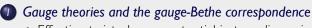
String Theory of The Omega Deformation

Simeon Hellerman

Institute for the Physics and Mathematics of the Universe

KITP - July 12, 2011

Based on: [arXiv:1106.0279] with background material from: [arXiv:1005.4445], [arXiv:1011.6120],


Collaboration with:

Domenico Orlando and Susanne Reffert (IPMU).

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Simeon Hellerman Dualities and Branes

Why 0000000000000	Ω background 00000	String Theory	Conclusion
Outline			

• Effective twisted superpotential in two dimensions

2 The Ω background

3 A String Theory construction

Why 0000000000000	Ω background 00000	String Theory	Conclusion
Outline			

Gauge theories and the gauge-Bethe correspondence

• Effective twisted superpotential in two dimensions

2 The Ω background

3 A String Theory construction

Why ●○○○○○○○○○○○○	Ω background 00000	String Theory	Conclusion
Motivation			

- The Gauge–Bethe correspondence in its simplest manifestation is the equivalence of the ground states of a supersymmetric gauge theory and the spectrum in a sector of a spin chain.
- There are years of experience in the study of both sides of the correspondence.
- We can translate problems from one side to the other
- Fresh perspective on existing problems
- New natural questions arise, too

Why	Ω background	String Theory	Conclusion
00000000000	00000	000000000	00
Today's talk			
TODAY'S LUIK			

- Today I will try to understand this correspondence in the context of String Theory.
- I will describe a String Theory (D-brane) construction.
- There is a simple brane construction that reproduces the gauge theory action precisely, except for the twisted mass terms for the adjoint chiral multiplets.
- We construct the twisted mass deformation in terms of an exact solution of the closed string background of superstring theory involving curvatures, fluxes and dilaton gradients.

Why 0000000000000	Ω background	String Theory	Conclusion
The message			

- The gauge–Bethe correspondence relates the vacuum sectors of a set of supersymmetric gauge theories to states of a single spin chain, and to each other
- Spin chains have symmetries that relate different sectors
- String theory provides a framework in which these different gauge theories can be treated in a unified way and the spin chain symmetry understood as symmetry enhancement for coincident 5-branes (D or NS).

 Why
 Ω background
 String Theory
 Conclusion

 0000000000
 0000000000
 00
 00

Basics of $\mathcal{N} = (2, 2)$ field theories: field content

- Field theories in 1 + 1 dimensions with two (real) positive and two (real) negative chirality supercharges.
- A chiral superfield satisfies $\overline{\mathcal{D}}_{\pm} \Phi = 0$. The θ -expansion of the chiral superfield is given by

$$\Phi = \varphi(\mathbf{y}^{\pm}) + \theta^{\alpha} \psi_{\alpha}(\mathbf{y}^{\pm}) + \theta^{+} \theta^{-} F(\mathbf{y}^{\pm}),$$

- A twisted chiral superfield satisfies $\overline{\mathcal{D}}_+ \Sigma = \mathcal{D}_- \Sigma = 0$.
- The super field strength $\Sigma = \frac{1}{2} \{\overline{D}_+, D_-\}$ is a twisted chiral superfield and its θ -expansion is given by

$$\Sigma = \sigma(\tilde{y}^{\pm}) + i \theta^+ \overline{\lambda}_+ (\tilde{y}^{\pm}) - i \overline{\theta}^- \lambda_- (\tilde{y}^{\pm}) + \theta^+ \overline{\theta}^- [D(\tilde{y}^{\pm}) - i A_{01}(\tilde{y}^{\pm})] +.$$

Ω background 00000

String Theory

Conclusion

Basics of $\mathcal{N} = (2, 2)$ field theories: action

• The kinetic term of the Lagrangian is

$$L_{kin} = \int d^4 \, \theta \, \left(\sum_k X_k^\dagger \, \mathrm{e}^V X_k - \frac{1}{2 \mathrm{e}^2} \, \mathrm{Tr}(\, \Sigma^\dagger \, \Sigma \,) \right),$$

additional terms:

