（More on）
 the String Theory of the Ω Deformation

Domenico Orlando

数物連携宇宙研究機構

 Institute for the Physics and Mathematics of the Universe$$
\text { KITP - July } 21,2011
$$

Based on：［arXiv：I 005．4445］，［arXiv：I 0 I I．6｜20］，［arXiv：I｜06．0279］
Collaboration with：
Simeon Hellerman and Susanne Reffert（IPMU）．

Outline

(1) Why are we here?
(2) Gauge-Bethe Correspondence from Geometric Representation Theory
(3) Twisted masses

4 Twisted masses from String Theory: the Ω background
(5) The gauge theory from String Theory
(6) Conclusions

Outline

(1) Why are we here?
(2) Gauge-Bethe Correspondence from Geometric Representation Theory
(3) Twisted masses
4) Twisted masses from String Theory: the Ω background
(5) The gauge theory from String TheoryConclusions

Motivation

- The Gauge-Bethe correspondence - in its simplest manifestation - is the equivalence of the ground states of a supersymmetric gauge theory and the spectrum in a sector of a spin chain.
- There are years of experience in the study of both sides of the correspondence.
- Main interest: We can translate problems from one side to the other
- Fresh perspective on existing problems
- New questions
- Valuable tool for both sides: new insights.

The message

- The gauge-Bethe correspondence relates supersymmetric gauge theories to sectors of spin chains
- Spin chains have symmetries that relate different sectors
- Geometric representation theory describes these symmetries as acting on the ground states of the gauge theories
- String theory provides a framework in which these different gauge theories can be treated in a unified way and the spin chain symmetry understood as symmetry enhancement for coincident D-branes.

Today's talk

- Today I will try to understand this correspondence in the context of String Theory.
- First, I will rephrase the correspondence in terms of geometric representation theory
- Then, I will introduce a String Theory (D-brane) construction of the correspondence, including all the mass parameters.
- Main result: we understand the symmetry relating gauge theories in terms of strings
- Main result: we propose a construction for the twisted masses (Ω background) in terms of D branes in a non-trivial bulk.

Outline

(1) Why are we here?

2 Gauge-Bethe Correspondence from Geometric Representation Theory

3 Twisted masses
4. Twisted masses from String Theory: the Ω background
(5) The gauge theory from String Theory
(6) Conclusions

The Gauge-Bethe Correspondence

- The gauge-Bethe correspondence relates the Coulomb branch of certain supersymmetric gauge theories to the Bethe Ansatz equations of integrable systems
- More precisely it identifies the twisted effective superpotential with the Yang-Yang function
- The simplest example is the $X X X$ spin chain, whose Bethe Ansatz equations read:

$$
\left(\frac{\sigma_{i}-i / 2}{\sigma_{i}+i / 2}\right)^{L}=\prod_{j \neq i}^{N} \frac{\sigma_{i}-\sigma_{j}-i}{\sigma_{i}-\sigma_{j}+i}, \quad i=1, \ldots, N
$$

- These are the same equations that one obtains describing the low energy effective action for a two dimensional $\mathcal{N}=(2,2)$ theory with gauge group $U(N)$, L fundamentals, L antifundamentals and an adjoint field with twisted masses $m_{Q}=m_{\tilde{Q}}=-i / 2$, and $m_{\Phi}=i$.

Representations

- A representation of the algebra su(2) consists in a vector space V and an action of three operators e, f, k satisfying the relations

$$
[e, f]=k, \quad[k, e]=2 e, \quad[k, f]=-2 f .
$$

- Given the tensor product of L copies of the fundamental representation V, there is a natural inclusion of the $(L+I)$-dimensional irreducible representation, $V(L) \hookrightarrow V^{\otimes L}$.

Spin chain

- I will consider the simplest example: the $X X X$ spin chain, with periodic boundary conditions.
- System of L spins on a circle. Each spin can be \uparrow or \downarrow. These are generators of the fundamental representation V of $s u(2)$.
- The Hamiltonian is invariant under the action of $s u(2)$ defined as

$$
E=\sum_{m=1}^{L} \underbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}_{m-1} \otimes \mathrm{e} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} .
$$

- The spectrum of the chain is organized into representation of su(2):

$$
\mathscr{H}=V^{\otimes L}=\bigoplus_{N=0}^{L} V_{L-2 N} .
$$

$V_{L-2 N}$: magnon states. This is not the decomposition into irreps.

