
.

.

. ..

.

.

String Theory
of

The Omega Deformation

Simeon Hellerman
Institute for the Physics and Mathematics of the Universe

KITP - July 12, 2011

Based on: [arXiv:1106.0279]
with background material from: [arXiv:1005.4445], [arXiv:1011.6120],

Collaboration with:
Domenico Orlando and
Susanne Reffert (IPMU).

Simeon Hellerman Dualities and Branes



. . . . . . . . . . . . .
Why

. . . . .
Ω background

. . . . . . . . . .
String Theory

. .
Conclusion

Outline

.
. .1 Gauge theories and the gauge-Bethe correspondence

Effective twisted superpotential in two dimensions

.
. .2 TheΩ background

.
. .3 A String Theory construction

.
. .4 Conclusion

Simeon Hellerman Dualities and Branes



. . . . . . . . . . . . .
Why

. . . . .
Ω background

. . . . . . . . . .
String Theory

. .
Conclusion

Outline

.
. .1 Gauge theories and the gauge-Bethe correspondence

Effective twisted superpotential in two dimensions

.
. .2 TheΩ background

.
. .3 A String Theory construction

.
. .4 Conclusion

Simeon Hellerman Dualities and Branes



. . . . . . . . . . . . .
Why

. . . . .
Ω background

. . . . . . . . . .
String Theory

. .
Conclusion

Motivation

The Gauge–Bethe correspondence – in its simplest manifestation – is the
equivalence of the ground states of a supersymmetric gauge theory and
the spectrum in a sector of a spin chain.

There are years of experience in the study of both sides of the
correspondence.

We can translate problems from one side to the other

Fresh perspective on existing problems

New natural questions arise, too
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Today’s talk

Today I will try to understand this correspondence in the context of
String Theory.

I will describe a String Theory (D-brane) construction.

There is a simple brane construction that reproduces the gauge theory
action precisely, except for the twisted mass terms for the adjoint chiral
multiplets.

We construct the twisted mass deformation in terms of an exact
solution of the closed string background of superstring theory involving
curvatures, fluxes and dilaton gradients.
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The message

The gauge–Bethe correspondence relates the vacuum sectors of a set of
supersymmetric gauge theories to states of a single spin chain, and to
each other

Spin chains have symmetries that relate different sectors

String theory provides a framework in which these different gauge
theories can be treated in a unified way and the spin chain symmetry
understood as symmetry enhancement for coincident 5-branes (D or
NS).
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Basics of N = (2, 2) field theories: field content

Field theories in 1 + 1 dimensions with two (real) positive and two (real)
negative chirality supercharges.

A chiral superfield satisfies D±Φ = 0. Theθ-expansion of the chiral
superfield is given by

Φ =φ(y±) +θαψα(y
±) +θ+θ−F(y±),

A twisted chiral superfield satisfies D+Σ = D−Σ = 0.

The super field strengthΣ = 1
2{D+,D−} is a twisted chiral superfield

and itsθ-expansion is given by

Σ =σ(̃y±)+iθ+λ+(̃y±)−iθ̄
−
λ−(̃y±)+θ

+θ̄
−
[D(̃y±)−iA01(̃y

±)]+. . .
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Basics of N = (2, 2) field theories: action

The kinetic term of the Lagrangian is

Lkin =

∫
d4θ

(∑
k

X†
k e

VXk −
1

2e2 Tr(Σ†Σ)

)
,

additional terms:

The twisted masses: Ltw =
∫

d4θ (X†eθ
−θ̄+

m̃X+h.c.X),

Fayet-Iliopoulos (FI) and theta-term:
LFI,ϑ = − ı

2τ
∫

dθ̄
−

dθ+ TrΣ+ h.c. ,
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Effective theory in the Coulomb branch

Main objective: describe the Coulomb branch of the theory.

Consider the low energy effective theory obtained for slowly varyingσ
fields after integrating out the massive matter fields.

In this way, we obtain an effective twisted superpotential W̃eff(Σ)

.
The vacua of the theory are the solutions of the equation
..

.

. ..

.

.

exp

[
2π

∂W̃eff(σ)

∂σi

]
= 1 .
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Gaussian integration

By supersymmetry, the effective action must have the form

Seff(Σ) = −
∫

d4θ Keff(Σ,Σ) +
1
2

∫
d2θ W̃eff(Σ) + h.c. .

