Evolution of DNA motifs by protein binding

U. Gerland & T. Hwa

Department of Physics, University of California at San Diego

Regulatory protsin

Outline

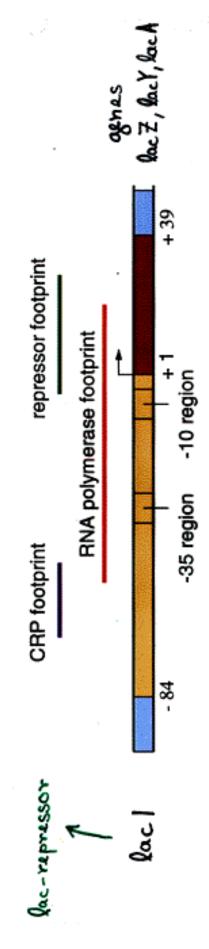
Review of Protein-DNA interaction

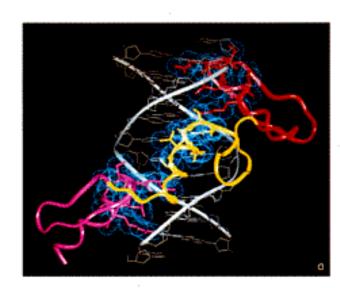
¥ A

- Evolutionary model for a single binding site
- Selection threshold and stationary distributions
- Evolution of a pair of sites
- Application to CRP binding sites in E. coli

NSF Grant No. DMR-9971456, DBI-9970199, Beckmann Foundation Acknowledgments: Hochschulsonderprogramm III of the DAAD (U.G.),

- transcription factors bind to specific operator sites on DNA
- hydrogen bonds + electrostatic interaction
- transcription factors are activators or repressors
- Example: regulation of lac Operon





AAAGTGTGACGCCGTGCAAATAAT **ATTTCGTGATGTTGCTTGCAAAAA** TTTATGTGCGCATCTCCACATTAC **ATTCTGTAACAGAGATCACAAA** CCTTTGTGATCGCTTTCACGGAGC AAAACGTGATCAACCCCTCAATTT **AACTTGTGGATAAAATCACGGTCT** GTTTTGTTACCTGCCTCTAACTTT TTAATTTGAAAATTGGAATATCCA **AATTTGCGATGCGTCGCGCATTTT** TTAATGAGATTCAGATCACATATA **AATGTGTGCGGCAATTCACATTTA** GAAACGTGATTTCATGCGTCATTT **AAATGACGCATGAAATCACGTTTC** TTGCTGTGACTCGATTCACGAAGT TTTTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA **ATAATGTTATACATATCACTCTAA** CGATTGTGATTCGATTCACATTTA GTTTTGTGATGGCTATTAGAAATT GAACTGTGAAACGAAACATATTTT AATGTGTGTAAACGTGAACGCAAT TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAAGCAACATCACGAAAT TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT ATTATTTGAACCAGATCGCATTAC TAATTGTGATGTGTATCGAAGTGT

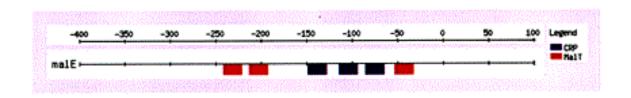
CRP binding sites in E.Coli

Observations:

- 10 nucleotides carry most of the specificity
- large variation around consensus TGTGA...TCACA
- ⇒ fuzzy motifs, i.e. no DNA-protein recognition code
 - sites often occur in doublets or triplets

Hypothesis:

Sequences result from an equilibrium between mutational drift and selection pressure towards high binding affinity



Review: Protein-DNA binding

Binding energy:

independent contribution from each nucleotide

$$E_{\vec{S}} \approx \sum_{i=1}^L E_i(S_i)$$

Simplification:

2-state model

$$E_i(S_i) = \begin{cases} 0, \text{ match} \\ \varepsilon, \text{ mismatch} \end{cases}$$

take only most significant positions into account

Typical values:

$$L=10...15, \varepsilon=1...3k_BT$$

Binding energies for Mnt (in k_BT):

bos.	10	11	12	13	14	15	16	17
A	1.8	2.4	1.6	1.0	0	2.1	8.0	1.1
O	2	1.9	4.2	2.1	0.3	0	0	0
Ö	0	1.6	1.6 0	0	1.2 3.2 1.0	3.2	1.0	1.2
T	3.0	0	2.5	2.2	9.0	2.3	0.7	0.3

(D.S. Fields, Y. He, A.Y. Al-Uzri & G. Stormo, 1997)

Binding probability:

depends only on number $r_{\vec{S}} = |\vec{S} - \vec{S}^*|$ of mismatches from optimal binding sequence \vec{S}^*

$$P(r) = \frac{1}{1 + e^{\varepsilon(r - r_0)}} \quad 1 \le r_0 \le 5$$

 $\varepsilon r_0 = \text{chemical potential (depends on [protein] and non-specific binding)}$

Goals

- Quantify the selection pressure needed for the maintenance of motifs
- Derive nucleotide statistics at given selection pressure and mutation rate
 - → explain fuzziness
- Estimate selection pressure acting on an individual binding site
- Explain and interpret the occurrence of doublets and triplets

Evolutionary Model

Selection + Mutation Binding sequence: $\vec{S} = \{S_1, S_2, ..., S_L\}$ $L \text{ nucleotides } S_i \in \{\mathtt{A},\mathtt{C},\mathtt{G},\mathtt{T}\}$

Selection:

"fitness" = reproduction rate $\Phi_{\vec{S}}$ no binding: $\Phi_{\vec{S}} = \phi_0 = \ln 2/\tau$ perfect binding: $\Phi_{\vec{S}} = \phi_0(1 + \alpha)$ $\Rightarrow \Phi_{\vec{S}} = \phi_0 \cdot (1 + \alpha \cdot P_{\vec{S}})$ with $P_{\vec{S}} = \text{binding probability}$

Mutation:

single-nucleotide mutations $S_i \to S_j \neq S_i$ at rate μ_0 total mutation rate of sequence $\mu = \mu_0 (A - 1) L$ typical (E.coli): $\mu \sim 10^{-8}/\tau, \ \tau \approx 10 \, \mathrm{min}$

no binding is lethal no selection \$ \$ ↑ × × 0 ↑ α α = dimensionless selection pressure:

 $N_{\vec{S}}(t) = \langle \# \text{ of individuals with sequence } \vec{S} \rangle \to \text{Mean-field equation}$

 $\partial_t N_{\vec{S}}(t) = \mu_0 \sum N_{\vec{S}'}(t) \, \delta_{|\vec{S} - \vec{S}'|,1} - \mu \, N_{\vec{S}}(t) + \Phi_{\vec{S}} \, N_{\vec{S}}(t)$

"Radial" evolution equation

Fitness depends only on $r \Rightarrow \text{introduce radial distribution}$

$$N(r,t) = \sum_{\vec{S}} N_{\vec{S}}(t) \, \delta_{r,\,|\vec{S} - \vec{S} \cdot |}$$

Count number of possible mutations from r mismatches:

e.g.
$$r=3$$
: $r \rightarrow r+1$: $(L-r)(\mathcal{A}-1)$
 $r \rightarrow r$: $r(\mathcal{A}-2)$
 $r \rightarrow r$: $r(\mathcal{A}-2)$
TATGA...GCTCA $r \rightarrow r-1$: r

⇒ evolution equation in discrete Hamming distance space

$$\partial_t N(r,t) = \Phi(r)N(r,t) + \mu_0 \left[(r+1)N(r+1,t) - rN(r,t) \right] +$$

$$- \mu_0 (A-1) \left[(L-r)N(r,t) - (L-(r-1))N(r-1,t) \right]$$

Continuum limit

 \Rightarrow Drift-diffusion equation

$$\partial_t n(r,t) = \partial_r \left[D(r) \partial_r n(r,t) - v(r) n(r,t) \right] + \left[\phi_0 + \Delta \phi(r) \right] n(r,t)$$