The Poor Man's Introduction to Geometric Representation

- Each of the terms $H_{*}\left[T^{*} \mathrm{Gr}(\mathrm{N}, \mathrm{L}), \mathbb{C}\right]$ is identified with the $(\mathrm{L}-2 \mathrm{~N})$ weight space, which has dimension $\binom{L}{N}$:

$$
H_{*}\left[T^{*} \operatorname{Gr}(L)\right] \simeq V^{\otimes L}=\bigoplus_{N=0}^{L} V_{L-2 N} \simeq \bigoplus_{N=0}^{L} H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right] .
$$

- The key point of the construction is the definition of the operators e and f which act between the homologies,

$$
e, f: H_{*}\left[T^{*} \operatorname{Gr}(L)\right] \rightarrow H_{*}\left[T^{*} \operatorname{Gr}(L)\right] .
$$

In particular, we need f to act between two components of $\operatorname{Gr}(L)$, raising N by I:

$$
f: H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right] \rightarrow H_{*}\left[T^{*} \operatorname{Gr}(N+I, L)\right] .
$$

The Poor Man's Introduction to Geometric Representation

- Introduce a correspondence (in the mathematical sense)

where Z is the diagonal part of the cotangent bundle of the product of two Grassmannians:
$Z=\left\{\left(X, U_{N}, U_{N+1}^{\prime}\right) \mid U_{i} \in \operatorname{Gr}\left(N_{i}, L\right), X \in \operatorname{End}\left(\mathbb{C}^{L}\right), U \subset U^{\prime}, X\left(\mathbb{C}^{L}\right) \subset U, X\left(U^{\prime}\right)=0\right\}$.
- Define the Hecke operator f by first acting with the pullback $\pi ।^{*}$, then intersecting with the fundamental class $[Z]$ and finally acting with the pushforward $\pi_{2 *}$:

$$
\begin{aligned}
f: H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right] & \rightarrow H_{*}\left[T^{*} \operatorname{Gr}(N+I, L)\right] \\
x & \mapsto f(x)=\pi_{2 *}\left([Z] \cap \pi_{1}{ }^{*}(x)\right) .
\end{aligned}
$$

The Poor Man's Introduction to Geometric Representation

- The spaces $H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ are eigenspaces for k :

$$
k=\bigoplus_{N=0}^{L}(L-2 N) \mathbb{1}_{H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]}
$$

- as we wanted, the $L-2 N$ weight space is precisely the homology of $T^{*} \operatorname{Gr}(N, L)$:
$H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]=\left\{x \in H_{*}\left[T^{*} \operatorname{Gr}(L)\right] \simeq V^{\otimes L} \mid k x=(L-2 N) x\right\} \simeq V_{L-2 N}$.
- summing over all these spaces:

$$
H_{*}\left[T^{*} \operatorname{Gr}(L)\right] \simeq V^{\otimes L}=\bigoplus_{N=0}^{L} V_{L-2 N} \simeq \bigoplus_{N=0}^{L} H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right] .
$$

The Gauge-Bethe correspondence revisited

- The direct sum of the homologies of the cotangent bundles over the Grassmannians of \mathbb{C}^{L} corresponds to the ground states of the non-linear sigma models on all the $T^{*} \operatorname{Gr}(N, L)$ for $N=0, I, \ldots, L$.
- Via geometric representation theory, this space can be given the structure of the $V^{\otimes L}$ representation of su(2)
- The Hilbert space of the $X_{x x_{1 / 2}}$ spin chain has the same structure.
- The homology of the Grassmannian $H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ is the $(L-2 N)$ weight space $V_{L-2 N}$, which is spanned by the spectrum of the $X X X_{1 / 2}$ chain in the N magnon sector
- There is a one-to-one correspondence between the minima of the twisted superpotential of the nlsm and the solutions to the Bethe Ansatz (gauge/Bethe correspondence as an isomorphism of modules).

Another dictionary

physics

spectrum of $X X X_{1 / 2}$ spin chain ground states of the nlsm on $T^{*} \operatorname{Gr}(N, L)$ spectrum for the N magnon sector ground states of $X X X_{1 / 2}$ gauge/Bethe correspondence
mathematics
su(2) representation $V^{\otimes L} \simeq H_{*}\left[T^{*} \operatorname{Gr}(L)\right]$ cohomology $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ weight space $V_{L-2 N} \simeq H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ hw representation $V(L) \simeq H_{\text {top }}\left[T^{*} G r(L)\right]$ geometric representation of Su_{2}

