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Motivation

The Gauge–Bethe correspondence – in its simplest manifestation – is the
equivalence of the ground states of a supersymmetric gauge theory and
the spectrum in a sector of a spin chain.

There are years of experience in the study of both sides of the
correspondence.

Main interest: We can translate problems from one side to the other

Fresh perspective on existing problems

New questions

Valuable tool for both sides: new insights.
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The message

The gauge–Bethe correspondence relates supersymmetric gauge
theories to sectors of spin chains

Spin chains have symmetries that relate different sectors

Geometric representation theory describes these symmetries as acting
on the ground states of the gauge theories

String theory provides a framework in which these different gauge
theories can be treated in a unified way and the spin chain symmetry
understood as symmetry enhancement for coincident D-branes.
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Today’s talk

Today I will try to understand this correspondence in the context of
String Theory.

First, I will rephrase the correspondence in terms of geometric
representation theory

Then, I will introduce a String Theory (D-brane) construction of the
correspondence, including all the mass parameters.

Main result: we understand the symmetry relating gauge theories in
terms of strings

Main result: we propose a construction for the twisted masses
(Ω background) in terms of D branes in a non-trivial bulk.
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The Gauge-Bethe Correspondence

The gauge–Bethe correspondence relates the Coulomb branch of
certain supersymmetric gauge theories to the Bethe Ansatz equations of
integrable systems
More precisely it identifies the twisted effective superpotential with the
Yang–Yang function
The simplest example is the XXX spin chain, whose Bethe Ansatz
equations read:(

σi − i /2
σi + i /2

)L

=

N∏
j ̸=i

σi −σj − i
σi −σj + i

, i = 1, . . . ,N

These are the same equations that one obtains describing the low
energy effective action for a two dimensional N = (2, 2) theory with
gauge group U(N), L fundamentals, L antifundamentals and an adjoint
field with twisted masses mQ = mQ̃ = − i /2, and mΦ = i.
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Representations

A representation of the algebra su(2) consists in a vector space V and an
action of three operators e, f, k satisfying the relations

[e, f] = k , [k, e] = 2e , [k, f] = −2f .

Given the tensor product of L copies of the fundamental representation
V, there is a natural inclusion of the (L+ 1)–dimensional irreducible
representation, V(L) ↪→ V⊗L.
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Spin chain

I will consider the simplest example: the XXX spin chain, with periodic
boundary conditions.
System of L spins on a circle. Each spin can be ↑ or ↓. These are
generators of the fundamental representation V of su(2).
The Hamiltonian is invariant under the action of su(2) defined as

E =

L∑
m=1

1⊗ · · · ⊗ 1︸ ︷︷ ︸
m−1

⊗ e⊗ 1⊗ · · · ⊗ 1 .

The spectrum of the chain is organized into representation of su(2):

H = V⊗L =
L⊕

N=0

VL−2N .

VL−2N: magnon states. This is not the decomposition into irreps.
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The Poor Man’s Introduction to Geometric Representation

Each of the terms H∗[T∗Gr(N, L),C] is identified with the (L− 2N)
weight space, which has dimension

( L
N

)
:

H∗[T∗Gr(L)] ≃ V⊗L =
L⊕

N=0

VL−2N ≃
L⊕

N=0

H∗[T∗Gr(N, L)] .

The key point of the construction is the definition of the operators e and
f which act between the homologies,

e, f : H∗[T∗Gr(L)] → H∗[T∗Gr(L)] .

In particular, we need f to act between two components of Gr(L), raising
N by 1:

f : H∗[T∗Gr(N, L)] → H∗[T∗Gr(N+ 1, L)] .
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The Poor Man’s Introduction to Geometric Representation

Introduce a correspondence (in the mathematical sense)

.

.

. ..Z ⊂ T∗Gr(N, L)× T∗Gr(N+ 1, L) .

..T∗Gr(N, L) . ..T∗Gr(N+ 1, L)
.π1

.π2

where Z is the diagonal part of the cotangent bundle of the product of
two Grassmannians:

Z = { (X,UN,U
′
N+1) | Ui ∈ Gr(Ni, L),X ∈ End(CL),U ⊂ U′,X(CL) ⊂ U,X(U′) = 0 } .

