns, dns/dlogk).

against the analysis in ref. [46]. For illustrative purposes, we superimpose to the signal the expected sensitivity curves
computed for the gravitational wave detectors LISA, DECIGO and MAGIS-100. The sensitivity curves are obtained by
converting the noise spectra Sh(f), a function of the frequency f , into the corresponding fractional energy density
by means of ⌦GW = (4⇡2/3H2

0
)f3Sh. We find that the signal could be in principle detected. In particular, we point

out that the gravitational wave signal peaks in the region covered by the DECIGO sensitivity curve but it features a
“shoulder” within the reach of LISA sensitivity.
Before moving on to the next section, we should remark that our calculation of the power spectrum of curvature

perturbations is based on the classical roll of the inflaton along its potential. Quantum diffusion may modify the re-
sult for large deviations from slow-roll, playing a role in the generation of curvature perturbations. The importance of
quantum diffusion for the formation of PBHs has been investigated in refs. [47–50]. Ref. [47] focuses on scenarios with
an USR phase. This effect can have a large impact on the PBHs abundance, which is very sensitive to the amplitude
of the power spectrum of curvature perturbations. On the other hand, the latter can also be easily modified by a small
tuning of the parameters of themodel, as stressed in appendix A. Ref. [50] develops a framework to compute the proba-
bility distribution of curvature perturbations including quantumdiffusion. This analysis is valid for slow-roll dynamics
and therefore it can not be directly applied to our case. We leave for future work a thorough investigation of quantum
diffusion during the USR phase.

III. DISCUSSION

We now come back to the case illustrated in fig. 1 in which the PBHs are responsible for the majority of dark matter.
As already discussed below eqs. (23,24) the inflationary solutions corresponding to this situation are characterized by
ns ' 0.95, a value that is smaller than the one suggested by the most recent Planck analysis. As anticipated in the
previous section, if we try to alleviate the tension by increasing the value of ns, the peak of the PBHmass distribution
shifts towards smaller values ofMPBH where theHawking evaporation bound excludes sizable fractions of darkmatter
in the form of PBHs. To be more quantitative, in fig. 9 we show the result of a scan over the parameter space of the
model. All solutions found are characterized by acceptable values for the CMB observables As, r, ↵, # in eq. (21) and
by the condition �N0.05

e
> 50 e-folds. The plot confirms that values of the spectral index ns > 0.95 are compatible

with a fraction of the darkmatter in the form of PBHs smaller than 10
�3 while the totality of darkmatter in the form of

PBHs can be obtained only if ns ' 0.949 or smaller. The tendency for a value of ns smaller than suggested by Planck
seems to be a rather common property of single-field inflationary models with an approximate stationary inflection
point. See e.g. the discussions in ref. [12] relative to the model we study here and the model with a radiatively induced
inflection point. In themodel discussed in ref. [7], some inflationary solutions with ns & 0.96 are presented. However,
these solutions – although consistent as far as the value of the spectral index is concerned – are all characterized by a

11

fluctuation reenters the horizon during the radiation era.5 The fraction of PBHs in the form of dark matter is6
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In this expression the integral is over is the radiation density contrast in the total matter gauge (see [40]), �c = 0.45 is
the standard value for the PBH formation threshold in a radiation-dominated era (see e.g. [41, 42]) and
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whereW is a window function that we choose asW (q/k) = exp(�(q/k)2/2). Our final result for fPBH is shown in the
left panel of fig. 1.
In order to make contact with CMB observables, at scales 10�4 . k [Mpc

�1
] . 0.5, we fit our power spectrum

against the parametric function [43]
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with ↵ = dns/d log k, # = d2ns/d log k2. At the pivot scale k⇤ = 0.05Mpc�1, we find7

log(10
10As) ' 3.06 , ns ' 0.9491 , ↵ ' �10

�3 , # ' 2⇥ 10
�4 . (22)

For the tensor-to-scalar ratio, we find (by means of the slow-roll approximation) r ' 0.03. All these values but the
spectral index, ns, are in good agreement with observations. The fit of the spectral index ns results in a⇠ 3� tension
with the latest Planck constraints if one takes the analysis obtained assuming the 6-parameters Base ⇤CDMmodel or
the extension in which the running of the spectral index is added as an additional free parameter [43]:8

Base ⇤CDM : ns = 0.9649± 0.0042 , [68%CL, PlanckTT,TE,EE + lowE + lensing] , (23)

Base ⇤CDM+
dns

d log k
: ns = 0.9641± 0.0044 , [68%CL, PlanckTT,TE,EE + lowE + lensing] . (24)

To be even more concrete, we show in fig. 8 the two-dimensional 65%, 95% and 99% confidence contours for the pa-
rameters ns and As in the Base ⇤CDM model (left panel) and for the parameters ns and dns/d log k for the case in
which the running of the spectral index is added to the Base ⇤CDM.9 A scan over the parameters of the potential10
seems to suggest that values of ns slightly smaller than the one expected on the basis of eqs. (23, 24) is a general result,
and not just a vice of the specific numerical solution analyzed in this section. More in detail, we find that increasing
the value of ns in order to reduce the tension with eqs. (23, 24) results in a shift of the peak of the PBH mass distribu-
tion towards smaller values ofMPBH. Even though we find that in these cases it is still possible to obtain a peak in the
power spectrum of order ⇠ 10

�1, the constraint from Hawking evaporation, as evident from fig. 1, kicks in and very
rapidly forbids sizable abundances of PBHs. On the contrary, moving the peak of the PBH mass distribution towards
larger values of MPBH implies a decrease of the spectral index below ns ' 0.95, thus exacerbating the tension with
CMB observables. Having a better understanding of the implications of this tension is an important point that we shall
discuss inmore detail in section III. For the sake of the present discussion, let us consider the results of the fit in eq. (22)
as acceptable, and continue with the description of our analysis.
Given thepower spectrumof curvatureperturbations computedbymeansof eq. (11) and shown infig. 3,we compute

the induced second-order gravitational wave spectrum. Our result is shown on the right panel of fig. 1, where we plot
the fraction of the energy density of gravitational waves relative to the critical energy density, ⌦GW. We follow the
computation recently revisited in ref. [45] (see refs. [26, 27] for earlier analyses), and we validate our numerical results

5 IfPR peaks at scales which re-enter the horizon during a period ofmatter domination, the formation of PBHs is enhancedwith respect to the case
of radiation domination. Our potential has an approximately quadratic absoluteminimum,which allows for an early period ofmatter domination
if the inflaton is weakly coupled to other species, preventing violent preheating from happening. Following the analysis of [8], we find examples
compatible with the CMB and capable of producing fPBH ' 1 in an adequate range of mass in this scenario.

6 We have used eq. (2.7) of ref. [12] with the standard value � = 0.2 for the efficiency factor and g = 106.75. See eq. (2.2) of ref. [8] for a more
precise expression, which reduces to the previous one assuming gs ' g (equality between the energy density and entropy degrees of freedom).
Notice than uncertainties in �c and � can be compensated with slight variations of the parameters of the potential to maintain the same fPBH.