Another dictionary

physics

spectrum of $X X X_{1 / 2}$ spin chain ground states of the nlsm on $T^{*} \operatorname{Gr}(N, L)$ spectrum for the N magnon sector ground states of $X X X_{1 / 2}$ gauge/Bethe correspondence

mathematics

su(2) representation $V^{\otimes L} \simeq H_{*}\left[T^{*} \operatorname{Gr}(L)\right]$ cohomology $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ weight space $V_{L-2 N} \simeq H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ hw representation $V(L) \simeq H_{\text {top }}\left[T^{*} G r(L)\right]$ geometric representation of Su_{2}

Another dictionary

physics

spectrum of $X X X_{1 / 2}$ spin chain ground states of the nlsm on $T^{*} \operatorname{Gr}(N, L)$ spectrum for the N magnon sector ground states of $X X X_{1 / 2}$ gauge/Bethe correspondence
mathematics
su(2) representation $V^{\otimes L} \simeq H_{*}\left[T^{*} \operatorname{Gr}(L)\right]$ cohomology $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ weight space $V_{L-2 N} \simeq H_{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$ hw representation $V(L) \simeq H_{\text {top }}\left[T^{*} G r(L)\right]$ geometric representation of Su_{2}

Gauge theory

- $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$: the ground states of a two dimensional $U(N)$ theory with L fundamentals, L antifundamentals and one adjoint
- String Theory: N D2 branes stretching between two NS5 branes with L perpendicular D4 branes

	0	1	2	3	4	5	6	7	8	9
$\mathrm{NS}_{5}^{1,2}$	\times	\times					\times	\times	\times	\times
D_{2}	\times	\times	\times							
D_{4}	\times	\times		\times	\times	\times				

Gauge theory

- $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$: the ground states of a two dimensional $U(N)$ theory with L fundamentals, L antifundamentals and one adjoint
- String Theory: N D2 branes stretching between two NS5 branes with L perpendicular D4 branes

	0	1	2	3	4	5	6	7	8	9
$\mathrm{NS}_{5}^{1,2}$	\times	\times					\times	\times	\times	\times
D_{2}	\times	\times	\times							
D_{4}	\times	\times		\times	\times	\times				

Gauge theory

- $H^{*}\left[T^{*} \operatorname{Gr}(N, L)\right]$: the ground states of a two dimensional $U(N)$ theory with L fundamentals, L antifundamentals and one adjoint
- String Theory: N D2 branes stretching between two NS5 branes with L perpendicular D4 branes

	0	1	2	3	4	5	6	7	8	9
$\mathrm{NS}_{5}{ }^{1,2}$	\times	\times					\times	\times	\times	\times
D_{2}	\times	\times	\times							
D_{4}	\times	\times		\times	\times	\times				

Outline

(1) Why are we here?

2 Gauge-Bethe Correspondence from Geometric Representation Theory
(3) Twisted masses
4. Twisted masses from String Theory: the Ω background
(5) The gauge theory from String TheoryConclusions

Twisted masses

- Can we go home? Not yet: the gauge theory has an exotic ingredient: twisted masses for the adjoint and the hypers

$$
\int d^{4} \theta X^{\dagger} e^{\theta-\bar{\theta}^{+} \tilde{m}_{x}+\text { h.c. }} X
$$

- neither superpotential nor twisted superpotential terms.
- They cannot be viewed as perturbations of the action symmetric under a fixed superalgebra
- They are associated with a deformation of the superalgebra itself.
- A real twisted mass in 2D can be understood by lifting to an $\mathcal{N}=2$ theory in 3 dimensions.
- The lifted deformation (real mass) gives a central extension of the undeformed theory:

$$
\left\{Q_{\alpha}, \bar{Q}_{\beta}\right\}=\Gamma_{\alpha \beta}^{\mu} P_{\mu}+\delta_{\alpha \beta} Z,
$$

where $Z \equiv m^{\prime} q_{1}$ is a linear combination of non-R global symmetries q_{1}.

Real masses

- This leads to a simple and general construction of the twisted mass deformation in the general case:
- Couple a fictitious (nondynamical) vector multiplet $\left\{A_{0,1,2}, \sigma\right\}$ to the theory, for each Abelian global symmetry.
- Give the real (appropriately normalized) fields σ^{\prime} fixed values m^{\prime}.
- This preserves $\mathcal{N}=2$ SUSY in 3 dimensions, but adds the central extension Z.
- This construction gives a simple sufficient condition for real mass deformations of theories with superpotentials which must remain invariant under the $U(I)$ symmetry Z.
- Simplest non-trivial example:

$$
W=\tilde{Q} \Phi Q
$$

implies $m_{Q}+m_{\Phi}+m_{\tilde{Q}}=0$.