Define the Hecke operator f by first acting with the pullback π1
∗, then

intersecting with the fundamental class [Z] and finally acting with the
pushforward π2∗:

f : H∗[T∗Gr(N, L)] → H∗[T∗Gr(N+ 1, L)]

x 7→ f(x) = π2∗([Z] ∩π1
∗(x)) .
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The Poor Man’s Introduction to Geometric Representation

The spaces H∗[T∗Gr(N, L)] are eigenspaces for k:

k =
L⊕

N=0

(L− 2N)1H∗[T∗Gr(N,L)] ,

as we wanted, the L− 2N weight space is precisely the homology of
T∗Gr(N, L):

H∗[T∗Gr(N, L)] = { x ∈ H∗[T∗Gr(L)] ≃ V⊗L | kx = (L− 2N) x } ≃ VL−2N .

summing over all these spaces:

H∗[T∗Gr(L)] ≃ V⊗L =
L⊕

N=0

VL−2N ≃
L⊕

N=0

H∗[T∗Gr(N, L)] .
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The Gauge–Bethe correspondence revisited

The direct sum of the homologies of the cotangent bundles over the
Grassmannians of CL corresponds to the ground states of the non-linear
sigma models on all the T∗Gr(N, L) for N = 0, 1, . . . , L.

Via geometric representation theory, this space can be given the
structure of the V⊗L representation of su(2)

The Hilbert space of the xxx1/2 spin chain has the same structure.

The homology of the Grassmannian H∗[T∗Gr(N, L)] is the (L− 2N)
weight space VL−2N, which is spanned by the spectrum of the xxx1/2
chain in the N magnon sector

There is a one-to-one correspondence between the minima of the
twisted superpotential of the nlsm and the solutions to the Bethe Ansatz
(gauge/Bethe correspondence as an isomorphism of modules).
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Another dictionary

physics mathematics

spectrum of xxx1/2 spin chain su(2) representation V⊗L ≃ H∗[T
∗Gr(L)]

ground states of the nlsm on T∗Gr(N, L) cohomology H∗[T∗Gr(N, L)]
spectrum for the N magnon sector weight space VL−2N ≃ H∗[T

∗Gr(N, L)]
ground states of xxx1/2 hw representation V(L) ≃ Htop[T

∗Gr(L)]
gauge/Bethe correspondence geometric representation of su2

. .0 .1 .2 .3 .4 .N

.E

.e

.f

.
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Gauge theory

H∗[T∗Gr(N, L)]: the ground states of a two dimensional U(N) theory
with L fundamentals, L antifundamentals and one adjoint
String Theory: N D2 branes stretching between two NS5 branes with L
perpendicular D4 branes

0 1 2 3 4 5 6 7 8 9

NS1,2 × × × × × ×
D × × ×
D × × × × ×

D

NS1 NS2

T−→ D

NS1 NS2

S−→ F

D1 D2

Domenico Orlando The String Theory of the Ω Deformation



. . .
Why are we here?

. . . . . . . . .
Geometric Representation

. . . .
Twisted masses

. . . . . . .
Twisted masses from String Theory

. . . . . .
Gauge theory

. . . .
Conclusions

Gauge theory

H∗[T∗Gr(N, L)]: the ground states of a two dimensional U(N) theory
with L fundamentals, L antifundamentals and one adjoint
String Theory: N D2 branes stretching between two NS5 branes with L
perpendicular D4 branes

0 1 2 3 4 5 6 7 8 9

NS1,2 × × × × × ×
D × × ×
D × × × × ×

D

NS1 NS2

T−→ D

NS1 NS2

S−→ F

D1 D2

Domenico Orlando The String Theory of the Ω Deformation



. . .
Why are we here?

. . . . . . . . .
Geometric Representation

. . . .
Twisted masses

. . . . . . .
Twisted masses from String Theory

. . . . . .
Gauge theory

. . . .
Conclusions

Gauge theory

H∗[T∗Gr(N, L)]: the ground states of a two dimensional U(N) theory
with L fundamentals, L antifundamentals and one adjoint
String Theory: N D2 branes stretching between two NS5 branes with L
perpendicular D4 branes

0 1 2 3 4 5 6 7 8 9

NS1,2 × × × × × ×
D × × ×
D × × × × ×

D

NS1 NS2

T−→ D

NS1 NS2

S−→ F

D1 D2

Domenico Orlando The String Theory of the Ω Deformation



. . .
Why are we here?