• The twisted masses:
$$L_{tw} = \int d^4 \theta \ (X^{\dagger} e^{\theta - \bar{\theta}^+ \tilde{m}_X + h.c.} X)$$
,

• Fayet-Iliopoulos (FI) and theta-term: $L_{\text{FI},\vartheta} = -\frac{i}{2} \tau \int d\bar{\theta}^{-} d\theta^{+} \text{Tr} \Sigma + \text{h.c.},$ String Theory

Conclusion

Effective theory in the Coulomb branch

- Main objective: describe the Coulomb branch of the theory.
- Consider the low energy effective theory obtained for slowly varying σ fields after integrating out the massive matter fields.
- In this way, we obtain an effective twisted superpotential $\widetilde{W}_{\rm eff}(\Sigma)$

The vacua of the theory are the solutions of the equation

$$\exp\left[2\pi \frac{\partial \widetilde{W}_{\text{eff}}(\sigma)}{\partial \sigma_i}\right] = 1$$

Why	Ω background	String Theory	Conclusion
000000000000	00000	000000000	00
<u> </u>			
Gaussian integ	gration		

• By supersymmetry, the effective action must have the form

$$S_{\text{eff}}(\Sigma) = -\int d^4\theta \ \mathcal{K}_{\text{eff}}(\Sigma,\overline{\Sigma}) + \frac{1}{2}\int d^2\theta \ \widetilde{W}_{\text{eff}}(\Sigma) + \text{h.c.} \,.$$

 In the absence of an *F*-term, the action S(∑, X) is quadratic in the matter fields X, and the effective action can be evaluated exactly via a one-loop calculation:

$$e^{\imath S_{\text{eff}}(\Sigma)} = \int \mathcal{D} X e^{\imath S(\Sigma,X)} \, .$$

Quiver gauge theories: effective action

Contributions to the effective twisted superpotential:

• For each fundamental field Q_k with twisted mass \widetilde{m}_k^{f} :

$$\widetilde{W}_{\text{eff}}^{f} = \frac{1}{2\pi} \sum_{i=1}^{N} \left(\sigma_{i} - \widetilde{m}_{k}^{f} \right) \left(\log(\sigma_{i} - \widetilde{m}_{k}^{f}) - 1 \right).$$

• For each anti-fundamental field \overline{Q}_k with twisted mass $\widetilde{m}_k^{\overline{f}}$:

$$\widetilde{W}_{\text{eff}}^{\overline{f}} = \frac{1}{2\pi} \sum_{i=1}^{N} \left(-\sigma_{i} - \widetilde{m}_{k}^{\overline{f}} \right) \left(\log(-\sigma_{i} - \widetilde{m}_{k}^{\overline{f}}) - 1 \right).$$

• For each adjoint field Φ with twisted mass $\widetilde{m}^{\mathrm{adj}}$:

$$\widetilde{W}_{\text{eff}}^{\text{adj}} = \frac{1}{2\pi} \sum_{\substack{i,j=1\\i\neq j}}^{N} \left(\sigma_i - \sigma_j - \widetilde{m}^{\text{adj}} \right) \left(\log(\sigma_i - \sigma_j - \widetilde{m}^{\text{adj}}) - 1 \right).$$

Why 000000000000	Ω background 00000	String Theory	Conclusion
Special exam	ble		

- Consider a U(N) gauge theory with L flavors and one adjoint
- Using the rules above, the effective twisted superpotential reads:

$$\begin{split} \widetilde{W}_{\text{eff}}(\sigma) &= \frac{L}{2\pi} \sum_{i=1}^{N} \left(\sigma_{i} - \widetilde{m}^{\text{f}} \right) \left(\log(\sigma_{i} - \widetilde{m}^{\text{f}}) - 1 \right) \\ &+ \frac{L}{2\pi} \sum_{i=1}^{N} \left(-\sigma_{i} - \widetilde{m}^{\overline{\text{f}}} \right) \left(\log(-\sigma_{i} - \widetilde{m}^{\overline{\text{f}}}) - 1 \right) \\ &+ \frac{1}{2\pi} \sum_{\substack{i,j=1\\i\neq j}}^{N} \left(\sigma_{i} - \sigma_{j} - \widetilde{m}^{\text{adj}} \right) \left(\log(\sigma_{i} - \sigma_{j} - \widetilde{m}^{\text{adj}}) - 1 \right) \end{split}$$