Real mass terms from four dimensions

- For certain 3D theories there's an even simpler description: those that lift to 4D.
- This assumes the global symmetries are exact in 4D as well.
- Then the σ field lifts to $A_{\tilde{8}}$ where $\tilde{8}$ is the fourth dimension we're lifting to and A is again the nondynamical Abelian gauge field.
- The vev of σ in three dimensions corresponds to a compactification with monodromy $\tilde{R} m_{l} q^{\prime}$ - this is the integral of the gauge connection around the fourth dimension.
- Then the fields have generalized momenta $Z=m_{/} q^{\prime}$ and thus Kaluza-Klein masses $Z=\left|m_{1} q^{\prime}\right|$.

Real masses, monodrofolds, and String Theory

Outline

Gauge-Bethe Correspondence from Geometric Representation TheoryTwisted masses4 Twisted masses from String Theory: the Ω background
(5) The gauge theory from String Theory
(6) Conclusions

Fluxbrane background

- The fluxbrane background is obtained starting from flat space in ten dimensions and imposing identifications.
- The D2 brane comes from a D_{3} brane, extended in the directions 0128
- we give a complex structure to the remaining six

$$
w_{1}=y_{1}+i y_{2}=\rho_{1} e^{i \theta_{1}}, \quad w_{2}=y_{3}+i y_{4}=\rho_{2} e^{i \theta_{2}}, \quad w_{3}=y_{5}+i y_{6}
$$

- we impose the identification

$$
\widetilde{x}_{8} \simeq \widetilde{x}_{8}+2 \pi \widetilde{R}, \quad\binom{w_{1}}{w_{2}} \simeq\left(\begin{array}{cc}
e^{2 \pi i m \widetilde{R}} & 0 \\
0 & e^{-2 \pi i m \widetilde{R}}
\end{array}\right)\binom{w_{1}}{w_{2}} .
$$

- In terms of coordinates:

$$
\left\{\begin{array}{l}
\widetilde{x}_{8} \simeq \widetilde{x}_{8}+2 \pi \widetilde{R} k_{1}, \\
\theta_{1} \simeq \theta_{1}+2 \pi m \widetilde{R} k_{1}, \\
\theta_{2} \simeq \theta_{2}-2 \pi m \widetilde{R} k_{1},
\end{array} \quad k_{1} \in \mathbb{Z},\right.
$$

The Ω background

- Introduce $\varphi_{1}=\theta_{1}-m \widetilde{x}_{8}, \varphi_{2}=\theta_{2}+m \widetilde{x}_{8}$. The flat space metric:

$$
\begin{aligned}
& \widetilde{\mathrm{ds}}{ }^{2}=\mathrm{d} \vec{x}_{0 \ldots 3}^{2}+\mathrm{d} \rho_{1}^{2}+\rho_{1}^{2} \mathrm{~d} \varphi_{1}^{2}+\mathrm{d} \rho_{2}^{2}+\rho_{2}^{2} \mathrm{~d} \varphi_{2}^{2} \\
& +2 m\left(\rho_{1}^{2} \mathrm{~d} \varphi_{1}-\rho_{2}^{2} \mathrm{~d} \varphi_{2}\right) \mathrm{d} \widetilde{x}_{8}+\left(1+m^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right) d \widetilde{x}_{8}^{2}+\mathrm{d} x_{9}^{2},
\end{aligned}
$$

- or, in rectilinear coordinates

$$
x_{4}+i x_{5} \equiv \rho_{1} e^{i \varphi_{1}}, \quad x_{6}+i x_{7} \equiv \rho_{2} e^{i \varphi_{2}}
$$

the metric becomes the Ω-deformation of flat space with
$\varepsilon_{1}=-\varepsilon_{2}=m:$

$$
\mathrm{d} \vec{x}_{0 \ldots 3}^{2}+\sum_{i=4}^{7}\left(\mathrm{~d} x_{i}+m V^{i} d \widetilde{x}_{8}\right)^{2}+d \widetilde{x}_{8}^{2}+d x_{9}^{2},
$$

where $V^{i} \partial_{i}$ is the Killing vector

$$
V^{i} \partial_{i}=-x^{5} \partial_{x_{4}}+x^{4} \partial_{x_{5}}+x^{7} \partial_{x_{6}}-x^{6} \partial_{x_{7}}=\partial_{\varphi_{1}}-\partial_{\varphi_{2}}
$$