7 We always refer to CMB parameters (such as ns) at the scale k⇤ = 0.05Mpc�1, even if the latter is not mentioned explicitly.
8 The addition of BAO data increases the best fit value of ns in both cases just at the level of 0.2%, see [43].
9 We smooth the 99% confidence contours by means of a Gaussian approximation which works extremely well for our illustrative purposes.
10 A less intensive scan was already performed for [12], with the same qualitative result, which we now confirm.
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left panel of fig. 1.
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with ↵ = dns/d log k, # = d2ns/d log k2. At the pivot scale k⇤ = 0.05Mpc�1, we find7

log(10
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For the tensor-to-scalar ratio, we find (by means of the slow-roll approximation) r ' 0.03. All these values but the
spectral index, ns, are in good agreement with observations. The fit of the spectral index ns results in a⇠ 3� tension
with the latest Planck constraints if one takes the analysis obtained assuming the 6-parameters Base ⇤CDMmodel or
the extension in which the running of the spectral index is added as an additional free parameter [43]:8

Base ⇤CDM : ns = 0.9649± 0.0042 , [68%CL, PlanckTT,TE,EE + lowE + lensing] , (23)

Base ⇤CDM+
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d log k
: ns = 0.9641± 0.0044 , [68%CL, PlanckTT,TE,EE + lowE + lensing] . (24)

To be even more concrete, we show in fig. 8 the two-dimensional 65%, 95% and 99% confidence contours for the pa-
rameters ns and As in the Base ⇤CDM model (left panel) and for the parameters ns and dns/d log k for the case in
which the running of the spectral index is added to the Base ⇤CDM.9 A scan over the parameters of the potential10
seems to suggest that values of ns slightly smaller than the one expected on the basis of eqs. (23, 24) is a general result,
and not just a vice of the specific numerical solution analyzed in this section. More in detail, we find that increasing
the value of ns in order to reduce the tension with eqs. (23, 24) results in a shift of the peak of the PBH mass distribu-
tion towards smaller values ofMPBH. Even though we find that in these cases it is still possible to obtain a peak in the
power spectrum of order ⇠ 10

�1, the constraint from Hawking evaporation, as evident from fig. 1, kicks in and very
rapidly forbids sizable abundances of PBHs. On the contrary, moving the peak of the PBH mass distribution towards
larger values of MPBH implies a decrease of the spectral index below ns ' 0.95, thus exacerbating the tension with
CMB observables. Having a better understanding of the implications of this tension is an important point that we shall
discuss inmore detail in section III. For the sake of the present discussion, let us consider the results of the fit in eq. (22)
as acceptable, and continue with the description of our analysis.
Given thepower spectrumof curvatureperturbations computedbymeansof eq. (11) and shown infig. 3,we compute

the induced second-order gravitational wave spectrum. Our result is shown on the right panel of fig. 1, where we plot
the fraction of the energy density of gravitational waves relative to the critical energy density, ⌦GW. We follow the
computation recently revisited in ref. [45] (see refs. [26, 27] for earlier analyses), and we validate our numerical results

5 IfPR peaks at scales which re-enter the horizon during a period ofmatter domination, the formation of PBHs is enhancedwith respect to the case
of radiation domination. Our potential has an approximately quadratic absoluteminimum,which allows for an early period ofmatter domination
if the inflaton is weakly coupled to other species, preventing violent preheating from happening. Following the analysis of [8], we find examples
compatible with the CMB and capable of producing fPBH ' 1 in an adequate range of mass in this scenario.

6 We have used eq. (2.7) of ref. [12] with the standard value � = 0.2 for the efficiency factor and g = 106.75. See eq. (2.2) of ref. [8] for a more
precise expression, which reduces to the previous one assuming gs ' g (equality between the energy density and entropy degrees of freedom).
Notice than uncertainties in �c and � can be compensated with slight variations of the parameters of the potential to maintain the same fPBH.

7 We always refer to CMB parameters (such as ns) at the scale k⇤ = 0.05Mpc�1, even if the latter is not mentioned explicitly.
8 The addition of BAO data increases the best fit value of ns in both cases just at the level of 0.2%, see [43].
9 We smooth the 99% confidence contours by means of a Gaussian approximation which works extremely well for our illustrative purposes.
10 A less intensive scan was already performed for [12], with the same qualitative result, which we now confirm.
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FIG. 1: Color code in this figure as in the rest of the paper. Colored regions with solid/dashed boundaries: signals. Gray region without
boundary and central dot-dashed line: stochastic gravitational wave background from binary black holes and binary neutron stars
with its uncertainty. Colored regions with dotted boundaries: projected experimental/observational sensitivities. Colored regions with
solid boundaries and diagonal meshes: existing bounds. Left panel: Fractional abundance of PBHs with respect to the dark matter
abundance as a function of the PBHmass for the parameter values discussed in the text, with and without higher-dimensional oper-
ators (HDO). Right panel: Fraction of the energy density in gravitational waves relative to the critical energy density of the Universe as
a function of the frequency (again, without and with HDO).

ref. [23]). The region shaded in pink with dashed boundary refers to a projected sensitivity of femto-lensing searches
assuming 20 suitable gamma-ray burst events [2].
As we shall discuss in section III, all the inflationary solutions that are capable of producing a sizable fraction of the

dark matter in the form of PBHs obtained by means of the potential in eq. (1) are characterized by a spectral index at
CMB scales ns . 0.95. At face value, this number is slightly smaller compared to what is preferred by cosmological
measurements, namely ns ' 0.96, thus creating a 3� tension with the latest Planck constraints [24]. As it was already
pointed out in [12], and as we shall argue in more detail in section III, this is not necessarily enough to rule out our
solutions but it might be the indication (assuming the correctness of eq. (1)) of some non-standard cosmology beyond
the base ⇤CDMmodel. However, having a 3� tension may be unsettling, and invoking a non-standard cosmological
setup may not be the most appealing solution. For this reason, we will discuss in section IV a simple –and arguably
natural– way of circumventing the aforementioned ns tension. The latter is based on just a slight deformation of the
potential in eq. (1), by including higher-dimensional operators (HDO) of the form

V (�) = a2�
2
+ a3�

3
+ a4�

4
+

X

n>5

an�
n . (2)

We shall argue that a natural organization of the series of HDO leads to good inflationary solutions with a value of the
spectral index in perfect agreement with Planck data. In fact, a single five-dimensional operator with a naturally small
coefficient and negligible higher-order terms is sufficient. We show the abundance of PBHs generated by one of these
solutions in the left panel of fig. 1 (region shaded in cyan with dashed boundary). In this case we find that having 100%
of dark matter in the form of PBHs is in excellent agreement with CMB observations. It is also worth noticing that this
population of PBHs satisfies the bound discussed in refs. [20, 21] based on the observation of the 511 keV gamma-ray
line from positrons in the Galactic center, which is stronger than the Hawking evaporation bound obtained using the
isotropic gamma-ray background.
We also discuss gravitational wave signatures. In the right panel of fig. 1 –where we plot the gravitational wave en-

ergy density in units of the critical energy density as a function of frequency– we show the gravitational wave signal
that comoving curvature perturbations generate as a second-order effect [25–27]. We superimpose the signal (region
shaded in green with solid boundary for the quartic example in the left panel) on the expected sensitivity curves of
the future gravitational wave detectors LISA (assuming the C1 configuration, see ref. [28]), DECIGO [29] and MAGIS-
100 [30] (shaded regions with dashed boundaries, see caption for details). We find that the signal could be detected by
LISA and DECIGO, and it stands out over the stochastic gravitational wave background from binary black holes (BBH)
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FIG. 12: Left panel. Hubble parameter ⌘H as function of the number of e-folds. We consider two inflationary solutions (among
those constructed in the right panel of fig. 11) with ns ' 0.970 (solid line) and ns ' 0.948 (dashed line). Right panel. Power spectra
corresponding to the two solutions shown in the left panel.