Why ○○○○○○○○●○○○	Ω background 00000	String Theory	Conclusion
SUSY vacua			

• The vacua of the theory are obtained from

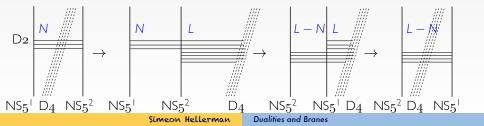
$$\exp\left[2\pi \frac{\partial \widetilde{W}_{\text{eff}}(\sigma)}{\partial \sigma_{i}}\right] = \mathsf{I}.$$

• Explicitly

$$\left(\frac{\sigma_i - \widetilde{m}^f}{\sigma_i + \widetilde{m}^f}\right)^L = \prod_{\substack{j=1\\i\neq j}}^N \frac{\sigma_i - \sigma_j - \widetilde{m}^{adj}}{\sigma_i - \sigma_j + \widetilde{m}^{adj}} \quad \forall i = 1, \dots, N$$

This is precisely the same equation describing the Bethe ansatz for the XXX spin chain

$$\widetilde{m}^{\mathrm{f}} = \frac{\imath}{2} \qquad \qquad \widetilde{m}^{\mathrm{f}} = \frac{\imath}{2} \qquad \qquad \widetilde{m}^{\mathrm{adj}} = \imath$$


Brief summary of the gauge/Bethe correspondence

- The Hilbert space for a spin chain decomposes into (magnon) sectors
- The Algebraic Bethe Ansatz provides the spectrum of the transfer matrix (and the Hamiltonian)
- The very same equations describe the vacua of a two-dimensional (2, 2) gauge system with a precise choice of twisted masses.
- The spin chain is both bigger and smaller than any given gauge theory: we solve the spectrum sector by sector, different values of N correspond to different magnon sectors; however the full Hilbert space of the spin-chain corresponds only to the vacuum sectors of the gauge theories.

) background		ng Theory Conclu 00000000 00	ision
The dictionary				
gauge theo	ory		integrable model	_
number of nodes in the quiver	r	r	rank of the symmetry group	
gauge group at a-th node	$U(N_a)$	Na	number of particles of species a	
effective twisted superpotential	$\widetilde{W}_{\text{eff}}(\sigma)$	Y(λ)	Yang-Yang function	
equation for the vacua	$e^{2\pi d\widetilde{W}_{eff}} = 1$	$e^{2\pi i dY} = 1$	Bethe ansatz equation	
flavor group at node a	$U(L_a)$	La	effective length for the species a	
lowest component of the twisted chiral superfield	$\sigma_i^{(a)}$	$\lambda_i^{(a)}$	rapidity	
twisted mass of the fundamental field	$\widetilde{m}_{k}^{f(a)}$	$\frac{i}{2} \wedge_k^a + \vee_k^{(a)}$	highest weight of the representation and inhomogeneity	n
twisted mass of the adjoint	$\widetilde{m}^{\mathrm{adj}(a)}$	$\frac{i}{2}C^{aa}$	diagonal of the Cartan matrix	
twisted mass of the bifundamental field	$\widetilde{m}^{b(ab)}$	$\frac{i}{2}C^{ab}$	non-diagonal of the Cartan matrix	
FI-term for $U(N_a)$	τ _a	Ŷ	boundary twist parameter	

Why 00000000000	•	Ω back						ring Theo				Conclusi	ion
D-brane	configu	ratio	ons										
		0	I	2	3	4	5	6	7	8	9		
	$NS5^{1,2}$	×	×	×	×	×	×						
	D_2	\times	\times					\times					
	D_4	×	×						×	×	×		

Spin-flip symmetry in the spin chain equals charge-conjugation symmetry in the gauge theory equals the Hanany-Witten effect in the brane construction:

Why 000000000000	Ω background 00000	String Theory	Conclusion
Outline			

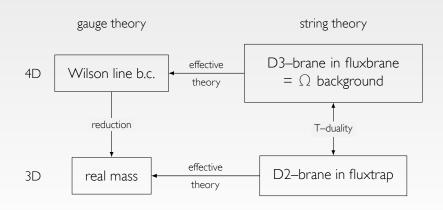
Gauge theories and the gauge-Bethe correspondence
 Effective twisted superpotential in two dimensions

2 The Ω background

3 A String Theory construction

4 Conclusion

D	we the Carine Theorem		
Why 000000000000	Ω background ●0000	String Theory	Conclusion


Parameters from the String Theory

- In order to obtain a faithful representation of our gauge theories from String Theory we need to reproduce all the parameters
- A fundamental but not standard ingredient is given by the twisted masses
- Consider the simplified case of no NS₅ branes
- It is convenient to lift the 2d theory to three dimensions: the twisted masses become real masses
- Lifting to four dimensions: the real masses correspond to Wilson line boundary conditions for the compactification
- These boundary conditions can be obtained in String Theory in terms of a fluxbrane [Melvin, Strominger, Gutperle, Takayanagi]

Ω background ○●○○○ String Theory

Conclusion

Real masses, monodrofolds, and String Theory

Why 000000000000	Ω background 00€00	String Theory	Conclusion
Fluxbrane ba	ckground		

- The fluxbrane background is obtained starting from flat space in ten dimensions and imposing identifications.
- The D₂ brane comes from a D₃ brane, extended in the directions 0128
- we give a complex structure to the remaining six

$$w_1 = y_1 + iy_2$$
, $w_2 = y_3 + iy_4$, $w_3 = y_5 + iy_6$,

• we impose the identification

$$\widetilde{x}^8 \simeq \widetilde{x}^8 + 2 \pi \widetilde{R}, \qquad \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \simeq \begin{pmatrix} e^{2\pi \imath m \widetilde{R}} & 0 \\ 0 & e^{-2\pi \imath m \widetilde{R}} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

Why 0000000000000	Ω background 000€0	String Theory	Conclusion
The Ω back	ground		

• In an appropriate coordinate system

$$\widetilde{ds^{2}} = d\vec{x}_{0...3}^{2} + d\rho_{1}^{2} + \rho_{1}^{2}d\phi_{1}^{2} + d\rho_{2}^{2} + \rho_{2}^{2}d\phi_{2}^{2} + 2m\widetilde{R}\left(\rho_{1}^{2}d\phi_{1} - \rho_{2}^{2}d\phi_{2}\right)d\widetilde{u} + \widetilde{R}^{2}\left(I + m^{2}\left(\rho_{1}^{2} + \rho_{2}^{2}\right)\right)d\widetilde{u}^{2} + dx_{9}^{2},$$

• or, in rectilinear coordinates

$$x_4 + \imath x_5 \equiv \rho_1 e^{\imath \varphi_1}, \qquad x_6 + \imath x_7 \equiv \rho_2 e^{\imath \varphi_2}, \qquad x_8 \equiv \widetilde{R} \widetilde{u},$$

the metric becomes the standard $\Omega-\!\text{deformation of flat space}$

$$d\vec{x}_{0...3}^{2} + \sum_{i=4}^{7} (dx_{i} + mV^{i}dx_{8})^{2} + dx_{8}^{2} + dx_{9}^{2},$$

where $V^i \partial_i$ is the Killing vector

$$V^i\partial_i = -x^5\partial_{x_4} + x^4\partial_{x_5} + x^7\partial_{x_6} - x^6\partial_{x_7} = \partial_{\phi_1} - \partial_{\phi_2}$$

Why	Ω background	String Theory	Conclusion
000000000000	0000●	000000000	00
The fluxtrap l	background		