The fluxtrap background

- To get the real mass we need to T-dualize in x_{8}, in order to get a D_{2} brane
- The resulting background is a fluxtrap:

$$
\begin{aligned}
& \mathrm{ds} s^{2}=\mathrm{d} \vec{x}_{0 \ldots 3}^{2}+\mathrm{d} \rho_{1}^{2}+\mathrm{d} \rho_{2}^{2}+\rho_{1}^{2} \mathrm{~d} \varphi_{1}^{2}+\rho_{2}^{2} \mathrm{~d} \varphi_{2}^{2} \\
& \quad \quad+\frac{-m^{2}\left(\rho_{1}^{2} \mathrm{~d} \varphi_{1}-\rho_{2}^{2} \mathrm{~d} \varphi_{2}\right)^{2}+\mathrm{d} x_{8}^{2}}{1+m^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)}+\mathrm{d} x_{9}^{2}, \\
& B=m \frac{\rho_{1}^{2} \mathrm{~d} \varphi_{1}-\rho_{2}^{2} \mathrm{~d} \varphi_{2}}{1+m^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)} \wedge \mathrm{d} x_{8}, \\
& e^{-\oplus}=\frac{\sqrt{1+m^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)}}{g_{3}^{2} \sqrt{a^{\prime}}} .
\end{aligned}
$$

- The effective theory for a D2 brane in this background acquires a real mass term m .

The NS5 fluxtrap

Even if we can't use linearity, it is still possible to add an NS5 brane in the bulk, impose the identifications and T-dualize:

$$
\begin{aligned}
d s^{2} & =U\left[\mathrm{~d} x_{2}^{2}+\mathrm{d} x_{3}^{2}+\mathrm{d} \rho_{1}^{2}\right]+\mathrm{d} \rho_{2}^{2}+\frac{U \rho_{1}^{2}\left[\mathrm{~d} \varphi_{1}^{2}+m^{2} \rho_{2}^{2}\left(\mathrm{~d} \varphi_{1}+\mathrm{d} \varphi_{2}\right)^{2}\right]+\rho_{2}^{2} \mathrm{~d} \varphi_{2}^{2}}{\Delta^{2}} \\
& +\frac{\wedge^{2}}{\left(x_{3}^{2}+\rho_{1}^{2}\right) \Delta^{2}}\left[\left(x_{3}^{2}+\rho_{1}^{2}\right) \mathrm{d} x_{2}-x_{2} x_{3} \mathrm{~d} x_{3}-x_{2} \rho_{1} \mathrm{~d} \rho_{1}+\frac{\sqrt{x_{3}^{2}+\rho_{1}^{2}} \mathrm{~d} x_{8}}{\wedge}\right]^{2}, \\
B & =\frac{\wedge\left[-\left(x_{3}^{2}+\rho_{1}^{2}\right) \mathrm{d} x_{2}+x_{2} x_{3} \mathrm{~d} x_{3}+x_{2} \rho_{1} \mathrm{~d} \rho_{1}\right] \wedge\left[\left(1+m^{2} \rho_{2}^{2}\right) \mathrm{d} \varphi_{1}+m^{2} \rho_{2}^{2} \mathrm{~d} \varphi_{2}\right]}{m\left(x_{3}^{2}-\rho_{1}^{2}\right) \Delta^{2}} \\
& -m \frac{U \rho_{1}^{2} \mathrm{~d} \varphi_{1}-\rho_{2}^{2} \mathrm{~d} \varphi_{2}}{\Delta^{2}} \wedge d x_{8}, \\
\mathrm{e}^{-\oplus} & =\frac{1}{g_{3}^{2} \sqrt{a^{\prime}}} \sqrt{\frac{1+m^{2}\left(U \rho_{1}^{2}+\rho_{2}^{2}\right)}{U}},
\end{aligned}
$$

where

$$
U=1+\frac{N 5 a^{\prime}}{x_{2}^{2}+x_{3}^{2}+\rho_{1}^{2}}, \quad \Delta^{2}=1+m^{2}\left(U \rho_{1}^{2}+\rho_{2}^{2}\right), \quad \wedge=\frac{2 m x_{3}\left(x_{3}^{2}+\rho_{1}^{2}\right)}{\left(x_{2}^{2}+x_{3}^{3}+\rho_{1}^{2}\right)^{2} \Delta} .
$$

Supersymmetry

- One can understand the supersymmetries of this string theory solution starting from the type IIB picture (D3 brane)
- In the initial flat background (prior to identifications), there are 32 Killing spinors

$$
K^{\| B}=\exp \left[\frac{1}{2} \theta_{1} \Gamma_{45}+\frac{1}{2} \theta_{2}\ulcorner 67] \varepsilon_{0},\right.
$$

where ε_{0} is a complex Weyl spinor.