HDOs since it is controlled by the quartic and cubic coefficients (whichmust have opposite signs). At large field values,
on the contrary, the presence of the HDOs introduces a small deviation with respect to the renormalizable case (solid
versus dashed line), and alters the first and second derivatives of the potential, thus changing the slow-roll parameters
at the CMB pivot scale k⇤ = 0.05 Mpc�1. In our numerical analysis, for each value of ⇤�1 we consider inflationary
solutions which give rise to fPBH ' 1 and consistently fit CMB observables at large scales. In order to facilitate the
comparison with the renormalizable case, in fig. 11 we show solutions with fixed number of e-folds�N0.05

e
' 51. The

values of c2,3 and �0 are the same used in eq. (7) for the renormalizable case while � and ⇠ are tuned, for each value
of ⇤, in such a way to obtain, respectively, the correct normalization of the power spectrum at CMB scales and the
condition fPBH ' 1 on the abundance of PBHs. Furthermore, it is important to remark that all solutions shown in
the right panel of fig. 11 have, by construction, the position of the peak of the power spectrum, kpeak, fixed at the value
kpeak ' 1.5⇥10

14Mpc�1. This choice gives an abundance of PBHs peaked atMPBH ' 5⇥10
17 g, which is compatible

with the possibility of having 100% of dark matter in the form of PBHs. Moreover, it eliminates all those solutions, like
the ones in fig. 9, in which larger values of ns are obtained at the expense of a larger kpeak (and larger �N0.05

e
). We

consider HDOs up toN = 8, and check that our results remain stable if further higher-order terms are added. In the
right panel of fig. 11 we show, for each one of these solutions, the corresponding value of ns. If ⇤�1 is too small, the
impact of theHDOs is negligible and it is possible to have 100%of darkmatter in the formof PBHs only for values of the
spectral index that are 3� away from the central value of Planck, as already discussed in section III and shown in fig. 9.
However, by increasing the value of⇤�1 without clashing against eq. (30) (region shaded in gray), the small correction
introduced at large � gives values of the spectral index that are in perfect agreement with the current observational
bounds. This is shown by the red solid line in fig. 11.
Let us now consider specifically the solution marked by the cyan star which has ns ' 0.96 and ⇤

�1
' 2⇥ 10

�3. As
specified before, we include in our analysis HDOs up toN = 8 but for⇤�1

' 2⇥ 10
�3 it is possible to see that the first

twowithN = 5, 6 dominate over the remaining ones. The corresponding population of PBHs is shown in the left panel
of fig. 1 while the induced gravitational wave signal is shown in the right panel of the same figure (cyan regions with
dashed boundary in both cases). The value of a4 is fixed by the amplitude of the power spectrumat CMB scales, andwe
find a4 ' 10

�10. Since we assumed g2 = a4, we have g ' 10
�5. From our discussion, it follows that for the mass scale

M = g⇤ we haveM ' 10
�2 in units ofMPl. The conditionH < M is, therefore, verified sinceH ⇠

p
a4/⇠ ' 10

�5.
The same conclusion holds true for all solutions in the right panel of fig. 11.
To better understand how the presence of HDOs solves the ns tension and gives an abundance of PBHs in the right

mass window, it is instructive to look at the dynamics of the inflaton field in two extreme cases shown in the right panel
of fig. 11. The former, with ns ' 0.948, has been obtained with ⇤

�1
' 10

�5 or lower and it is marked with a dashed
line in fig. 12. The latter, with ns ' 0.970 and obtained with ⇤

�1
' 3⇥ 10

�3, is shown with a solid line in fig. 12. Four
points are worth emphasizing.
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FIG. 10: Left panel: The effective number of relativistic degrees of freedom is added to the 6-parameters Base ⇤CDMmodel, and we
show the constraint in the plane (ns, Ne↵) (same color code as in fig. 8). Right panel: Evolution of the effective number of relativistic
degrees of freedom as function of the reheating temperature of the Universe, from [53].

mentioning this as a valid scenario. On amore speculative ground, the increasing statistical significance (that is now at
the level of 5.3� [54]) of the so-called “Hubble tension” –the discrepancy between the values of the present dayHubble
expansion rateH0 derived from the local distance ladder and theCMB, see, e.g., [55, 56] and references therein– further
motivates the need of some new physics beyond the Base⇤CDMmodel. Following this line of reasoning, ref. [57] con-
sidered a global analysis of current cosmological data in a cosmological scenario that is significantly more extended
than the one provided by the Base ⇤CDM model –They included as free parameters ↵, Ne↵ , ⌃m⌫ and the equation
of state of dark energy– finding a preferred value of the spectral index of order ns ' 0.95 (but, importantly, again in
combination with a slight preference forNe↵ < 3, due to the degeneracy discussed before).11
In light of these results, we argue that values of the spectral index of order ns ' 0.95 –favored by our analysis as-

suming the majority of dark matter to be comprised of PBHs– could consistently fit in the context of a cosmological
model that extends the standard Base ⇤CDM one. A dedicated analysis of what are the possible and best motivated
extensions is underway.
Before discussing in the next section the effect of the higher dimensional operators of the potential in eq. (2) –which

we have neglected so far but can easily solve thens tension–wewill briefly comment on earlier work. Ref. [6], proposed
a model characterized by a potential with the functional form of eq. (4). In ref. [6] the field � of eq. (4) is canonically
normalized, whereas in our case it has a non-canonical kinetic term arising from the transformation from the Jordan
to the Einstein frame. In simple words: the inflaton field in the Einstein frame in the twomodels is different, see eq. (5).
The denominator of eq. (4) appears in our model as a consequence of the metric redefinition required to go from one
frame to the other, while it is instead postulated from the start in ref. [6]. This difference has a relevant phenomenolog-
ical consequence: the examples provided in [6] lead to PBHs several orders of magnitude heavier, which are allowed
only at the level of fPBH . 10% due to the microlensing bounds from the EROS project [61]. Another related work is
ref. [62]. This differs fromours in two respects: a running of the quartic coupling of the inflation above amass threshold
is introduced, and the power spectrum is computed only in the slow-roll approximation.

IV. ON THE ROLE OFHIGHER-DIMENSIONAL OPERATORS

In models of large-field inflation one should generically take into consideration HDOs in the inflaton potential. It
is then natural to question whether these corrections might spoil solutions that lead to a considerable abundance of
PBHs at the renormalizable level, either by lowering the abundance, or by changing the power spectrumparameters at

11 This preference for small ns is lost if the lensing amplitudeAL is also left free, see ref. [57].
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where X = �@µ�@µ�/2. At the quadratic level and focusing on just two spatial derivatives acting
on R, these are the models contained in the EFT of inflation. As we already mentioned in the
Introduction, the evolution of cs on time may generate PBHs, provided that the spectrum of R is
sufficiently enhanced; see e.g. [31, 40].

A necessary condition for a time-varying M is a non-minimal coupling between the inflaton and
the Riemann tensor, Rµ⌫ . However, not any coupling between the two is sufficient to have Ṁ 6= 0.
In particular, a coupling of the form K(�)R can be recast (in the absence of other fields) into a
redefinition of the scalar field potential V (�). On the other hand, a coupling such as K(X)R does
in general lead to Ṁ 6= 0, but at the expense of introducing an Ostrogradsky ghost. The latter can
be avoided provided that this type of coupling appears with an appropriately weighted combination
of higher derivative terms of �, see e.g. [42,43]. The general class of models constructed in this way
that have second order equations of motion (and thus are free of instabilities at the classical level)
is called after G. W. Horndeski, who described them for the first time in 1974 [42]. This class of
models contains examples for which an effective M(t) cannot be removed by any (conformal or
disformal) field redefinition. In [44] one such model was already proposed for PBH generation.