. . . . . . . . .
Geometric Representation

. . . .
Twisted masses

. . . . . . .
Twisted masses from String Theory

. . . . . .
Gauge theory

. . . .
Conclusions

Outline

.
. .1 Why are we here?

.
. .2 Gauge–Bethe Correspondence from Geometric Representation Theory

.
. .3 Twisted masses

.
. .4 Twisted masses from String Theory: the Ω background

.
. .5 The gauge theory from String Theory

.
. .6 Conclusions

Domenico Orlando The String Theory of the Ω Deformation



. . .
Why are we here?

. . . . . . . . .
Geometric Representation

. . . .
Twisted masses

. . . . . . .
Twisted masses from String Theory

. . . . . .
Gauge theory

. . . .
Conclusions

Twisted masses

Can we go home? Not yet: the gauge theory has an exotic ingredient:
twisted masses for the adjoint and the hypers∫

d4θX†eθ
−θ̄+m̃X+h.c.X

neither superpotential nor twisted superpotential terms.
They cannot be viewed as perturbations of the action symmetric under a
fixed superalgebra
They are associated with a deformation of the superalgebra itself.
A real twisted mass in 2D can be understood by lifting to an N = 2
theory in 3 dimensions.
The lifted deformation (real mass) gives a central extension of the
undeformed theory:

{Qα, Q̄β} = Γμαβ Pμ +δαβ Z ,

where Z ≡ mIqI is a linear combination of non-R global symmetries qI.
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Real masses

This leads to a simple and general construction of the twisted mass
deformation in the general case:
Couple a fictitious (nondynamical) vector multiplet { A0,1,2,σ } to the
theory, for each Abelian global symmetry.
Give the real (appropriately normalized) fields σI fixed values mI.
This preserves N = 2 SUSY in 3 dimensions, but adds the central
extension Z.
This construction gives a simple sufficient condition for real mass
deformations of theories with superpotentials which must remain
invariant under the U(1) symmetry Z.
Simplest non-trivial example:

W = Q̃ΦQ ,

implies mQ + mΦ + mQ̃ = 0.
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Real mass terms from four dimensions

For certain 3D theories there’s an even simpler description: those that
lift to 4D.

This assumes the global symmetries are exact in 4D as well.

Then the σ field lifts to A8̃ where 8̃ is the fourth dimension we’re lifting
to and A is again the nondynamical Abelian gauge field.

The vev of σ in three dimensions corresponds to a compactification
with monodromy R̃mIqI - this is the integral of the gauge connection
around the fourth dimension.

Then the fields have generalized momenta Z = mIqI and thus
Kaluza-Klein masses Z =

∣∣mIqI
∣∣.
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Real masses, monodrofolds, and String Theory

.

.

. ..gauge theory .. .. ..string theory

..4D ..Wilson line b.c. . . .
.

D3–brane in fluxbrane
= Ω background

..

..

..3D ..real mass . . ..D2–brane in fluxtrap

.reduction .T–duality

.effective

.theory

.effective

.theory
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Fluxbrane background

The fluxbrane background is obtained starting from flat space in ten
dimensions and imposing identifications.
The D brane comes from a D brane, extended in the directions 0128
we give a complex structure to the remaining six

w1 = y1 + i y2 = ρ1 e
iθ1 , w2 = y3 + i y4 = ρ2 e

iθ2 , w3 = y5 + i y6 ,

we impose the identification

x̃8 ≃ x̃8 + 2πR̃ ,
(
w1

w2

)
≃

(
e2π i mR̃ 0

0 e−2π i mR̃

)(
w1

w2

)
.