- Introducing φ_{1} and φ_{2}, this becomes

$$
K^{\| B}=\exp \left[\frac{1}{2} \varphi_{1} \Gamma_{45}+\frac{1}{2} \varphi_{2} \Gamma_{67}\right] \exp \left[\frac{m \widetilde{R} \widetilde{u}}{2}\left(\Gamma_{45}-\Gamma_{67}\right)\right] \varepsilon_{0} .
$$

- In the generic case the second exponential must vanish to preserve periodicity. Introduce the orthogonal projectors

$$
\Pi_{ \pm}^{\text {flux }}=\frac{1}{2}\left(\mathbb{1} \pm \Gamma_{4567}\right)
$$

Supersymmetry

- The fluxtrap background preserves 16 supersymmetries. In the type IIA picture the Killing spinors are:

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\left(\mathbb{1}+\Gamma_{\| ।}\right) \sqcap_{-}^{\text {flux }} \exp \left[\frac{1}{2} \varphi_{1} \Gamma_{45}+\frac{1}{2} \varphi_{2} \Gamma_{67}\right] \varepsilon_{0}, \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\| ।}\right) \Gamma_{u} \square_{-}^{\text {flux }} \exp \left[\frac{1}{2} \varphi_{1} \Gamma_{45}+\frac{1}{2} \varphi_{2} \Gamma_{67}\right] \varepsilon_{1},
\end{array}\right.
$$

- The NS5-fluxtrap background preserves 8 supersymmetries. In the type IIA picture the Killing spinors are:

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\left(\mathbb{1}+\Gamma_{\|}\right) \Pi_{-}^{\text {NS5 }} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2} \varphi_{1} \Gamma_{45}+\frac{1}{2} \varphi_{2} \Gamma_{67}\right] \varepsilon_{0} \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\|}\right) \Gamma_{u} \Pi_{+}^{\mathrm{NS5}} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2} \varphi_{1} \Gamma_{45}+\frac{1}{2} \varphi_{2}\ulcorner 67] \varepsilon_{।}\right.
\end{array}\right.
$$

where ε_{0} and $\varepsilon_{\text {। }}$ are constant Majorana spinors,

$$
\Pi_{ \pm}^{\mathrm{NS5}}=\frac{1}{2}\left(\mathbb{1} \pm \Gamma_{2345}\right),
$$

and

$$
\Gamma_{u}=\frac{m \rho_{1} \sqrt{U}}{\Delta} \Gamma_{5}-\frac{m \rho_{2}}{\Delta} \Gamma_{7}+\frac{1}{\Delta} \Gamma_{8} .
$$

A tale of many epsilons

- For our problem we only need to get one real (imaginary) twisted mass. Nevertheless, the construction can be easily generalized:
- Wilson loops in another direction (say $\times 9$) will give a complex ε
- Identifications involving other complex planes will give more ε 's. In order to preserve supersymmetry:

$$
\sum_{i} \varepsilon_{i}=0
$$

- Example: 3 real independent ε 's:

$$
\widetilde{x}_{8} \simeq \widetilde{x}_{8}+2 \pi \widetilde{R}
$$

$$
\left(\begin{array}{l}
x_{1}+i x_{9} \\
x_{2}+i x_{3} \\
x_{4}+i x_{5} \\
x_{6}+i x_{7}
\end{array}\right) \simeq\left(\begin{array}{ccc}
e^{2 \pi i \varepsilon_{1}} & & \\
& e^{2 \pi i \varepsilon_{2}} & \\
& & e^{2 \pi i \varepsilon_{3}} \\
\\
& &
\end{array} e^{-2 \pi i\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)}\right)\left(\begin{array}{l}
x_{1}+i x_{9} \\
x_{2}+i x_{3} \\
x_{4}+i x_{5} \\
x_{6}+i x_{7}
\end{array}\right)
$$

Outline

(1) Why are we here?