All the examples we have mentioned so far are single-field models, but the action (3.1) can
also capture the dynamics of primordial fluctuations for other models, e.g. some multi-field cases
with distinctly heavy (and thus negligible) isocurvature perturbations and, also, some models with
massive vector fields []. Although, as we have seen, (3.1) applies for a wide variety of models, we
can also entertain the possibility of going beyond it. First, we can consider including a mass term:

S =

Z
dt d3xM2

a3✏

c2s


Ṙ2 � c2s

a2
|~rR|2 �m2R2

�
. (3.2) {Eq:quadraticgeneral2}{Eq:quadraticgeneral2}

where m is a function of t. In Fourier space, the equation of motion for R becomes

R̈+ (3� 2 s+ ⌘ + µ)HṘ+

✓
c2s
a2

k2 +m2

◆
R = 0 , (3.3) {massiveR}{massiveR}

where we define s = ċs/(csH), ⌘ = ✏̇/(✏H) and µ = (M2)·/(M2H). The comoving curvature
perturbation R does not have a conserved mode for csk ⌧ aH unless m ⌧ H. As we will see
in Section 6, the equation for R in solid inflation [47, 48] is of the form (3.3), with m ⇠ O(✏)H
being slow-roll suppressed. In this case, in addition R and ⇣ –which we defined in (2.22)– are not
equal to each other for small k and therefore this model is outside the real of those with a single
independent scalar perturbation. It is worth mentioning as well that the non-conservation of R
in the small k limit also occurs, for instance, in multi-field models with a non-negligible entropy
perturbation that originates in a curved trajectory in field space [59].

Another possibility that goes beyond (3.1) consists in including higher order derivative terms
in the quadratic action for R. As we already mentioned earlier, this generically introduces a
ghost degree of freedom. This can be acceptable in the context of an EFT, as it is the case in
the so-called ghost condensate [60], which we will briefly discuss in Section 4. Cases like this one
can be dealt with, to some extent, changing the dispersion relation for the Fourier modes of R,
including a momentum dependence on cs. For instance, in the ghost condensate cs ⇠ k2 in the
regime of validity of the EFT.

In order to simplify our analysis, we will focus in this section on the action (3.1), with cs
and M2 being functions of time only. As we have just summarized this corresponds to the vast
majority of the single-field models of inflation found in the literature. Let us then discuss how
the functions ✏, cs and M2 can give rise to the generation of PBHs. It is useful to introduce a
rescaled time variable ⌧̃ that generalizes the usual conformal time ⌧ as follows:

d⌧̃ = cs d⌧ =
cs
a
dt. (3.4)
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At this point, it is useful to absorb the effect of cs into a rescaled time variable ⌧̃ that generalizes
the usual conformal time ⌧ as follows:

d⌧̃ = cs d⌧ =
cs
a
dt. (3.4)

Doing so we effectively restore the equal scaling of time and space coordinates in the action, which
now reads:

S =
1

2

Z
d⌧̃ d3x z2

h
(R0)2 � |~rR|2

i
, (3.5)

where primes stand for the rest of this section for derivatives with respect to ⌧̃ and we have defined

z2 ⌘ 2M2a2✏

cs
. (3.6)

Notice that, unlike in the usual case where z is defined to be dimensionless, here we are defining
z including the effective mass Planck so that it has dimension of mass. The next step is to
canonically normalize the scalar perturbation as

v ⌘ zR . (3.7)

We obtain
S =

1

2

Z
d⌧̃ d3x


(v0)2 � |~rv|2 + z00

z
v2
�
, (3.8)

which leads to the (generalized) Mukhanov-Sasaki equation that, in Fourier space, reads

v00 +

✓
k2 � z00

z

◆
v = 0 . (3.9)

One can then use the standard expressions for the solutions of this equation in the slow-roll regime,
(remembering the previous definition of z or, equivalently, the re-scaling of the time coordinate).
Our interest here is to study the possibility of obtaining an enhancement of the power spectrum
by means of a variation in the sound speed cs and/or the time-varying Planck mass M2 in order
to extend the more standard enhancement obtained from the time evolution of ✏ (as e.g. in single
field inflation models featuring an inflection point in the potential). To illustrate the main idea
we will briefly review the computation of the power spectrum within this scenario. This will also
lead us to obtain some relevant expressions that are not found in the literature. For convenience
we define the following hierarchies of slow-roll functions:
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with ✏0 = 1/H, ✏1 = ✏, s0 = cs, s = s1 and µ0 = M2. Here N denotes the number of e-folds
defined as
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and which, by convention, grows as inflation progresses forward in time. We will say that the
generalized slow-roll regime holds provided |✏i| , |si|, |µi| ⌧ 1, 8i � 1.

We start, as usual, by considering very short wavelengths k2 � z00/z for which we have the
same behaviour as in Minkowski spacetime so that, after appropriately normalizing and choosing
the adiabatic Bunch-Davis vacuum, the solutions for the mode functions are
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At this point, it is useful to absorb the effect of cs into a rescaled time variable ⌧̃ that generalizes
the usual conformal time ⌧ as follows:

d⌧̃ = cs d⌧ =
cs
a
dt. (3.4)

Doing so we effectively restore the equal scaling of time and space coordinates in the action, which
now reads:
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h
(R0)2 � |~rR|2

i
, (3.5)

where primes stand for the rest of this section for derivatives with respect to ⌧̃ and we have defined

z2 ⌘ 2M2a2✏

cs
. (3.6)

Notice that, unlike in the usual case where z is defined to be dimensionless, here we are defining
z including the effective mass Planck so that it has dimension of mass. The next step is to
canonically normalize the scalar perturbation as
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Finally, the mode evolving according to vII will re-exit the horizon at ⌧̃3 and will match the
solution vIII ' Ekz, with some constant Ek. The final amplitude of the mode can thus be
computed by matching this solution and vII at ⌧̃3. The resulting expression can be related to the
previous evolution of the mode as

|vIII(⌧̃3)|2 =
����
vIII
k

(⌧̃3)

vII
k
(⌧̃2)

����
2 ����

vII
k
(⌧̃2)

vI
k
(⌧̃1)

����
2

|vI(⌧̃1)|2 =
1

2k

✓
z2
z1

◆
2
✓
1 + �k cos (2k⌧̃3 + �k)

1 + �k cos (2k⌧̃2 + �k)

◆
2

, (3.24)

where
�k ⌘

2|D1,k||D2,k|
|D1,k|2 + |D2,k|2

. (3.25)

Since |Ek| = |vIII(⌧̃3)|/z3, the power spectrum then becomes

�2

R =
k3

2⇡2
|Ek|2 =

k2

4⇡2

✓
z2
z1z3

◆
2

1 + �k cos (2k⌧̃3 + �k)

1 + �k cos (2k⌧̃2 + �k)

�
2

. (3.26)

We thus see that the power spectrum receives an extra factor with respect to (3.19) due to the extra
time that it has remained sub-horizon between the second and third crossings and, furthermore,
it can also exhibit some oscillations from the Bogoliubov coefficients that are generically produced
in this process. It is not difficult (although tedious) to generalize this result to the case when there
are more crossings. However, this is enough to show that it is expected to see some oscillations in
the power spectrum in the range of k-modes that undergo a re-entering and re-exit, as we will see
explicitly in the examples below. Before that, let us go back to the assumption that the constant
mode is quickly reached and analyze under which circumstances it holds. This will allow us to
reveal another mechanism to enhance the power spectrum.

3.2 The “decaying” mode

An important assumption needed to arrive at the expressions (3.19) and (3.26) for the power
spectrum of R is that the second mode –see (3.13)– always decays faster than z (which typically
grows like a in the strict generalized slow-roll regime) so that the mode C1,k z is reached quickly
enough. If this is not the case, not only the above formulas for �2

R cannot be applied, but also
the presence of a second growing mode –which might grow faster than z– can in turn induce an
enhancement of the power spectrum by itself. In order to illustrate and understand these points,
we will work with the equation for the curvature perturbation:

R00
k
+ 2

z0

z
R0

k
+ k2R = 0 . (3.27)

Sometimes, it is also useful to write this equation in terms of the number of e-folds defined in
(3.11), and we give it here for completeness:

d2R
dN2

+
⇣
3� ✏+ ✏2 � 2s1 + µ1

⌘dR
dN

+
c2sk

2

a2H2
R = 0. (3.28)

From the definition of the function z in (3.6), it is easy to obtain

z0

z
=

aH

cs

✓
1 +

✏2 � s1 + µ1

2

◆
. (3.29)

This expression can be integrated so that z satisfies

log
z

z?
= (N �N?) +

1

2

Z
N

N?