- To get the real mass we need to T-dualize in x₈, in order to get a D₂ brane
- The resulting background is a fluxtrap:

$$\begin{split} ds^2 &= d\vec{x}_{0...3}^2 + d\rho_1^2 + d\rho_2^2 + \rho_1^2 d\phi_1^2 + \rho_2^2 d\phi_2^2 \\ &+ \frac{-m^2 \left(\rho_1^2 d\phi_1 - \rho_2^2 d\phi_2\right)^2 + dx_8^2}{1 + m^2 \left(\rho_1^2 + \rho_2^2\right)} + dx_9^2 \,, \\ B &= m \, \frac{\rho_1^2 d\phi_1 - \rho_2^2 d\phi_2}{1 + m^2 \left(\rho_1^2 + \rho_2^2\right)} \wedge dx_8 \,, \\ e^{-\Phi} &= \frac{\sqrt{1 + m^2 \left(\rho_1^2 + \rho_2^2\right)}}{g_3^2 \sqrt{\alpha'}} \,. \end{split}$$

• The effective theory for a D₂ brane in this background acquires a real mass term *m*.

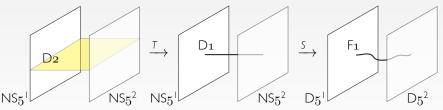
Why	
0000000000000	

Outline

Gauge theories and the gauge-Bethe correspondence
 Effective twisted superpotential in two dimensions

2 The Ω background

A String Theory construction



Why 000000000000	Ω background	String Theory •00000000	Conclusion
Brane creation of	and annihilation?		

- The Gauge–Bethe correspondence maps (ground states of) gauge theories to sectors of spin chains
- The spin chains have symmetries that mix different sectors
- It is natural to look for an interpretation of operators that change the gauge group $U(N) \rightarrow U(N + 1)$.
- In a D-brane interpretation like the one of the configurations we have seen before this amounts to changing the number of D2 branes
- One is tempted to speak of creation/annihilation operators for D-branes.

Why 000000000000	Ω background 00000	String Theory ○●○○○○○○○○	Conclusion
U duality			

- The conceptual problem we need to overcome is that we need to consider states with different boundary conditions at infinity (N and N + I D₂ branes)
- Such states should never superpose due to the superselection principle.
- Compactify in the x_1 direction and use a chain of dualities to go to a more tractable configuration: (NS₅, D₂) \xrightarrow{T} (NS₅, D₁) \xrightarrow{S} (D₅, F₁)

• In terms of this last configuration it is easy to understand where the *sl*₂ action comes from: once the D₅ branes coincide the fundamental strings are charged under the enhanced symmetry.

Conclusion

Real string theory and the Ω -deformation

- Notice that we have not mentioned topological string theory anywhere.
- The states responsible for the correspondence do not show up in any obvious way in the topological sector of the closed or open Ω-background.
- At finite coupling g₃ these states are not massless Cartan gauge bosons, but massive W-bosons.
- Note: It is not just the vaccum states but the entire spectrum that is organized under the SU(k) symmetry at strong coupling.

Real string theory and the Ω -deformation

- Key question: are there any non-vacuum states that survive at weak coupling?
- Naive expectation: all states go to mass scale set by the scale where the coupling becomes strong.
- This is the scale where excitations lie in generic 2D gauge theories.
- Too naive! There are states that lie parametrically below the strong coupling scale, due to BPS protection!
- Now we will discuss the BPS protection in more detail.

Why	Ω background	String TI
000000000000	00000	0000

Real mass terms and the SUSY algebra

- Real (twisted) mass terms in 2D are neither superpotential nor twisted superpotential terms.
- They cannot be viewed as perturbations of the action symmetric under a fixed superalgebra or integrals of covariant terms over superspace.
- The twisted mass terms are associated with a deformation of the superalgebra itself.
- A real twisted mass in 2D can be understood by lifting to an $\mathcal{N}=2$ theory in 3 dimensions.
- The lifted deformation (="real mass") expresses itself in terms of a central extension of the undeformed theory:

$$\{Q_{\alpha},\bar{Q}_{\beta}\}=\Gamma^{\mu}_{\alpha\beta}P_{\mu}+\delta_{\alpha\beta}Z,$$

where $Z \equiv m^{l}q_{l}$ is a linear combination of non-R global symmetries q_{l} of the theory.