2 Gauge-Bethe Correspondence from Geometric Representation TheoryTwisted masses
(4) Twisted masses from String Theory: the Ω background

55 The gauge theory from String Theory
(6) Conclusions

D2 branes in the fluxtrap

- Now we have all the ingredients to write our gauge theory.
- The D2 branes are embedded in the NS-fluxtrap background

direction	0	1	2	3	4	5	6	7	8	9
NS5	\times	\times					\times	\times	\times	\times
fluxtrap	\times	\times	\times	\times						\times
D2	\times	\times	\times							
D4	\times	\times		\times	\times	\times				

- From the point of view of the gauge theory on the D2 branes
- $x_{8}+i x_{9}=\sigma$ (twisted chiral)
- $x_{6}+i x_{7}=\oplus$ (chiral adjoint)
- the separation of the $N S_{5}$ in x_{3} is the Fayet-lliopoulos term
- the separation of the NS5 in x_{2} is $1 / g^{2}$

The D2 brane as a BPS object

Consider the static embedding
$F_{\alpha \beta}=0, \quad x_{0}=\zeta^{0}, \quad x_{1}=\zeta^{1}, \quad x_{2}=\zeta^{2}, \quad \varphi_{1}=\omega \zeta^{0}, \quad \varphi_{2}=-\omega \zeta^{0}$.
The bosonic part of the DBI action reads

$$
S=-\mu_{2} \int d^{3} \zeta \sqrt{1-\frac{1-\Delta^{2}\left(1+\Lambda^{2} / U\right)}{m^{2}}\left(m^{2}-\omega^{2}\right)} .
$$

The equations of motion can be satisfied in two ways:

- if $\rho_{1}=\rho_{2}=x_{3}=0$. This is a static D_{2} brane sitting in the trap.
- if $\omega=m$. This is a rotating D2 brane. A nice feature is that we are not in the linearized approximation but the frequency is fixed only by the twisted mass m and is independent of the amplitude.

Static Embedding

The supersymmetries preserved by the static embedding are those such that

$$
\varepsilon_{L}=\Gamma_{D_{2}} \varepsilon_{R} .
$$

- Without the $N S_{5}$ there are 8 preserved supercharges $(\mathcal{N}=2$ theory in 3d)

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\Gamma_{1208}\left(\mathbb{1}+\Gamma_{\| ।}\right) \sqcap_{-}^{\text {flux }} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right] \varepsilon_{।}, \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\| ।}\right) \Gamma_{u} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right] \varepsilon_{।} .
\end{array}\right.
$$

- With the $N S_{5}$ there are 4 preserved supercharges $(\mathcal{N}=(2,2)$ theory in 2d)

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\left(\mathbb{1}+\Gamma_{\|}\right) \Pi_{-}^{\mathrm{NS5}} \Pi_{-}^{\text {flux }} \Gamma_{\mid 208} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right] \varepsilon_{2}, \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\|}\right) \Gamma_{u} \Pi_{+}^{N S 5} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right] \varepsilon_{2} .
\end{array}\right.
$$

Rotating Embedding

The rotating embedding $(\omega=m)$ works in the same way and preserves

- 4 real supercharges without the NS5

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\left(\mathbb{1}+\Gamma_{\|}\right) \Pi_{-}^{\text {flux }} \Gamma_{1208} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right]\left(\mathbb{1} \mp \Gamma_{08}\right) \varepsilon_{2}, \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\|}\right) \Gamma_{u} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right]\left(\mathbb{1} \mp \Gamma_{08}\right) \varepsilon_{2} .
\end{array}\right.
$$

- 2 real supercharges in presence of the NS_{5}

$$
\left\{\begin{array}{l}
\varepsilon_{L}=\left(\mathbb{1}+\Gamma_{\| 1}\right) \Pi_{-}^{\mathrm{NS5}} \Pi_{-}^{\text {flux }} \Gamma_{1208} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right]\left(\mathbb{1} \mp \Gamma_{08}\right) \varepsilon_{2}, \\
\varepsilon_{R}=\left(\mathbb{1}-\Gamma_{\|}\right) \Gamma_{u} \Pi_{+}^{\mathrm{NS5}} \Pi_{-}^{\text {flux }} \exp \left[\frac{1}{2}\left(\varphi_{1}+\varphi_{2}\right) \Gamma_{67}\right]\left(\mathbb{1} \mp \Gamma_{08}\right) \varepsilon_{2} .
\end{array}\right.
$$

DBI action for the D2 brane

The last thing that remains to do is to show how the D2 branes in the fluxtrap background acquire a twisted mass.
We simply need to write the Dirac-Born-Infeld action at quadratic order:

$$
S=-\mu_{2} \int d^{3} \zeta e^{-\oplus} \sqrt{-\operatorname{det}\left(g_{\alpha \beta}+B_{\alpha \beta}\right)}\left[1-\frac{1}{2} \bar{\psi}\left((g+B)^{\alpha \beta} \Gamma_{\beta} D_{a}+\Delta^{(1)}\right) \psi\right],
$$

where

$$
D_{\alpha}=\partial_{\alpha} X^{\mu}\left(\nabla_{\mu}+\frac{1}{8} H_{\mu m n} \Gamma^{m n}\right), \quad \Delta^{(1)}=\frac{1}{2} \Gamma^{m} \partial_{m} \Phi-\frac{1}{24} H_{m n p} \Gamma^{m n p} .
$$