In the absence of an F-term, the action S(Σ,X) is quadratic in the
matter fields X, and the effective action can be evaluated exactly via a
one-loop calculation:

eıSeff(Σ) =

∫
DX eıS(Σ,X) .
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Quiver gauge theories: effective action

Contributions to the effective twisted superpotential:
For each fundamental field Qk with twisted mass m̃f

k:

W̃f
eff =

1
2π

N∑
i=1

(
σi − m̃f

k

)(
log(σi − m̃f

k)− 1
)
.

For each anti-fundamental field Qk with twisted mass m̃f̄
k:

W̃f̄
eff =

1
2π

N∑
i=1

(
−σi − m̃f̄

k

)(
log(−σi − m̃f̄

k)− 1
)
.

For each adjoint fieldΦ with twisted mass m̃adj:

W̃adj
eff =

1
2π

N∑
i,j=1
i ̸=j

(
σi −σj − m̃adj) (log(σi −σj − m̃adj)− 1

)
.
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Special example

Consider a U(N) gauge theory with L flavors and one adjoint

Using the rules above, the effective twisted superpotential reads:

W̃eff(σ) =
L

2π

N∑
i=1

(
σi − m̃f

)(
log(σi − m̃f)− 1

)
+

L
2π

N∑
i=1

(
−σi − m̃f̄

)(
log(−σi − m̃f̄)− 1

)
+

1
2π

N∑
i,j=1
i ̸=j

(
σi −σj − m̃adj) (log(σi −σj − m̃adj)− 1

)
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SUSY vacua

The vacua of the theory are obtained from

exp

[
2π

∂W̃eff(σ)

∂σi

]
= 1 .

Explicitly

(
σi − m̃f

σi + m̃f̄

)L

=

N∏
j=1
i ̸=j

σi −σj − m̃adj

σi −σj + m̃adj ∀i = 1, . . . ,N

This is precisely the same equation describing the Bethe ansatz for the
XXX spin chain

m̃f =
ı

2
m̃f̄ =

ı

2
m̃adj = ı
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Brief summary of the gauge/Bethe correspondence

The Hilbert space for a spin chain decomposes into (magnon) sectors

The Algebraic Bethe Ansatz provides the spectrum of the transfer matrix
(and the Hamiltonian)

The very same equations describe the vacua of a two-dimensional (2, 2)
gauge system with a precise choice of twisted masses.

The spin chain is both bigger and smaller than any given gauge theory:
we solve the spectrum sector by sector, different values of N correspond
to different magnon sectors; however the full Hilbert space of the
spin-chain corresponds only to the vacuum sectors of the gauge theories.
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The dictionary

gauge theory integrable model

number of nodes in the
quiver

r r rank of the symmetry group

gauge group at a-th node U(Na) Na number of particles of species a

effective twisted
superpotential

W̃eff(σ) Y(λ) Yang-Yang function

equation for the vacua e2πdW̃eff = 1 e2πıdY = 1 Bethe ansatz equation

flavor group at node a U(La) La effective length for the species a

lowest component of the
twisted chiral superfield

σ(a)
i λ(a)

i rapidity

twisted mass of the
fundamental field

m̃f(a)
k

ı
2Λ

a
k +ν

(a)
k

highest weight of the representation
and inhomogeneity

twisted mass of the adjoint m̃adj(a) ı
2C

aa diagonal of the Cartan matrix

twisted mass of the
bifundamental field

m̃b(ab) ı
2C

ab non-diagonal of the Cartan matrix

FI-term for U(Na) τa ϑ̂
a

boundary twist parameter
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D–brane configurations

0 1 2 3 4 5 6 7 8 9

NS1,2 × × × × × ×
D × × ×
D × × × × ×

Spin-flip symmetry in the spin chain equals charge-conjugation symmetry in
the gauge theory equals the Hanany-Witten effect in the brane construction:

NS1 NS2D

D
N

→

NS1 NS2 D

N L

→

NS2 NS1 D

L− N L

→

NS2 NS1D

L− N
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Parameters from the String Theory

In order to obtain a faithful representation of our gauge theories from
String Theory we need to reproduce all the parameters

A fundamental but not standard ingredient is given by the twisted masses

Consider the simplified case of no NS branes

It is convenient to lift the 2d theory to three dimensions: the twisted
masses become real masses

Lifting to four dimensions: the real masses correspond to Wilson line
boundary conditions for the compactification

These boundary conditions can be obtained in String Theory in terms of
a fluxbrane [Melvin, Strominger, Gutperle, Takayanagi]
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Real masses, monodrofolds, and String Theory

.