�
✏2 � s1 + µ1

�
dN , (3.30)
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where ? denotes some arbitrary time (not to be confused with the horizon crossing time denoted
by ⇤ above). We then see that z / a in the strict slow-roll regime or, more generally, as long as
the combination (✏2 � s1 + µ1) remains small.

For the very long wavelengths with sufficiently small k, the curvature perturbation equation
reduces to

R00
k
+ 2

z0

z
R0

k
' 0 , (3.31)

which, after one integration, gives R0 / z�2 and the solution is

R ' C1,k + 2C2,k

Z
d⌧̃

z2
= C1,k + C2,k

Z
c2s

a3M2✏H
dN , (3.32)

with C1,k and C2,k some integration constants which must be determined, as usual, from the
chosen vacuum mode solutions. The first term is the well-known adiabatic mode that is conserved
outside the horizon and that is guaranteed to exist due to zero-mode residual symmetries (see
e.g. [74]). This is the mode upon which the results of the previous section are built upon. The
second term C2,k is the usually decaying mode that typically becomes negligible within a few
e-folds after horizon crossing so that the constant mode is quickly reached. In fact, the time N?

is intended to represent some time soon after horizon crossing such that the decaying mode can
be safely neglected and the constant mode dominates. This is what happens in the generalized
slow-roll regime, where z / a and, therefore, the second mode decays as a�3. In this section we
are interested in the situation where this mode is, on the contrary, the dominant one. In order to
discern when this is the case, let us write the expression for the variation of R with the number
of e-folds N :

dR
dN

= C2,k e
�3N

c2s
M2✏H

= C2,k exp


�
Z ⇣

3� ✏1 + ✏2 � 2s1 + µ1

⌘
dN

�
, (3.33)

which clearly shows that the second mode decays as a�3 / e�3N in the generalized slow-roll
regime. More precisely, the derivative of the curvature perturbation is exponentially suppressed
as long as the combination

⇠ ⌘ 3� ✏1 + ✏2 � 2s1 + µ1 (3.34)

is positive. In that case, the constant mode C1k is quickly reached and the formulae for the power
spectrum obtained above will be valid. If the friction parameter ⇠ is instead negative for some
interval of e-folds, the derivative (3.33) is no longer suppressed and the second mode can become
the dominant one. Such a growing mode can also enhance the power spectrum and lead to PBH
production. Interestingly, the time variation of the sound speed and the effective Planck mass
contribute to ⇠ through s1 and µ1 and (from a model-building point of view) this freedom can
either guarantee that the second mode never becomes the dominant one by appropriately keeping
at bay any (positive) growth of ✏1� ✏2 or, instead, turn the second mode into a growing one, thus
helping to enhance the power spectrum.

3.3 General analysis

After reviewing the constant and decaying solutions for the super-horizon regime, we will give a
more detailed discussion of the general solution. For that, we will start by rewriting the equation
(3.27) as

1

z2
d

d⌧̃

✓
z2

dR
d⌧̃

◆
= �k2R . (3.35)
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Example I: The EFT of inflation

m = 0 , M = MP

Figure 2. �2
⇣ (upper left), “horizon” (upper right), cs and ✏ (lower left) and friction parameter (lower

right) for ncs = �2.3, n✏ = �6.6, �cs = �✏ = 3, Ncs = 30, N✏ = 40. This is an example in which two peaks

appear in �2
⇣ due to two separate dips in cs and ✏. The oscillations are due to the modes (such as the one

shown in the upper right figure as a horizontal line) that cross the horizon several times. The dotted in

this figure line represents *COMPLETE* and the continuous line is *COMPLETE* .
{Fig:M1Bi}

is precisely (3.1), which describes all the models whose Lagrangian is of the form L = p(�, X),
where � is a real scalar, X ⌘ �@µ�@µ�/2 and p is an arbitrary function (but able to sustain
inflation). Higher order derivative terms contributing to the effective action for fluctuations are
also allowed, but are supposed to be subdominant, within the logic of the EFT.

It is common to recast the action for scalar fluctuations in terms of a field ⇡ = �H ⇣, which
is the Goldstone boson arising from the breaking of time diffeomorphisms, due to inflation. In
terms of this variable, the first cubic interaction that can be written is of the form (@i⇡)2⇡̇/a2 and
it comes with a coefficient that (due to the symmetries) is entirely fixed by the quadratic action,
and can be written as a function of ✏, cs and H. This interaction leads to the following estimate
of the (partial wave) unitarity cut-off [37], denoted by ⇤:

⇤4 ⇠ 16⇡2M2

PH
2✏

c5s
1� c2s

. (4.1)

The only other possible cubic interaction that can appear in the action for ⇡ is just ⇡̇3 but, unlike
for the previous one, its coefficient is not completely determined by the symmetries. Without
any loss of generality, we can write the ratio of the two cubic terms as ↵(@i⇡)2/(c2sa

2⇡̇2), where
↵ is a dimensionless function of time. Then, the fourth power of the unitarity cutoff due to ⇡̇3 is
⇠ ↵2⇤4 [61], which can be larger than ⇤4 provided that ↵ & 1.

Since the interaction (@i⇡)2⇡̇/a2 is always present in the EFT for cs 6= 0; if we assume slow-roll
and impose ⇤ � H we get an inequality between the speed of sound and the amplitude of the
primordial spectrum of ⇣:

c4s � �2

⇣
, (4.2) {eftbound}{eftbound}

so that cs cannot be smaller than ⇠ 0.3 for �2

⇣
⇠ 10�2. Taken at face value, and considering

standard values for ✏ ⇠ O(1�ns) ⇠ O(0.01), this means that in the context of the EFT of inflation
the production of a sizable population of PBHs that could be relevant for the DM problem cannot
be achieved from slow-roll inflation through a very small speed sound.

There are a couple of factors that one could think might help to alleviate or even circumvent
this obstruction. First of all, the condition �2

⇣
⇠ 10�2 for having an O(0.1) contribution to ⌦DM

is not, strictly speaking, a bulletproof prediction. This condition arises from the application of
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Unitarity:

Arkani-Hamed, et al 2003

Ghost condensate:

c2s � PR
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Example II: Solid inflation

Non-conservation of super-horizon fluctuations

EFT of 3 derivatively coupled scalars, SO(3)

Gruzinov 2004 & Endlich, Nicolis, Wang 2012

m 6= 0 , M = MP
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In the next section we review the relevant formulae for the calculation of the mass and abun-
dance of PBHs from the primordial spectrum of perturbations generated by inflation. In Section 3
we describe the inflationary set-up that we explore and provide the details of the method that we
use to compute the spectrum of primordial perturbations. In Section 4 we list the requirements
that a model must satisfy for successful inflation and generating PBHs that may account for the
DM of the Universe. In that section we also describe the strategy we follow to look for such models.
Then, in Sections 5 and 6 we discuss our results for the potentials (1.4) and (1.3), respectively. We
present our conclusions in Section 7.