Diffusion coefficient

$$D(r) = \frac{\mu}{2} \left[1 - \frac{\mathcal{A} - 2}{\mathcal{A} - 1} \frac{r}{L} \right]$$

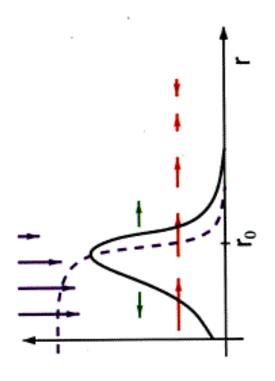
Drift velocity

$$v(r) = \mu \left[1 - \frac{A}{A - 1} \frac{r}{L} \right]$$

drives distribution to $\bar{r} =$

Source tern

$$\Delta\phi(r) = \frac{\phi_0 \,\alpha}{1 + e^{\varepsilon(r - r_0)}}$$



Selection threshold

Solve continuum equation for the simplified case

$$D(r) \approx D = \mu/2$$
, $v(r) \approx v = \mu$, $\Delta \phi(r) \approx \alpha \theta(r_0 - r)$

$$D(r) \approx D = \mu/2$$
, $o(r) \sim 0 - \mu$, $-\tau(r) = 0$
 $\Rightarrow \partial_t n(r,t) = D \partial_r^2 n(r,t) - v \partial_r n(r,t) + [\phi_0 + \Delta \phi(r)] n(r,t)$

(non-hermitian quantum mechanics problem → Hatano & Nelson, 1997)

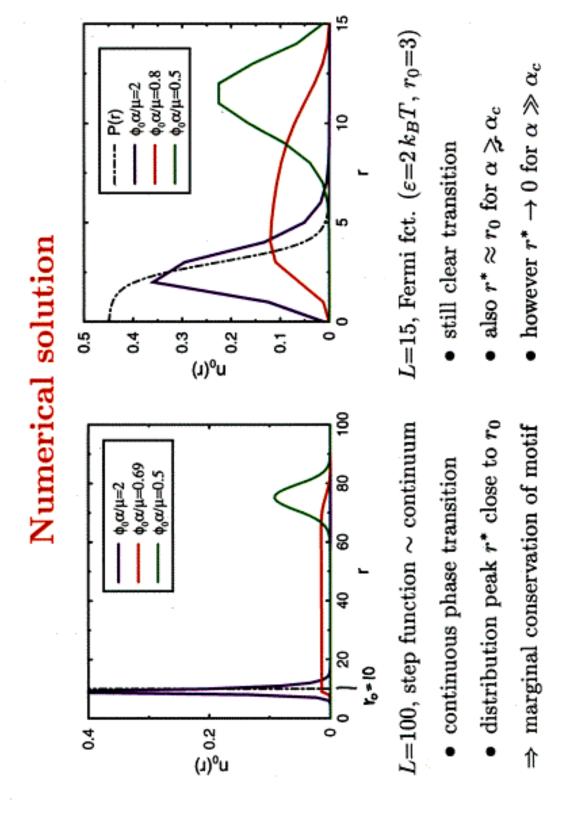
Delocalization transition \(\longleq \text{Eigen's quasispecies transition} \)

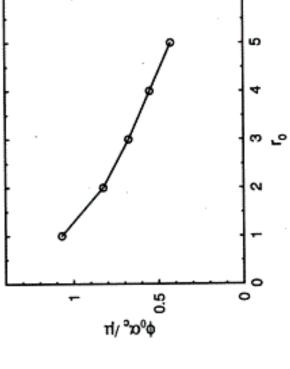
Continuous transition:

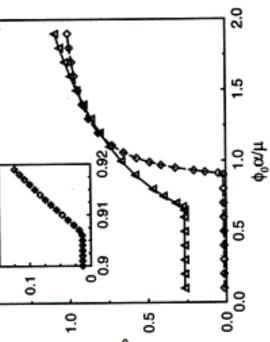
$$lpha_c = rac{\mu}{2\phi_0} \left[1 + rac{\eta_c^2}{r_0^2} \right] \,, \qquad \langle r
angle \sim (lpha - lpha_c)^{-1} \,\, ext{for} \,\, lpha \geqslant lpha_c$$

If α fluctuates in time (due to variations in environment), we expect

$$\langle r \rangle \sim (\alpha - \alpha_c)^{-2} \longrightarrow (\text{Lubensky \& Nelson; 2000})$$







numerics confirms critical behavior $\langle r \rangle \sim (\alpha - \alpha_c)^{-1}$

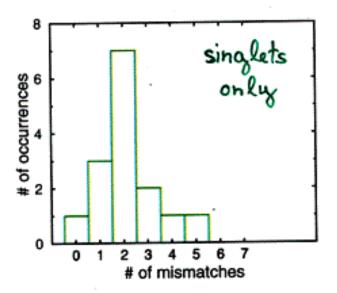
discrete case shows similar behavior

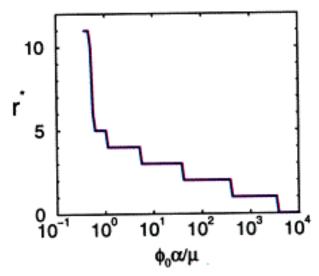
weak dependence of α_c on r₀

 $\mu \sim 10^{-8}/\tau$, $\phi_0 = \ln 2/\tau \Rightarrow \alpha_c \sim 10^{-8}$, i.e. extremely small

Revisit CRP sites:

....TGTGA.....TCACA.... AAAGTGTGACGCCGTGCAAATAAT ATTT CGTGATGTTGC TTGCAAAAA TTTATGTGCGCATCT CCACATTAC ATTCTGTAACAGAGATCACACAAA CCTTTGTGATCGCTTTCACGGAGC 1 AAAA CGTGATCAACC CCTCAATTT AACTTGTGGATAAAATCACGGTCT GTTTTGTTACCTGCCTCTAACTTT TTAATTTGAAAATTGGAATATCCA **AATTTGCGATGCGTCGCGCATTTT** TTAATGAGATTCAGATCACATATA **AATGTGTGCGGCAATTCACATTTA** GAAA CGTGATTTCAT GCGTCATTT AAAT GACGCATGAAA TCACGTTTC TTGCTGTGACTCGATTCACGAAGT TITTTGTGGCCTGCTTCAAACTTT GAATTGTGACACAGTGCAAATTCA ATAA TGTTATACATA TCACTCTAA CGATTGTGATTCGATTCACATTTA GTTTTGTGATGGCTATTAGAAATT GAACTGTGAAACGAA ACATATTTT AATGTGTGTAAACGT GAACGCAAT TTTGTGTGATCTCTGTTACAGAAT GTAATGTGGAGATGCGCACATAAA TTTTTGCAAGCAACATCACGAAAT TTAATGTGAGTTAGCTCACTCATT ATTATTTGCACGGCGTCACACTTT ATTATTTGAACCAGATCGCATTAC TAATTGTGATGTGTATCGAAGTGT





⇒ Can estimate selection pressure on individual binding sequences

What about the multiplets?

Evolution model for doublets

What is the fitness function for a doublet?