.

. ..gauge theory .. .. ..string theory

..4D ..Wilson line b.c. . . .
.

D3–brane in fluxbrane
= Ω background

..

..

..3D ..real mass . . ..D2–brane in fluxtrap

.reduction .T–duality

.effective

.theory

.effective

.theory
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Fluxbrane background

The fluxbrane background is obtained starting from flat space in ten
dimensions and imposing identifications.

The D brane comes from a D brane, extended in the directions 0128

we give a complex structure to the remaining six

w1 = y1 + ıy2 , w2 = y3 + ıy4 , w3 = y5 + ıy6 ,

we impose the identification

x̃8 ≃ x̃8 + 2πR̃ ,

(
w1

w2

)
≃

(
e2πımR̃ 0

0 e−2πımR̃

)(
w1

w2

)
.
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TheΩ background

In an appropriate coordinate system

d̃s2 = d⃗x2
0...3 + dρ2

1 +ρ
2
1dφ2

1 + dρ2
2 +ρ

2
2dφ2

2

+2mR̃
(
ρ2

1dφ1 −ρ2
2dφ2

)
dũ+R̃2

(
1 + m2

(
ρ2

1 +ρ
2
2

))
dũ2+dx2

9 ,

or, in rectilinear coordinates

x4 + ıx5 ≡ρ1e
ıφ1 , x6 + ıx7 ≡ρ2e

ıφ2 , x8 ≡ R̃ũ ,

the metric becomes the standardΩ–deformation of flat space

d⃗x2
0...3 +

7∑
i=4

(
dxi + mV idx8

)2
+ dx2

8 + dx2
9 ,

where V i∂i is the Killing vector

V i∂i = −x5∂x4 + x4∂x5 + x7∂x6 − x6∂x7 = ∂φ1
− ∂φ2
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The fluxtrap background

To get the real mass we need to T–dualize in x8, in order to get a D
brane
The resulting background is a fluxtrap:

ds2 = d⃗x2
0...3 + dρ2

1 + dρ2
2 +ρ

2
1dφ2

1 +ρ
2
2dφ2

2

+
−m2

(
ρ2

1dφ1 −ρ2
2dφ2

)2
+ dx2

8

1 + m2
(
ρ2

1 +ρ
2
2

) + dx2
9 ,

B = m
ρ2

1dφ1 −ρ2
2dφ2

1 + m2
(
ρ2

1 +ρ
2
2

) ∧ dx8 ,

e−Φ =

√
1 + m2

(
ρ2

1 +ρ
2
2

)
g2

3

√
α′

.

The effective theory for a D brane in this background acquires a real
mass term m.
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Brane creation and annihilation?

The Gauge–Bethe correspondence maps (ground states of) gauge
theories to sectors of spin chains

The spin chains have symmetries that mix different sectors

It is natural to look for an interpretation of operators that change the
gauge group U(N) → U(N+ 1).

In a D–brane interpretation like the one of the configurations we have
seen before this amounts to changing the number of D branes

One is tempted to speak of creation/annihilation operators for D–branes.
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U duality

The conceptual problem we need to overcome is that we need to
consider states with different boundary conditions at infinity (N and
N+ 1 D branes)
Such states should never superpose due to the superselection principle.
Compactify in the x1 direction and use a chain of dualities to go to a

more tractable configuration: (NS,D)
T−→ (NS,D)

S−→ (D, F)

D

NS1 NS2

T−→ D

NS1 NS2

S−→ F

D1 D2

In terms of this last configuration it is easy to understand where the sl2
action comes from: once the D branes coincide the fundamental strings
are charged under the enhanced symmetry.
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Real string theory and theΩ-deformation

Notice that we have not mentioned topological string theory anywhere.

The states responsible for the correspondence do not show up in any
obvious way in the topological sector of the closed or open
Ω-background.

At finite coupling g3 these states are not massless Cartan gauge bosons,
but massive W-bosons.

Note: It is not just the vaccum states but the entire spectrum that is
organized under the SU(k) symmetry at strong coupling.

Simeon Hellerman Dualities and Branes



. . . . . . . . . . . . .
Why

. . . . .
Ω background

. . . . . . . . . .
String Theory

. .
Conclusion

Real string theory and theΩ-deformation

Key question: are there any non-vacuum states that survive at weak
coupling?