2 Primordial black hole production

PBHs are formed when H becomes comparable to the wavelength of a sufficiently large primordial
density fluctuation, after inflation. Their mass (M) is assumed to be directly proportional to the
mass inside one Hubble volume at that time:

M = �MH = �
4

3
⇡⇢H

�3
, (2.1)

where the factor � depends on the details of the gravitational collapse. The precise relation between
M and MH is uncertain. Here we take � = 0.2, as suggested by the analytical model described
in [29] for PBHs formed during the radiation era, which is the situation we assume in what follows.
The relation between the comoving wavenumber, k, and the mass of the corresponding PBHs can
be obtained using the conservation of entropy, d(gs(T )T 3

a
3)/dt = 0, and the scaling of the energy

density, ⇢ / g(T )T 4, with the temperature, T , during the radiation era:

M = �MH(eq)

✓
g(Tf )

g(Teq)

◆1/2✓
gs(Tf )

gs(Teq)

◆
�2/3✓

k

keq

◆
�2

, (2.2)

where g(T ) and gs(T ) are the effective number of degrees of freedom in the radiation and the
entropy densities, respectively; and the subscripts eq and f refer to the times of matter-radiation
equality and PBH formation. The quantity MH(eq) = 4⇡⇢eqH�3

eq /3 is the horizon mass at equality.
Assuming g(T ) = gs(T ), which for our purposes is a good approximation even beyond electron-
positron annihilation, one gets:

M = 1018 g
⇣

�

0.2

⌘✓
g(Tf )

106.75

◆
�1/6✓

k

7⇥ 1013 Mpc�1

◆
�2

, (2.3)

where we have used that g(Teq) = 3.38, keq = 0.07⌦m h
2 Mpc�1 and we have written the result in

terms of the Standard Model (SM) number of relativistic degrees of freedom deep in the radiation
era, g(T ) = 106.75. Assuming the particle content of the SM, this expression then reduces to the
formula (1.1) of the Introduction.

In the context of the Press-Schechter model of gravitational collapse [45], the mass fraction in
PBHs of mass M , which we denote �(M), is given by the probability that the overdensity � is
above a certain threshold for collapse �c. Assuming that � is a random gaussian variable with mass-
(i.e. scale-) dependent variance, we have:

�(M) =
1p

2⇡�2(M)

Z
1

�c

d� exp

✓
��

2

2�2(M)

◆
. (2.4)
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with �⇤ & Mp and p⇤ either positive or negative. Putting (3.1) and (3.2) together, we can write

V (�) = m
2
f
2


1

2p

F
2

f2

✓
�1 +

✓
1 +

�
2

F 2

◆p◆
+ e

�
⇣

�
�⇤

⌘p⇤

cos

✓
�

f
+ �

◆�
+ V0 , (3.3)

where we have added a constant V0, which ensures V = 0 at the reheating minimum. The implica-
tions of Vcos then depend on p⇤, p and the rescaled amplitude of the oscillations  ⌘ ⇤4

0
/(m2

f
2).

Let us then first discuss separately the impact of , thereby initially neglecting the exponential
prefactor. Close to � = 0 we can then approximate (3.3) by

V (�) ⇡ m
2
f
2


1

2

�
2

f2
+  cos

✓
�

f
+ �

◆�
. (3.4)

It is then straightforward to see that the potential (3.4) exhibits local minima for  � 1, whereas
for  < 1 the oscillating part of the potential only gives rise to small bumps in the axion potential.
In this work we are interested in local minima which appear close to the bottom of the inflationary
potential (i.e. for �/Mp ⌧ 10) and we will thus consider  � 1.

Let us now return to the full potential. Depending on the sign of p⇤ the amplitude of the oscil-
lations is exponentially suppressed or enhanced at large field values. The value of p⇤ is determined
by the source of the non-perturbative effects that induce Vcos and by moduli stabilization. See [32]
for examples with both p⇤ > 0 and p⇤ < 0. We are interested in p⇤ > 0 since then oscillations are
absent at � � �⇤ and the flatness of the potential allows to fit the CMB without tunings, while
still featuring local minima at smaller field values. This particular behavior of the inflationary
potential is also somewhat similar to what has been used in the relaxion mechanism [66].

Finally, let us discuss the parameter �, which should be included on general grounds, since Vmon

and Vcos have a priori no reason to be aligned. Furthermore, the choice � = 0 leads to the presence
of two degenerate minima at the bottom of the potential, which may lead to stable domain walls
during the reheating phase, when the field can oscillate along the full potential. For these reasons,
in what follows we take � ⇠ 1.

The potential (3.3) is shown in Figure 5, for p = 1/3, 1/6, �1/2 from top to bottom, and with
p⇤ > 0. The figure illustrates the key feature of our inflationary potentials: beyond � ⇠ 2Mp, the
potential is essentially indistinguishable from a standard monomial, while at small field values the
periodic axionic oscillations lead to a rich structure of local minima.

Inflation along such potentials proceeds as follows. First, for large field values (� � Mp), the
inflaton slowly rolls down the potential. This phase is the one responsible for the small CMB
temperature anisotropies. Second, a regime of transient constant roll inflation (whereby �̈ / H�̇)
can be achieved as the inflaton traverses one of the local minima at � ⇠ Mp. In this regime,
super-horizon curvature fluctuations are exponentially enhanced, leading to PBH formation upon
horizon re-entry (see Section 4 for more details). Interestingly, in our scenario the two phases (slow
roll and constant roll) can be significantly decoupled from one another. The depth of the local
minima is controlled by the parameter , which can be changed without affecting the inflationary
potential in the region where CMB anisotropies are generated, as shown in Figure 5.

Due to the presence of local minima, the inflaton does not necessarily end up in the global
minimum of the potential. In fact, in the regime  � 1 the field typically gets classically stuck
in one of the local minima closest to the global minimum. Let us estimate the tunneling rate to
the global minimum from one of the nearest neighbouring local minima. This is proportional to
e
�St , where the tunneling action St can be easily estimated in the thin-wall approximation [67] as

14
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2

where aend is the value of the scale factor at the end of
inflation and ak is its value when the scale k equalled aH
during inflation.2 We will use Nhor to indicate N(a0H0).

To determine the number of e-foldings corresponding
to a scale measured in terms of the present Hubble scale,
we need a complete model for the history of the Uni-
verse. At least from nucleosynthesis onwards, this is now
well in place, but at earlier epochs there are consider-
able uncertainties. At this stage, we make the following
simple assumptions for the sequence of events after infla-
tion, considering possible alternatives in the next section.
We assume that inflation is followed by a period of re-
heating, during which the Universe expands as matter
dominated (this assumption is not true in all models —
see subsection II C). This then gives way to a period of
radiation domination, which according to the Standard
Cosmological Model lasts until a redshift of a few thou-
sand before giving way to matter domination, and then
finally at a redshift below one to a cosmological constant
or quintessence dominated era. We assume sudden tran-
sitions between these epochs, labelling the end of the re-
heating period by ‘reh’ and the matter–radiation equality
epoch by ‘eq’. This is illustrated in Figure 1.

We can therefore write

k

a0H0
=

akHk

a0H0
= e−N(k) aend

areh

areh

aeq

Hk

Heq

aeqHeq

a0H0
(2)

Some useful factors are (see e.g. Ref. [4])

aeqHeq

a0H0
= 219 Ω0h ; (3)

Heq = 5.25 × 106 h3 Ω2
0H0 ; (4)

H0 = 1.75 × 10−61 h mPl with h ≃ 0.7 (5)

Using the slow-roll approximation during inflation to
write H2

k ≃ 8πVk/3m2
Pl, we obtain

N(k) = − ln
k

a0H0
+

1

3
ln

ρreh

ρend
+

1

4
ln

ρeq

ρreh

+ ln

√

8πVk

3m2
Pl

1

Heq
+ ln 219Ω0h . (6)

which agrees with Refs. [4, 5] while being more precise
about the prefactor. In fact ultimately the dependence
on the matter density Ω0 will cancel out, and though a
dependence on h remains this parameter is now accu-
rately determined by observations.