- This leads to a simple, general and superspace-free construction of the twisted mass deformation in the general case:
- Couple a fictitious (nondynamical) vector multiplet $A_{0,1,2}$, σ , λ_a to the theory, for each Abelian global symmetry.
- Give the real (appropriately normalized) fields σ^{l} fixed values m^{l} .
- This preserves $\mathcal{N} = 2$ SUSY in 3 dimensions, but adds the central extension Z.
- This construction of real/twisted masses is universal and superspace-free as well as giving a simple sufficient condition for real mass deformations of theories with superpotentials.

- For certain 3D theories there's an even simpler description: those that lift to 4D.
- This assumes the global symmetries are exact in 4D as well.
- Then the σ field lifts to A_3 where $\tilde{3}$ is the fourth dimension we're lifting to and A is again the nondynamical Abelian gauge field.
- Then the real mass term is realized as a compactification with monodromy $\tilde{R}_3 \cdot m_l q^l$ this is the integral of the gauge connection around the fourth dimension.

Why	
000000000000000000	

- For certain 3D theories there's an even simpler description: those that lift to 4D.
- This assumes the global symmetries are exact in 4D as well.
- Then the σ field lifts to A_3 where $\tilde{3}$ is the fourth dimension we're lifting to and A is again the nondynamical Abelian gauge field.
- Then the real mass term is realized as a compactification with monodromy $\tilde{R}_3 \cdot m_l q^l$ this is the integral of the gauge connection around the fourth dimension.
- Then the fields have generalized momenta $Z = m_l q^l$ and thus Kaluza-Klein masses $Z = |m_l q^l$.

Vhy	
000000000000000000000000000000000000000	

- For certain 3D theories there's an even simpler description: those that lift to 4D.
- This assumes the global symmetries are exact in 4D as well.
- Then the σ field lifts to A_3 where $\tilde{3}$ is the fourth dimension we're lifting to and A is again the nondynamical Abelian gauge field.
- Then the real mass term is realized as a compactification with monodromy $\tilde{R}_3 \cdot m_l q^l$ this is the integral of the gauge connection around the fourth dimension.
- Then the fields have generalized momenta $Z = m_l q^l$ and thus Kaluza-Klein masses $Z = |m_l q^l|$.

Poal mass torn	as and the SLISV	alaobra	
000000000000	00000	00000000	00
Why	Ω background	String Theory	Conclusion

- For maximally supersymmetric 3D gauge theory ($\mathcal{N} = 8$ in 3D language), the theory lifts to $\mathcal{N} = 4$ in 4D.
- The only global symmetries are the group SO(6). There are no non-R symmetries under the full $\mathcal{N} = 4$ but under an $\mathcal{N} = 1$ subalgebra, there is an SU(3) non-R symmetry group.
- There are two Cartan generators q¹ here. Taking a general combination breaks the SUSY to *calN* = 2 in 3D and (2, 2) in 2D.
- There is a special combination that lies in $SU(2) \subset SU(3)$ that preserves $\mathcal{N} = 4$ in 3D and (4, 4) in 2D.
- This corresponds to the monodromy generated by $(m\tilde{R}_3, -m\tilde{R}_3, 0)$ in complex coordinates.
- This is the Ω deformation of flat space, with $\varepsilon_{\perp} = -\varepsilon_{2}$.

Why 000000000000	Ω background 00000	String Theory	Conclusion
Outline			

Gauge theories and the gauge-Bethe correspondence
 Effective twisted superpotential in two dimensions

2 The Ω background

3 A String Theory construction

Why 00000000000	Ω background 00000	String Theory	Conclusion ●○
The message			

- The gauge–Bethe correspondence relates supersymmetric gauge theories to sectors of spin chains.
- Interesting symmetry relating different gauge theories to each other!
- Natural, explicit embedding in string theory the fluxtrap is the string theory of the Ω deformation.
- This is "physical string" not the topological string.
- Can go beyond the vacuum sector BPS, near-BPS and non-BPS states can be studied in this framework, and arrange themselves under the enhanced symmetry.
- Important question: What do these states map to in the spin-chain language? Hint: NOT states in the Hilbert space of the spin chain!
- Work in progress!

 Ω background Conclusion Why String Theory 00 Thank you your attention