Naive expectation: all states go to mass scale set by the scale where the
coupling becomes strong.

This is the scale where excitations lie in generic 2D gauge theories.

Too naive! There are states that lie parametrically below the strong
coupling scale, due to BPS protection!

Now we will discuss the BPS protection in more detail.
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Real mass terms and the SUSY algebra

Real (twisted) mass terms in 2D are neither superpotential nor twisted
superpotential terms.
They cannot be viewed as perturbations of the action symmetric under a
fixed superalgebra or integrals of covariant terms over superspace.
The twisted mass terms are associated with a deformation of the
superalgebra itself.
A real twisted mass in 2D can be understood by lifting to an N = 2
theory in 3 dimensions.
The lifted deformation (=”real mass”) expresses itself in terms of a
central extension of the undeformed theory:

{Qα, Q̄β} =Γμαβ Pμ +δαβ Z ,

where Z ≡ mIqI is a linear combination of non-R global symmetries qI of
the theory.
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Real mass terms and the SUSY algebra

This leads to a simple, general and superspace-free construction of the
twisted mass deformation in the general case:

Couple a fictitious (nondynamical) vector multiplet A0,1,2,σ,λα to the
theory, for each Abelian global symmetry.

Give the real (appropriately normalized) fieldsσI fixed values mI.

This preserves N = 2 SUSY in 3 dimensions, but adds the central
extension Z.

This construction of real/twisted masses is universal and superspace-free
as well as giving a simple sufficient condition for real mass deformations
of theories with superpotentials.
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Real mass terms and the SUSY algebra

For certain 3D theories there’s an even simpler description: those that
lift to 4D.

This assumes the global symmetries are exact in 4D as well.

Then theσ field lifts to A3̃ where 3̃ is the fourth dimension we’re lifting
to and A is again the nondynamical Abelian gauge field.

Then the real mass term is realized as a compactification with
monodromy R̃3 · mIqI - this is the integral of the gauge connection
around the fourth dimension.
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Real mass terms and the SUSY algebra

For certain 3D theories there’s an even simpler description: those that
lift to 4D.

This assumes the global symmetries are exact in 4D as well.

Then theσ field lifts to A3̃ where 3̃ is the fourth dimension we’re lifting
to and A is again the nondynamical Abelian gauge field.

Then the real mass term is realized as a compactification with
monodromy R̃3 · mIqI - this is the integral of the gauge connection
around the fourth dimension.

Then the fields have generalized momenta Z = mIqI and thus
Kaluza-Klein masses Z = |mIqI.
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Real mass terms and the SUSY algebra

For certain 3D theories there’s an even simpler description: those that
lift to 4D.

This assumes the global symmetries are exact in 4D as well.

Then theσ field lifts to A3̃ where 3̃ is the fourth dimension we’re lifting
to and A is again the nondynamical Abelian gauge field.

Then the real mass term is realized as a compactification with
monodromy R̃3 · mIqI - this is the integral of the gauge connection
around the fourth dimension.

Then the fields have generalized momenta Z = mIqI and thus
Kaluza-Klein masses Z = |mIqI|.
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Real mass terms and the SUSY algebra

For maximally supersymmetric 3D gauge theory (N = 8 in 3D
language), the theory lifts to N = 4 in 4D.

The only global symmetries are the group SO(6). There are no non-R
symmetries under the full N = 4 but under an N = 1 subalgebra, there
is an SU(3) non-R symmetry group.

There are two Cartan generators qI here. Taking a general combination
breaks the SUSY to calN = 2 in 3D and (2, 2) in 2D.

There is a special combination that lies in SU(2) ⊂ SU(3) that preserves
N = 4 in 3D and (4, 4) in 2D.

This corresponds to the monodromy generated by (mR̃3,−mR̃3, 0) in
complex coordinates.

This is theΩ deformation of flat space, withε1 = −ε2.
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The message

The gauge–Bethe correspondence relates supersymmetric gauge
theories to sectors of spin chains.

Interesting symmetry relating different gauge theories to each other!

Natural, explicit embedding in string theory – the fluxtrap is the string
theory of theΩ deformation.

This is ”physical string” not the topological string.

Can go beyond the vacuum sector – BPS, near-BPS and non-BPS states
can be studied in this framework, and arrange themselves under the
enhanced symmetry.

Important question: What do these states map to in the spin-chain
language? Hint: NOT states in the Hilbert space of the spin chain!

Work in progress!
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