2 As discussed by Liddle, Parsons and Barrow [3], it makes more
logical sense to define the amount of inflation as the ratio of aH,
rather than a. More on that later; for now we follow the standard
usage.

Inflation

Rad
iat

ion
Matter

LambdaPresent horizon scale

ln a

Reheating

lnH   /a−1

FIG. 1: A plot of ln(H−1/a) versus ln a shows the different
epochs in the e-foldings calculation. The solid curve shows the
evolution from the initial horizon crossing to the present, with
the dashed lines showing likely extrapolations into the past
and future. The condition for inflation is that ln(H−1/a) be
decreasing. Lines of constant Hubble parameter (not shown)
lie at 45 degrees (running top left to bottom right). The limit
of exponential inflation gives a line at this angle, otherwise
the inflation line is shallower. During reheating and matter
domination H−1/a ∝ a1/2, while during radiation domina-
tion H−1/a ∝ a. The recent domination by dark energy has
initiated a new era of inflation. The horizontal dotted line
indicates the present horizon scale. The number of e-foldings
of inflation is the horizontal distance between the time when
H−1/a first crosses that value and the end of inflation.

A. A plausible upper limit

The evolution of the Universe as described above is a
plausible model for its entire history. Nevertheless, there
are significant uncertainties in applying Eq. (6). Vk is
a quantity we would hope to extract from the perturba-
tions, but presently only upper limits exist, as the density
perturbation amplitude depends on a combination of the
potential and its slope, being unable to constrain either
separately. Detection of primordial gravitational waves,
which so far has not been achieved, is needed to break
this degeneracy. We do not know how prolonged the re-
heating epoch might be, which is needed to determine
ρreh, nor how much lower the energy density ρend at the
end of inflation might be as compared to Vk.

Nevertheless, we can impose a plausible maximum
on the number of e-foldings by making an assumption,
namely that there is no significant drop in energy density
during these last stages of inflation, so that Vk = ρend.
Note however that this is not the correct way to maximize
Eq. (6), a topic we return to in subsection II D, and so is
a non-trivial assumption. Having made it, the inflation
line in Figure 1 lies at 45 degrees, and we can maximize
the number of e-foldings by assuming that reheating is
instantaneous, so that ρreh = ρend. Focussing now on the
current horizon scale, this gives a maximum number of

Adapted from Liddle and Leach, 2003

Matter PBH 
ln 1/kPBH

Reheating

Dark energy

PBH formation during early matter domination



where H is equal to 1/(2t) for RD after inflation and 2/(3t) for a phase of early MD. The coefficient
� quantifies the efficiency of the collapse. Numerical analyses in the case of RD indicate that
� depends on the spectral shape of the density fluctuations and that the actual mass depends
mildly on the density threshold that triggers the formation of a PBH [41]. We will neglect these
dependencies and use � = 0.2 for RD, see [11, 41]. The actual efficiency of the collapse in MD is
uncertain but may be expected to be higher than in RD due to the absence of radiation pressure.
For concreteness, we take � = 1 for MD in the numerical examples of Section 4, although we keep
� unspecified in most of the expressions below.

An overdensity of comoving scale k re-enters the Hubble horizon at time tk, when the condition
k = a(tk)H(tk) ⌘ akHk is satisfied. If this occurs during a MD phase which ends at time tm,
we can write: ak = (ak/am) (am/a0) , where a0 is the scale factor today, which we normalize to
one. Entropy conservation from tm until today implies that am/a0 = (T0/Tm) (gs(T0)/gs(Tm))1/3,
where T0 is the current CMB temperature. During the phase of early MD there is no thermal
equilibrium, but the scaling ak/am = (Hm/Hk)2/3 can be used. Combining these results with the
condition for horizon crossing and using that 3M

2
pH

2
m = (⇡2

/30)g(Tm)T 4
m to eliminate Hm, we

obtain

ak =
⇡
2

90
g(Tm)

gs(T0)

gs(Tm)

T
3

0
Tm

k2M2
p

, (2.3)

where we are keeping the number of effective entropy (gs) and temperature (g) relativistic degrees
of freedom distinct and T0 is the temperature of radiation today. This expression allows us to write
the PBH mass of (2.2) as

MPBH = �
2⇡

3

45

✓
T0

k

◆
3

gs(T0)

gs(Tm)
g(Tm) Tm , for early MD . (2.4)

If the PBHs form during RD, the expression for their mass can be obtained following a similar
logic. In this case

ak =
⇡

3
p

10
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2/3

T
2
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k Mp

p
g(Tk), (2.5)

and therefore
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3
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k

◆
2
✓

gs(T0)

gs(Tk)

◆
2/3p

g(Tk) Mp for RD . (2.6)

The PBH mass thus scales as k
�2 if PBHs form during RD and k

�3 during early MD. In the
latter case the PBH mass depends also on the duration of the phase of early MD through the
reheating temperature Tm, see (2.1). For the purpose of comparison, it is useful to write both mass
expressions in terms of some benchmark values for k, Tm, and the mass of the Sun, M�:

MPBH ' 2.8 · 10�16
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g(Tk)

gs(Tk)

◆
2/3✓106.75
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1014 Mpc�1

k

◆3✓
Tm

105 GeV
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where H is equal to 1/(2t) for RD after inflation and 2/(3t) for a phase of early MD. The coefficient
� quantifies the efficiency of the collapse. Numerical analyses in the case of RD indicate that
� depends on the spectral shape of the density fluctuations and that the actual mass depends
mildly on the density threshold that triggers the formation of a PBH [41]. We will neglect these
dependencies and use � = 0.2 for RD, see [11, 41]. The actual efficiency of the collapse in MD is
uncertain but may be expected to be higher than in RD due to the absence of radiation pressure.
For concreteness, we take � = 1 for MD in the numerical examples of Section 4, although we keep
� unspecified in most of the expressions below.

An overdensity of comoving scale k re-enters the Hubble horizon at time tk, when the condition
k = a(tk)H(tk) ⌘ akHk is satisfied. If this occurs during a MD phase which ends at time tm,
we can write: ak = (ak/am) (am/a0) , where a0 is the scale factor today, which we normalize to
one. Entropy conservation from tm until today implies that am/a0 = (T0/Tm) (gs(T0)/gs(Tm))1/3,
where T0 is the current CMB temperature. During the phase of early MD there is no thermal
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where we are keeping the number of effective entropy (gs) and temperature (g) relativistic degrees
of freedom distinct and T0 is the temperature of radiation today. This expression allows us to write
the PBH mass of (2.2) as
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�3 during early MD. In the
latter case the PBH mass depends also on the duration of the phase of early MD through the
reheating temperature Tm, see (2.1). For the purpose of comparison, it is useful to write both mass
expressions in terms of some benchmark values for k, Tm, and the mass of the Sun, M�:
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on the variance of the density fluctuations through a power-law, unlike in the RD case, where
the dependence is exponential. In the case of MD, for small enough density fluctuations, the
angular momentum of the collapsing region cannot be neglected and the PBH fraction regains a
multiplicative exponential factor [38], but this exponential dependence is still much milder than in
RD. Therefore, the enhancement of the primordial power spectrum required to form a significant
amount of PBHs during MD can be orders of magnitude smaller than during RD, due to the
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principle also be formed in our scenario, but they require further tuning of the parameters in the
inflationary potential, and lower reheating temperatures. Similarly, our setup also allows for PBH
formation during RD, at the usual cost in terms of parameter tuning.