Then we expand all the terms at their respective leading order in the fields:

$$
\begin{aligned}
g_{\mu \nu} \mathrm{d} X^{\mu} \mathrm{d} X^{\nu} & =\mathrm{d} \vec{x}_{0}^{2} \ldots 9+\mathcal{O}\left(X^{4}\right), \\
H_{\mu \nu \rho} \mathrm{d} X^{\mu} \wedge \mathrm{d} X^{\nu} \wedge \mathrm{d} X^{\rho} & =2 m\left(\rho_{1} \mathrm{~d} \rho_{1} \wedge \mathrm{~d} \varphi_{1}-\rho_{2} \mathrm{~d} \rho_{2} \wedge \mathrm{~d} \varphi_{2}\right) \wedge \mathrm{d} x_{8}+\mathcal{O}\left(X^{5}\right), \\
\mathrm{e}^{-\oplus} & =\frac{1}{g_{3}^{2} \sqrt{a^{\prime}}}\left(1+\frac{m^{2}}{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)\right)+\mathcal{O}\left(X^{4}\right) .
\end{aligned}
$$

DBI action for the D2 brane

- From the dilaton we get a term

$$
m^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)
$$

- From the B-field we get the mass for the fermions:

$$
\frac{m}{2} \bar{\psi}\left(\Gamma_{45}-\Gamma_{67}\right) \Gamma_{8 \psi}
$$

Putting everything together we reproduce the expected form for the real mass term in three dimensions:

$$
\begin{aligned}
S=\frac{1}{8 \pi^{2} g_{3}^{2}\left(a^{\prime}\right)^{2}} \int \mathrm{~d}^{3} \zeta\left[\dot{z}_{1} \dot{\bar{z}}_{1}\right. & +\dot{z}_{2} \dot{\bar{z}}_{2}-m^{2}\left(z_{1} \bar{z}_{1}+z_{2} \bar{z}_{2}\right) \\
& \left.-\bar{\psi} \Gamma_{0} \dot{\psi}-i m \bar{\psi}\left(\Pi_{-}^{z_{1}}-\Pi_{-}^{z_{2}}\right) \Gamma_{8 \psi}\right],
\end{aligned}
$$

Outline

(1) Why are we here?

2 Gauge-Bethe Correspondence from Geometric Representation Theory
(3) Twisted masses

4 Twisted masses from String Theory: the Ω background
(5) The gauge theory from String Theory
6) Conclusions

What have we seen?

- The gauge-Bethe correspondence is special because it relates a single spin chain to different gauge theories
- This suggests the existence of symmetries relating different gauge theories. We want to understand them in terms of String Theory.
- We propose a new approach in which the twisted masses result from a non-trivial bulk theory
- The bulk provides a natural embedding of the Ω background in string theory (as an exact CFT)
- It is easy to study the possible deformations (more than one ε, reality conditions, ...)
- It is easy to understand the supersymmetry properties, in terms of BPS objects in the bulk

To do

- Now we have a complete setup in which to study the gauge-Bethe correspondence, choosing the most appropriate duality frame

- We can generalize the action of the su(2) beyond the vacua. At strong coupling the full spectrum is organized under su(2) and we know for sure that there are BPS states that are protected and do not decouple.

To do

- Beyond the correspondence: one can study other gauge theories describing different kinds of branes in the same background
- Natural example: start with a Euclidean brane extended in 4, 5, 6, 7, $\widetilde{8}$ and reduce (T-dualize) on $\widetilde{8}$

direction	0	1	2	3	4	5	6	7	8	9
fluxtrap	\times	\times	\times	\times						\times
E4					\times	\times	\times	\times		

- The E_{4} extended in 4, 5, 6, 7 embedded in the fluxbrane background describe the Ω deformation of $\mathcal{N}=4$ super-Yang-Mills
- The same bulk that produced the twisted mass, now generates a position-dependent gauge coupling

$$
g_{4 \Omega}^{2} \propto \frac{1}{\sqrt{1+\varepsilon^{2}\left(\rho_{1}^{2}+\rho_{2}^{2}\right)}}
$$

and the instantons are localized in the trap set by the dilaton in the bulk.

Geometric Representation
Twisted masses
Twisted masses from String Theory

