DNA Melting

D. Poland and H.A. Scheraga, *Theory of helix-coil transitions in biopolymers*, 1970R.M. Wartell and A.S. Benight, *Phys. Rep.* 126, 67 (1985)

http://www.biophys.uni-duesseldorf.de/POLAND/poland.html http://www.bioinformatics.org/meltsim/

Lei-Han Tang, DNA Melting, ITP, UCSB

B-type double helix

right-handed

1

pitch spacing = 34 Å

residues per turn =10

Lei-Han Tang, DNA Melting, ITP, UCSB

General features of melting curves from experimental studies

- Short chains (<300 bp or so):
 - --- single peak with a width 0.3-0.7°C
 - peak position depends on relative A-T and G-C contents

 $T_M = 42 \cdot (G+C) + 64^{\circ}C$ at 0.0745M Na⁺

• Medium-sized chains (a few thousand bps)

well resolved peaks spanning over 15°C or so

• Long chains (more than one million bps)

single melting peak spanning over 15°C or so sensitive to compositional variations

Theoretical Issues

- Why is the melting of individual domains so sharp?
- What is the nature of the transition for very long chains?

Ingredients:

- open/close for each bp represented by an Ising variable
- each closed pair has a weight *w_i* (random field)
- each loop of *l* open pairs has a weight $s^* f(l)$ (ferromagnetic coupling)
 - s : loop initiation factor, typically 10⁻⁵

f(l): excess loop entropy, power-law function l^{-b}

⁵ ' i ³ '	5' i 3' dlog[Na ⁺] T _{ij} ^{1.0M-Na+}			T _{ij} 0.0745M-Na+			R D Blake et al
3° j 5'	°C/°K	°C	°K	°C	ΔH_{ij}^{a}	$\Delta S_{ij}^{\ b)}$	$D^{-1} = \frac{15}{1000}$
$1 \frac{A \cdot T}{T \cdot A}$	21.00	81.85	355.01	58.23	8.00	22.53	<i>Bioinformatics</i> 15 , 370 (1999)
$2 \mathbf{A} \cdot \mathbf{T}$	20.11	86.72	359.88	64.10	8.31	24.64	
A · T 3 A · T	19.78	89.08	362.24	66.77	8.45	24.86	
G·C 4 A·T	17.76	99.49	372.65	79.51	9.13	24.50	helix to coil entropy increase:
5 A·T	17.10	103.18	376.34	83.94	9.36	24.87	$\Delta S \simeq 12.5 k_B / bp$
6 G·C	16.87	104.43	377.59	85.45	9.44	25.00	
7 C·G	16.21	107.96	381.12	89.72	9.67	25.37	
8 G·C	14.18	118.49	391.65	102.50	10.34	27.52	
9 G·C	13.20	124.54	397.70	109.69	10.72	26.95	
G·C 10 C·G	13.20	124.61	397.77	109.76	10.72	26.95	

a) kcal·mol ij^{-1} . b) cal·mol ij^{-1} -deg⁻¹.

Excess free energy of a loop:

$$\Delta G / k_B T \simeq -\ln[\mathbf{s} f(l)] - 2\ln l + l \ln w$$
$$= -(2 - b)\ln l - \ln \mathbf{s} - l\left[\mathbf{a} \frac{\Delta T}{T_M}\right]$$

b > 2: large loops unfavorable $\Rightarrow 1^{st}$ order transition

b < 2: loops of sufficiently large size are excited \Rightarrow continuous transition

Width of the transition region:

minimum loop size:
$$l_c \simeq s^{-1/(2-b)} \simeq 10^{20} \,\mathrm{bp}$$
for $b = 1.75$ (SAW)transition region: $\Delta T \simeq T_M / a l_c = 360 \mathrm{K} / (12.5 \times 10^{20}) \simeq 3 \times 10^{-19} \mathrm{K}$

Lei-Han Tang, DNA Melting, ITP, UCSB

Lei-Han Tang, DNA Melting, ITP, UCSB

2/2/01

Why is this important? ΔH ABBAABAAABBBABABBABBBBAAAAAABABBABA inter-contact region of length L **Exponential tail:** $P(x) = A \exp(qx), \quad x = \Delta H / k_B T$ Energy gain: finding best contact in a segment of length L, $\Delta H_m / k_B T \approx -\frac{1}{q} \ln \left(AL\right)$ \Rightarrow Loop entropy cost: $\Delta s / k_B \approx \mathbf{b} \ln L - \ln \mathbf{s}$ $\Rightarrow \qquad \Delta G/k_{B}T \approx \left(\boldsymbol{b} - \frac{1}{q}\right) \ln L - \ln \boldsymbol{s} - \frac{1}{q} \ln A$ Transition: $q = q_c = 1/b$ $\Rightarrow \qquad \mathbf{x} \sim \exp(-const./|T - T_c|^{1/2}) \qquad \text{Kosterlitz-Thouless!}$

2/2/01

$$b = \exp(dl) \to 1$$
,

Laplace transform

$$\hat{P}(s) = \int_{-\infty}^{0} dx \exp(sx) P(x)$$

Functional low equation

$$d\hat{P}(s)/dl = \hat{P}\ln\hat{P} + \boldsymbol{b} \ s\Big[\hat{P}(s) - \hat{P}(s+1)\Big]$$

Infinitely many fixed-point solutions:

17

2/2/01