In terms of coordinates:
x̃8 ≃ x̃8 + 2πR̃ k1 ,

θ1 ≃ θ1 + 2πmR̃ k1 ,

θ2 ≃ θ2 − 2πmR̃ k1 ,

k1 ∈ Z ,

Domenico Orlando The String Theory of the Ω Deformation
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The Ω background

Introduce φ1 = θ1 − mx̃8, φ2 = θ2 + mx̃8. The flat space metric:

d̃s2 = d⃗x2
0...3 + dρ2

1 +ρ
2
1 dφ2

1 + dρ2
2 +ρ

2
2 dφ2

2

+ 2m
(
ρ2

1 dφ1 −ρ2
2 dφ2

)
dx̃8 +

(
1 + m2

(
ρ2

1 +ρ
2
2

))
dx̃2

8 + dx2
9 ,

or, in rectilinear coordinates

x4 + i x5 ≡ ρ1e
iφ1 , x6 + i x7 ≡ ρ2e

iφ2 ,

the metric becomes the Ω–deformation of flat space with
ε1 = −ε2 = m:

d⃗x2
0...3 +

7∑
i=4

(
dxi + mV i dx̃8

)2
+ dx̃2

8 + dx2
9 ,

where V i∂i is the Killing vector

V i∂i = −x5∂x4 + x4∂x5 + x7∂x6 − x6∂x7 = ∂φ1
− ∂φ2
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The fluxtrap background

To get the real mass we need to T–dualize in x8, in order to get a D
brane
The resulting background is a fluxtrap:

ds2 = d⃗x2
0...3 + dρ2

1 + dρ2
2 +ρ

2
1 dφ2

1 +ρ
2
2 dφ2

2

+
−m2

(
ρ2

1 dφ1 −ρ2
2 dφ2

)2
+ dx2

8

1 + m2
(
ρ2

1 +ρ
2
2

) + dx2
9 ,

B = m
ρ2

1 dφ1 −ρ2
2 dφ2

1 + m2
(
ρ2

1 +ρ
2
2

) ∧ dx8 ,

e−Φ =

√
1 + m2

(
ρ2

1 +ρ
2
2

)
g2

3

√
α′

.

The effective theory for a D brane in this background acquires a real
mass term m.
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The NS5 fluxtrap

Even if we can’t use linearity, it is still possible to add an NS brane in the bulk,
impose the identifications and T-dualize:

ds2 = U
[
dx2

2 + dx2
3 + dρ2

1

]
+ dρ2

2 +
Uρ2

1

[
dφ2

1 + m2ρ2
2 (dφ1 + dφ2)

2
]
+ρ2

2 dφ2
2

Δ2

+
Λ2

(x2
3 +ρ

2
1)Δ

2

[(
x2

3 +ρ
2
1

)
dx2 − x2x3 dx3 − x2ρ1 dρ1 +

√
x2

3 +ρ
2
1 dx8

Λ

]2

,

B =
Λ

[
−
(
x2

3 +ρ
2
1

)
dx2 + x2x3 dx3 + x2ρ1 dρ1

]
∧
[(

1 + m2ρ2
2

)
dφ1 + m2ρ2

2 dφ2

]
m (x2

3 −ρ2
1)Δ

2

− m
Uρ2

1 dφ1 −ρ2
2 dφ2

Δ2 ∧ dx8 ,

e−Φ =
1

g2
3

√
α′

√
1 + m2 (Uρ2

1 +ρ
2
2)

U
,

where

U = 1 +
N5α′

x2
2 + x2

3 +ρ
2
1

, Δ2 = 1 + m2
(
Uρ2

1 +ρ
2
2

)
, Λ =

2mx3
(
x2

3 +ρ
2
1

)(
x2

2 + x3
3 +ρ

2
1

)2
Δ

.
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Supersymmetry

One can understand the supersymmetries of this string theory solution
starting from the type IIB picture (D3 brane)

In the initial flat background (prior to identifications), there are 32 Killing
spinors

KIIB = exp[1
2θ1Γ45 +

1
2θ2Γ67]ε0 ,

where ε0 is a complex Weyl spinor.

Introducing φ1 and φ2, this becomes

KIIB = exp[ 1
2φ1Γ45 +

1
2φ2Γ67] exp[

mR̃ũ
2

(Γ45 −Γ67)]ε0 .