This paper is structured as follows: in Section 2, we discuss the advantages of PBH formation
during MD with respect to RD. We review the PBH abundance and mass formulae when they form
during MD, and compare them to the case in which they form during RD. We also discuss the
conditions under which a long epoch of MD due to inflaton oscillations can be achieved. In Section
3, we present the inflationary potential we consider, motivated by AMI. Section 4 is devoted to
the numerical computation of the inflationary power spectrum for two examples. We discuss our
findings in Section 5.

2 Primordial black hole formation during matter domination

PBHs can originate from the gravitational collapse of regions with large density fluctuations, which
we assume are seeded by inflation. The mass and abundance of these PBHs depend on the equation
of state of the Universe when the wave number of the fluctuations becomes comparable to the
Hubble radius after inflation. During radiation domination (RD) the radiation pressure opposes
the gravitational collapse, whereas during matter domination (MD) any overdensity grows since
the pressure is zero. In this section we thus focus on PBH formation during an early epoch of
MD, which starts right after the end of inflation. We use tm ⇠ Hm to denote the time at which
MD ends. For simplicity, we consider that the Universe thermalizes instantaneously at tm and
becomes radiation dominated. Given that in RD the Hubble expansion rate is H = 1/(2t) and the
energy density during this period is therefore ⇢ = 3M

2

P /(4t
2), we can define the temperature of

the radiation bath at thermalization, T , through ⇢ = (⇡2
/30)g(T )T 4 as

Tm =

✓
Mp

tm

◆
1/2✓4⇡

2
g(Tm)

90

◆�1/4

, (2.1)

where g =
P

b gb +(7/8)
P

f gf counts the effective number of the degrees of freedom and the sums
over b and f run, respectively, over the baryonic and fermionic species whose masses are below T

5
Similar conclusions were reached in previous works. In this paper, we expand with respect to [38] and improve

previous estimates presented in [25], which also considers a modulated potential in a different inflationary setup.
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The expressions above have been obtained by setting T0 = 2.7255 K [42], g(T0) = 2.00, and
gs(T0) = 3.91. These values for the entropy and temperature degrees of freedom correspond to
assuming that all three neutrinos are non-relativistic today, see [40]. We plot equation (2.8) in
Figure 4 (solid orange lines), together with other quantities and constraints which we introduce in
the following subsections.

2.2 Primordial black hole abundance

We are interested in the current abundance of PBHs with respect to that of DM:

fPBH =
⌦0

PBH

⌦0

DM

. (2.9)

In the approximation of rapid collapse of the overdensity, fPBH can be written in terms of �, i.e. the
ratio of the collapsing energy density to the total energy density at the time of the collapse:

� =
1

�

⇢PBH(tk)

⇢(tk)
. (2.10)

Here ⇢PBH and ⇢ are the PBH and total energy densities, respectively. As in the previous subsection,
the constant � encodes the efficiency of the collapse, see (2.2).

In the case of PBHs formed during an early phase of MD, by means of entropy conservation
and using ⇢m = (⇡2

g(Tm)/30)T 4
m, we obtain

fPBH = � �
⌦0
�

⌦0

DM

g(Tm)gs(T0)

g(T0)gs(Tm)

Tm

T0

. (2.11)

As explained before, to obtain this result we have assumed that the transition between the different
epochs depicted in Figure 2 is instantaneous.

The analogous expression for RD is obtained from (2.11) by simply setting Tm = Tk, where Tk is
the temperature of the radiation at the time of formation. In this case we can write Tk as a function
of the Hubble rate and relate this to the PBH mass through (2.2). Then, the expressions for the
PBH abundance as a function of the quantity � in the RD and early MD cases are, respectively:

fPBH '
⇣

�

0.2

⌘
3/2

✓
�

8.9 · 10�16

◆✓
g(Tk)

106.75

◆�1/4✓
g(Tk)

gs(Tk)

◆✓
MPBH

10�15 M�

◆�1/2

for RD , (2.12)

fPBH ' �

✓
�

5.5 · 10�15

◆✓
g(Tm)

gs(Tm)

◆✓
Tm

105 GeV

◆
for early MD . (2.13)

The temperature dependence of the PBH abundance in the early MD case implies that a shorter
duration of this phase (i.e. a higher reheating temperature) implies a larger abundance, see equation
(2.1). This is simply due to the fact that PBHs, being cold dark matter, dilute slower than radiation
as the Universe expands. Therefore, the longer the duration of the RD phase is (i.e. the shorter is
the early MD phase), the higher the abundance of PBHs.

Notice that we could also write fPBH in the early MD case as a function of the PBH mass,
using (2.8). However, unlike in the RD case of (2.12) this introduces explicitly the wavenumber k,
which makes the formula more cumbersome.
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Figure 4. Mass of PBHs formed during an early matter dominated phase as a function of the scale k

of the collapsing fluctuation and the reheating temperature Tm, fixing � = 1, for fPBH = 0.1 (left) and

fPBH = 1 (right). The dashed purple lines show the height of the power spectrum required to get the fixed

value of fPBH as a function of Tm. We use the formula for the fraction (2.17), which is the relevant one

in the plotted region of parameter space, and the approximation �
2 ' (4/25)PR. PBHs with massses below

⇠ 10�16
M� are evaporating today and are thus constrained by extragalactic gamma-rays [7–9] (pink-shaded

region). Similarly, masses above ⇠ 10�11
M� are constrained by microlensing see [6, 10] (not shown here).

The blue-shaded region corresponds to the constraint (2.19).

the collapse during MD. This constraint can be conveniently expressed as follows:

� & 1.9 · 10�4
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g(Tm)
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◆✓
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gs(Tm)

◆
2/3✓

Tm

105GeV

◆
2
✓

1014Mpc�1

k

◆2

. (2.18)

When the rotation of the collapsing fluctuation plays a role (i.e. for � . �ang) the constraint
is slightly stronger than (2.18). This can be understood as follows: during the linear evolution
of an overdensity, its angular momentum grows; in particular, the longer the duration of the
linear evolution, the stronger will be the effect of angular momentum on the gravitational collapse.
Therefore, a different lower bound on � arises from requiring that the growth of angular momentum
does not prevent PBH formation. The resulting constraint is � & 5Hm/(2 I Hk) –we refer the
reader to [38] for its derivation– and can be rewritten as

� & 10�5
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g(Tm)

106.75

◆
3/2✓ 106.75

gs(Tm)

◆✓
Tm

105GeV

◆
3
✓

1014Mpc�1

k

◆3

. (2.19)

The advantage of considering an early phase of MD for PBH formation is reflected in Figure 4,
where we plot the PBH masses according to (2.8) (solid orange lines) as well as the amplitude
of the primordial power spectrum required to obtain fPBH = 1 (dashed purple lines) combining
(2.13) and (2.17), which is the appropriate expression for � in the region of parameter space where
� . �ang.9 We also show the observational bounds on PBH masses from Hawking evaporation [7–9]

9
The analysis of [38] suggests that the value �ang ' 0.005 should be taken as an order of magnitude estimate,

rather than as a sharp threshold. In particular, effects of order higher than second in angular momentum may lower

this value of �ang and extend the validity of (2.16). This would lead to slightly smaller values of PR being required

for fPBH smaller than one, which are more advantageous for PBH formation, but the constraint (2.18) would then

disfavor a larger region of parameter space, leading to slightly lower reheating temperatures.
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The advantage of considering an early phase of MD for PBH formation is reflected in Figure 4,
where we plot the PBH masses according to (2.8) (solid orange lines) as well as the amplitude
of the primordial power spectrum required to obtain fPBH = 1 (dashed purple lines) combining
(2.13) and (2.17), which is the appropriate expression for � in the region of parameter space where
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Potential with inflection point

Watch out for light PBHs: 10�16M�
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PBH from inflation: not generic

Small speed of sound.  
EFTs: strong coupling?

Multiple minima (modulation) 
Early phase of matter domination


