Gravitational waves and cosmology: the potential of the LISA observatory

> Chiara Caprini CNRS (APC Paris)

GW and cosmology: observational scientific context

- Several direct GW detections by the Earth-based interferometer network LIGO/Virgo since 2015 we have a new observable to probe the universe
- GW170817 NS binary merger: first coincident detection of GW and EM signals, measure of Hubble factor, constrains on modified gravity theories GW have the potential to constrain cosmology
- ESA space mission LISA is on the path to launch in 2032 a new frequency range will be accessible, between Pulsar Timing Array and Earth-based interferometers, with great potential for cosmology

GW and cosmology: detectors

LISA: Laser Interferometer Space Antenna

- no seismic noise
- much longer arms than on Earth

frequency range of detection: $10^{-4} \text{ Hz} < f < 1 \text{ Hz}$

LISA mission chronology

- 2013: ESA selects LISA scientific theme for L3: "the gravitational universe"
- LISA Pathfinder : 2016-2017, it demonstrates the feasibility of LISA
- 1/2017: LISA Consortium submits the LISA proposal, approved by ESA
- 3/2017 3/2018 : ESA Phase 0 study,
- 3/2018 ~2020 : ESA Phase A study (with industries)
- Reboot of the Consortium: ~1000 membres
- ~2022: ESA mission adoption
- ~8.5 years: mission construction
- ~2034: launch (Ariane 6)
- nominal mission duration 4 years, tested extension up to 10 years, cost: 1050 M€

LISA Cosmology Working Group

The goal of the CosWG is to investigate the scientific return of LISA in relation to cosmology

- operational since 2015, ~230 members
- coordinators: R. Caldwell, CC, G. Nardini
- eight meetings, one school
- several scientific results, presented in the following

GW AND COSMOLOGY

LISA has a great potential to probe cosmology

GW AND COSMOLOGY

the stochastic GW background from primordial sources: test of early universe and high energy phenomena

LISA has a great potential to probe cosmology use of GW emission from binaries to probe late-time dynamics and content of the universe

GW AND COSMOLOGY: early universe

- prediction of the SGWB signal from early universe sources: inflation-related, phase transition-related...
- develop SGWB detection techniques: parameter estimation, foreground analysis...

- Since gravity is weak, GW propagate freely through the universe the GW signal from the early universe can be used as a probe of high energy physics
- The potential of GW to improve our knowledge of the universe is comparable to the one of the CMB at its dawn
- but do we expect primordial sources providing a GW signal high enough to be detectable?

tensor perturbations of FRW metric:

$$ds^{2} = -dt^{2} + a^{2}(t)[(\delta_{ij} + h_{ij})dx^{i}dx^{j}]$$
$$|h_{ij}| \ll 1$$

$$h_i^i = \partial_j h_i^j = 0$$

superimposed on the homogeneous and isotropic background

tensor perturbations of $ds^2 = -dt^2 + a^2(t)[(\delta_{ij} + h_{ij})dx^i dx^j]$ FRW metric:

WAVE
$$\ddot{h}_{ij} + 3H \dot{h}_{ij} + k^2 h_{ij} = 0$$

source: amplification of vacuum fluctuations during inflation

tensor perturbations of $ds^2 = -dt^2 + a^2(t)[(\delta_{ij} + h_{ij})dx^i dx^j]$ FRW metric:

WAVE
$$\ddot{h}_{ij} + 3H \dot{h}_{ij} + k^2 h_{ij} = 16\pi G \Pi_{ij}^{TT}$$

source: Π_{ij}^{TT} tensor anisotropic stress

• fluid
$$\Pi_{ij} \sim \gamma^2 (\rho + p) v_i v_j$$

• electromagnetic field $\Pi_{ij} \sim (E^2 + B^2) \frac{\delta_{ij}}{3} - E_i E_j - B_i B_j$

• scalar field $\Pi_{ij} \sim \partial_i \phi \, \partial_j \phi$

GW from active sources in the early universe: inflation-related

- SGWB from inflation by second order scalar perturbations
- beyond the irreducible SGWB from inflation
 - particle production during inflation (scalar, gauge fields... coupled to the inflaton)
 - spectator fields
 - breaking symmetries (space-dependent inflaton, massive graviton...)
 - modified gravity during inflation (massive GWs with $c \neq 1$)
 - primordial black holes
- preheating and non-perturbative phenomena
 - parametric amplification of bosons/fermions
 - symmetry breaking in hybrid inflation
 - decay of flat directions
 - oscillons