In the generic case the second exponential must vanish to preserve
periodicity. Introduce the orthogonal projectors

Πflux
± = 1

2 (1±Γ4567) ,
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Supersymmetry

The fluxtrap background preserves 16 supersymmetries. In the type IIA
picture the Killing spinors are:{

εL = (1+Γ11)Πflux
− exp[ 1

2φ1Γ45 +
1
2φ2Γ67]ε0 ,

εR = (1−Γ11)ΓuΠflux
− exp[1

2φ1Γ45 +
1
2φ2Γ67]ε1 ,

The NS5-fluxtrap background preserves 8 supersymmetries. In the type
IIA picture the Killing spinors are:{

εL = (1+Γ11)ΠNS5
− Πflux

− exp[ 1
2φ1Γ45 +

1
2φ2Γ67]ε0

εR = (1−Γ11)ΓuΠNS5
+ Πflux

− exp[1
2φ1Γ45 +

1
2φ2Γ67]ε1

where ε0 and ε1 are constant Majorana spinors,

ΠNS5
± = 1

2 (1±Γ2345) ,

and

Γu =
mρ1

√
U

Δ
Γ5 −

mρ2

Δ
Γ7 +

1
Δ
Γ8 .
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A tale of many epsilons

For our problem we only need to get one real (imaginary) twisted mass.
Nevertheless, the construction can be easily generalized:
Wilson loops in another direction (say x9) will give a complex ε
Identifications involving other complex planes will give more ε’s. In
order to preserve supersymmetry:∑

i

εi = 0

Example: 3 real independent ε’s:

x̃8 ≃ x̃8 + 2πR̃
x1 + i x9

x2 + i x3

x4 + i x5

x6 + i x7

 ≃


e2π iε1

e2π iε2

e2π iε3

e−2π i(ε1+ε2+ε3)



x1 + i x9

x2 + i x3

x4 + i x5

x6 + i x7


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D2 branes in the fluxtrap

Now we have all the ingredients to write our gauge theory.

The D branes are embedded in the NS-fluxtrap background

direction 0 1 2 3 4 5 6 7 8 9

NS5 × × × × × ×
fluxtrap × × × × ×
D2 × × ×
D4 × × × × ×

From the point of view of the gauge theory on the D branes
x8 + i x9 = σ (twisted chiral)
x6 + i x7 = Φ (chiral adjoint)
the separation of the NS in x3 is the Fayet-Iliopoulos term
the separation of the NS in x2 is 1/g2

Domenico Orlando The String Theory of the Ω Deformation



. . .
Why are we here?

. . . . . . . . .
Geometric Representation

. . . .
Twisted masses

. . . . . . .
Twisted masses from String Theory

. . . . . .
Gauge theory

. . . .
Conclusions

The D brane as a BPS object

Consider the static embedding

Fαβ = 0 , x0 = ζ0 , x1 = ζ1 , x2 = ζ2 , φ1 = ωζ0 , φ2 = −ωζ0 .

The bosonic part of the DBI action reads

S = −μ2

∫
d3ζ

√
1 −

1 −Δ2
(
1 +Λ2/U

)
m2 (m2 −ω2) .

The equations of motion can be satisfied in two ways:

if ρ1 = ρ2 = x3 = 0. This is a static D brane sitting in the trap.

if ω = m. This is a rotating D brane. A nice feature is that we are not in
the linearized approximation but the frequency is fixed only by the
twisted mass m and is independent of the amplitude.
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Static Embedding

The supersymmetries preserved by the static embedding are those such that

εL = ΓDεR .

Without the NS there are 8 preserved supercharges (N = 2 theory in
3d) {

εL = Γ1208 (1+Γ11)Πflux
− exp[ 1

2 (φ1 +φ2)Γ67]ε1 ,

εR = (1−Γ11)ΓuΠflux
− exp[ 1

2 (φ1 +φ2)Γ67]ε1 .

With the NS there are 4 preserved supercharges (N = (2, 2) theory
in 2d){

εL = (1+Γ11)ΠNS5
− Πflux

− Γ1208 exp[ 1
2 (φ1 +φ2)Γ67]ε2 ,

εR = (1−Γ11)ΓuΠNS5
+ Πflux

− exp[ 1
2 (φ1 +φ2)Γ67]ε2 .
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Rotating Embedding

The rotating embedding (ω = m) works in the same way and preserves

4 real supercharges without the NS{
εL = (1+Γ11)Πflux

− Γ1208 exp[ 1
2 (φ1 +φ2)Γ67] (1∓Γ08)ε2 ,

εR = (1−Γ11)ΓuΠflux
− exp[ 1

2 (φ1 +φ2)Γ67] (1∓Γ08)ε2 .