 $\vec{S}_1, \vec{S}_2 = \text{two binding sequences for the same regulatory protein}$ in promoter region of the same gene $\Phi_{\vec{S}_1,\vec{S}_2} = \text{reproduction rate of the organism in the presence of } \vec{S}_1 \text{ and } \vec{S}_2$

Partial fitness: $\Delta \Phi_{\vec{S}_1,\vec{S}_2} = \Phi_{\vec{S}_1,\vec{S}_2} - \phi_0$

Probability that at least one site is occupied by a protein:

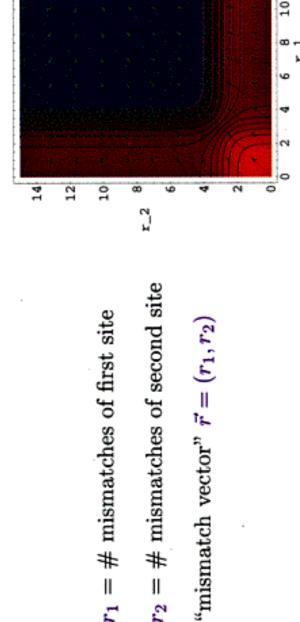
$$P_{\vec{S}_1}(1-P_{\vec{S}_2})+P_{\vec{S}_2}(1-P_{\vec{S}_1})+P_{\vec{S}_1}P_{\vec{S}_2}>P_{\vec{S}_1}\;,\;P_{\vec{S}_2}$$

In general, two proteins may be better than one,

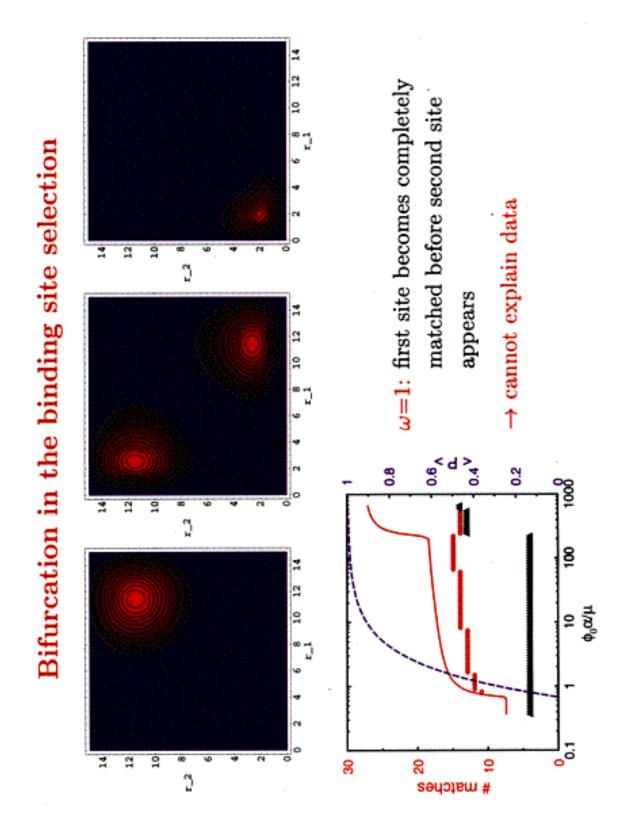
$$\Delta \Phi_{\vec{S}_1, \vec{S}_2} = \alpha \phi_0 \cdot [P_{\vec{S}_1} (1 - P_{\vec{S}_2}) + P_{\vec{S}_2} (1 - P_{\vec{S}_1}) + \omega \cdot P_{\vec{S}_1} P_{\vec{S}_2}]$$

If $\omega > 1$, the two proteins act cooperatively.

2D "radial" evolution equation



$$\partial_t n(\vec{r},t) = \partial_{r_1} \left[D(r_1) \partial_{r_1} n(\vec{r},t) - v(r_1) \, n(\vec{r},t) \right] + \\ \partial_{r_2} \left[D(r_2) \partial_{r_2} n(\vec{r},t) - v(r_2) \, n(\vec{r},t) \right] + \phi(\vec{r}) \, n(\vec{r},t)$$



explanation of (2,4) site $\Rightarrow \omega \approx 1.3 \pm 0.2$ required for Estimation of α and ω for individual sites Strategy: plot normalized $n_0(r_1, r_2; \alpha, \omega)$ at fixed (r_1, r_2) as a function of (α, ω) ln (d/v)) 8n (Ba/p)