CC and Figueroa arXiv:1801.04268

GW from active sources in the early universe: phase transition-related

- first order phase transition
 - true vacuum bubble collision
 - sound waves
 - turbulence
- cosmic topological defects
 - irreducible SGWB from topological defect networks
 - decay of cosmic string loops

CC and Figueroa arXiv:1801.04268

Stochastic GW background

active causal source of GW cannot operate beyond the horizon (Hubble scale)

Characteristic frequency for causal sources

$$f_{*} = \frac{H(T_{*})}{\epsilon_{*}} \longrightarrow \text{ parameter depending on the dynamics of the source} \qquad \epsilon_{*} = L_{*}H_{*}$$
$$f_{*} = \int_{\text{characteristic scale of tensor stresses}} f_{c} = f_{*}\frac{a_{*}}{a_{0}} = \frac{2 \cdot 10^{-5}}{\epsilon_{*}} \frac{T_{*}}{1 \text{ TeV}} \text{ Hz}$$

Characteristic frequency for causal sources

SGWB from slow roll inflation

$$\Omega_{\rm GW}(f) = \frac{3}{128} \,\Omega_{\rm rad} \, r \, \mathcal{P}_{\mathcal{R}}^* \left(\frac{f}{f_*}\right)^{n_T} \left[\frac{1}{2} \left(\frac{f_{\rm eq}}{f}\right)^2 + \frac{16}{9}\right]$$

- tensor to scalar ratio $r = \mathcal{P}_h / \mathcal{P}_R$ $r_* \leq 0.07$
- scalar amplitude at CMB pivot scale $\mathcal{P}_{\mathcal{R}}^* \simeq 2 \cdot 10^{-9}$

 $k_{\mathcal{R}}^* \simeq 2 \cdot 10^{-9} \qquad k_* = \frac{0.05}{Mpc}$

tensor spectrum
$$\mathcal{P}_h = \frac{2}{\pi} \frac{H^2}{m_{Pl}^2} \left(\frac{k}{aH}\right)^{-2\epsilon} \quad n_T \simeq -2\epsilon$$

• transfer function from inflation to today

SGWB from slow roll inflation

just one example: inflaton-gauge field coupling

OTHER SIGNATURES: non-gaussianity, chirality

N. Bartolo et al, arXiv:1610.06481 N. Bartolo et al, arXiv:1806.02819

general constraints on (r,n_T) from LISA

k_{*}=0.05/Mpc

 n_{T}

SGWB from first order phase transitions

in the course of its adiabatic expansion, the universe might have undergone several PTs, maybe of first order

potential barrier separates true and false vacua quantum tunneling across the barrier : nucleation of bubbles of true vacuum

- QCD and EWPT (beyond the standard paradigm)
- higher temperature PTs (extra dimensions, dark matter models...)

SGWB from first order phase transitions

$$\ddot{h}_{ij} + 3H\,\dot{h}_{ij} + k^2\,h_{ij} = 16\pi G\,\Pi_{ij}^{TT}$$

• collisions of bubble walls $\Pi_{ij}\sim \partial_i\phi\,\partial_j\phi$

• sound waves and turbulence in the fluid $\Pi_{ij} \sim \gamma^2 (\rho + p) v_i v_j$

• primordial magnetic fields (MHD turbulence)

$$\Pi_{ij} \sim (E^2 + B^2) \frac{\delta_{ij}}{3} - E_i E_j - B_i B_j$$

LISA (mHz) is sensitive to energy scales around the **TeV scale**, so it can can probe the EWPT in BSM models and more exotic PTs beyond the EWPT

connections with baryon asymmetry, dark matter : LISA as a probe of BSM physics, complementary to colliders

LISA (mHz) is sensitive to energy scales around the **TeV scale**, so it can can probe the EWPT in BSM models and more exotic PTs beyond the EWPT

connections with baryon asymmetry, dark matter : LISA as a probe of BSM physics, complementary to colliders

CC et al, arXiv:1910.13125

http://www.ptplot.org/ptplot/

PTPlot: Plot multiple parameter points

Note that the input table should be a comma-separated list of pairs of α_{θ} , β/H_* and (optic each point (Math mode TeX is allowed, surrounded by \$ signs, in the label ignored.