2 real supercharges in presence of the NS{
εL = (1+Γ11)ΠNS5

− Πflux
− Γ1208 exp[ 1

2 (φ1 +φ2)Γ67] (1∓Γ08)ε2 ,

εR = (1−Γ11)ΓuΠNS5
+ Πflux

− exp[ 1
2 (φ1 +φ2)Γ67] (1∓Γ08)ε2 .
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DBI action for the D2 brane

The last thing that remains to do is to show how the D branes in the
fluxtrap background acquire a twisted mass.
We simply need to write the Dirac–Born–Infeld action at quadratic order:

S = −μ2

∫
d3ζ e−Φ

√
− det(gαβ + Bαβ)

[
1 − 1

2
ψ̄

(
(g+ B)αβΓβDα +Δ(1)

)
ψ

]
,

where

Dα = ∂αXμ
(
∇μ +

1
8
HμmnΓ

mn
)

, Δ(1) =
1
2
Γm ∂mΦ− 1

24
HmnpΓ

mnp .

Then we expand all the terms at their respective leading order in the fields:

gμν dXμ dXν = d⃗x2
0...9 +O(X4) ,

Hμνρ dXμ ∧ dXν ∧ dXρ = 2m (ρ1 dρ1 ∧ dφ1 −ρ2 dρ2 ∧ dφ2) ∧ dx8 +O(X5) ,

e−Φ =
1

g2
3

√
α′

(
1 +

m2

2

(
ρ2

1 +ρ
2
2

))
+O(X4) .
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DBI action for the D2 brane

From the dilaton we get a term

m2
(
ρ2

1 +ρ
2
2

)
From the B-field we get the mass for the fermions:

m
2
ψ̄ (Γ45 −Γ67)Γ8ψ

Putting everything together we reproduce the expected form for the real
mass term in three dimensions:

S =
1

8π2g2
3(α

′)2

∫
d3ζ

[
ż1 ˙̄z1 + ż2 ˙̄z2 − m2 (z1z̄1 + z2z̄2)

− ψ̄Γ0ψ̇− i m ψ̄
(
Πz1

− −Πz2
−
)
Γ8ψ

]
,
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What have we seen?

The gauge–Bethe correspondence is special because it relates a single
spin chain to different gauge theories

This suggests the existence of symmetries relating different gauge
theories. We want to understand them in terms of String Theory.

We propose a new approach in which the twisted masses result from a
non-trivial bulk theory

The bulk provides a natural embedding of the Ω background in string
theory (as an exact CFT)

It is easy to study the possible deformations (more than one ε, reality
conditions, …)

It is easy to understand the supersymmetry properties, in terms of BPS
objects in the bulk
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To do

Now we have a complete setup in which to study the gauge–Bethe
correspondence, choosing the most appropriate duality frame

D

NS1 NS2

T−→ D

NS1 NS2

S−→ F

D1 D2

We can generalize the action of the su(2) beyond the vacua. At strong
coupling the full spectrum is organized under su(2) and we know for
sure that there are BPS states that are protected and do not decouple.
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To do

Beyond the correspondence: one can study other gauge theories
describing different kinds of branes in the same background
Natural example: start with a Euclidean brane extended in 4, 5, 6, 7, 8̃
and reduce (T-dualize) on 8̃

direction 0 1 2 3 4 5 6 7 8 9

fluxtrap × × × × ×
E4 × × × ×

The E extended in 4, 5, 6, 7 embedded in the fluxbrane background
describe the Ω deformation of N = 4 super-Yang–Mills
The same bulk that produced the twisted mass, now generates a
position-dependent gauge coupling

g2
4Ω ∝ 1√

1 +ε2
(
ρ2

1 +ρ
2
2

)
and the instantons are localized in the trap set by the dilaton in the bulk.
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Thank you

for your attention
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