NB: eta/H_* against lpha plots require $v_{
m w}$ to be fixed.

PTPlot: Z_2 -symmetric singlet scalar benchmark points

PTPlot

PTPLOT BY DAVID WEIR ON BEHALF OF THE LISA COSMOLOGY WORKING GROUP.

SGWB from cosmic strings

Cosmic strings are topological defects that can be left over after a phase transition in the early universe <u>A network of cosmic strings emits a GW background</u> (though the results are very model dependent)

https://curl.irmp.ucl.ac.be/~chris/strings.html

One model of Nambu Goto local strings

LISA
$$G\mu < \mathcal{O}(10^{-17})$$

future CMB B-modes $G\mu < 10^{-9}$ Future SKA $G\mu < 10^{-13}$

Auclair et al, arXiv:1909.00819

Suppose we detect a SGWB: is it primordial or astrophysical? Which source generated it?

The SGWBinner code proposes a method to reconstruct the SGWB shape

- Simulates data with noise
- Divides LISA sensitivity band in bins, and fits for noise and signal within each bin assuming a simple power law for the signal
- Merges nearby bins if the likelihood improves

CC et al, arXiv:1906.09244

The SGWBinner code proposes a method to reconstruct the SGWB shape

- Simulates data with noise
- Divides LISA sensitivity band in bins, and fits for noise and signal within each bin assuming a simple power law for the signal
- Merges nearby bins if the likelihood improves

CC et al, arXiv:1906.09244

GW AND COSMOLOGY: late time universe

- forecasts of LISA standard sirens: type of sources, counterparts, new methods (GW propagation, clustering...)
- analysis of models and their observables: cosmological constant, (dynamical) dark energy, modified gravity theories, PBH...

Late-time universe: standard sirens

GW emission by compact binaries can be used as SuperNovae Ia to test the expansion of the universe

Standard sirens

GW emission by compact binaries + redshift by an EM counterpart can be used to probe the distance-redshift relation

$$h_{+}(t) = \frac{4}{d_{L}(z)} \left(\frac{G\mathcal{M}_{c}}{c^{2}}\right)^{\frac{5}{3}} \left(\frac{\pi f}{c}\right)^{\frac{2}{3}} \frac{1 + \cos^{2} \imath}{2} \cos[\Phi(t)]$$
$$h_{\times}(t) = \frac{4}{d_{L}(z)} \left(\frac{G\mathcal{M}_{c}}{c^{2}}\right)^{\frac{5}{3}} \left(\frac{\pi f}{c}\right)^{\frac{2}{3}} \cos \imath \sin[\Phi(t)]$$

 $d_L(z, H_0, \Omega_M, \Omega_\Lambda, \dots)$

- direct measurement of d_L up to large redshift with GW
- it needs an independent measurement of the redshift

Standard sirens with LISA

low redshift sources: redshift identification without counterpart

Belgacem et al, arXiv:1906.01593

$$\tilde{h}_A'' + 2\mathcal{H}[1 - \delta(\eta)]\tilde{h}_A' + k^2\tilde{h}_A = 0$$

general parametrisation:

$$\frac{d_L^{\rm gw}(z)}{d_L^{\rm em}(z)} = \Xi_0 + \frac{1 - \Xi_0}{(1 + z)^n}$$

Massive black hole binaries catalogues used to test modified gravity theories

$$\frac{\Delta H_0}{H_0} = 3.8\%$$

Conclusions

LIGO/Virgo detections have opened the era of GW astronomy and cosmology (measurement of $H_{0,}$ tests of $GR_{...}$)

LISA is on the path to launch in 2034 and it has the potential to probe the early universe and late-time cosmology

there can be a cosmic relic SGWB which, if detected, will bring information on the very early universe and high energy physics (complementary to particle colliders)

LISA can test non-standard inflationary models, the EW symmetry breaking and beyond, cosmic strings...

GW emission from compact binaries with or without em counterpart can be used to probe the cosmological parameters and modified gravity theories