Higher rank AGT and non-local operators

Filippo Passerini
Humboldt University, Berlin

KITP
August 24, 2011

Introduction

- Spring 2009: AGT duality, an explicit connection between 4D $\mathcal{N}=2$ gauge theories and 2D CFT

Introduction

- Spring 2009: AGT duality, an explicit connection between 4D $\mathcal{N}=2$ gauge theories and 2D CFT [Alday, Gaiotto, Tachikawa]
- Basic AGT Setup: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(2)^{k}$ is equivalent to a correlation function in Liouville CFT

Introduction

- Spring 2009: AGT duality, an explicit connection between 4D $\mathcal{N}=2$ gauge theories and 2D CFT
- Basic AGT Setup: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(2)^{k}$ is equivalent to a correlation function in Liouville CFT

Simplest Example: $\mathcal{N}=2$ SCYM on S^{4} with gauge group $S U(2)$

Introduction

- Spring 2009: AGT duality, an explicit connection between 4D $\mathcal{N}=2$ gauge theories and 2D CFT
- Basic AGT Setup: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(2)^{k}$ is equivalent to a correlation function in Liouville CFT

Simplest Example: $\mathcal{N}=2$ SCYM on S^{4} with gauge group $S U(2)$

AGT:

$$
Z_{S^{4}}=\left\langle V_{\beta_{1}} V_{\beta_{2}} V_{\beta_{3}} V_{\beta_{4}}\right\rangle_{\text {Liouville }}
$$

The partition function is equivalent to a 4 -point correlation function in Liouville CFT

Gauge Theory:

The partition function of $\mathcal{N}=2 \mathrm{SCYM}$ on S^{4} results

$$
Z_{S^{4}}=\int d a^{(1)} Z_{\mathrm{cl}} Z_{1-\mathrm{loop}} Z_{\mathrm{inst}}
$$

the partition function localizes to a matrix integral in $a^{(1)}$, the VEV of the scalar in the vector multiplet that parameterize the Coulomb branch

- where
$-Z_{\text {cl }}=e^{-\frac{4 \pi^{2} r^{2}}{g^{2}} \operatorname{Tr}\left(a^{(1)}\right)^{2}} \quad$ is the classical contribution
$-Z_{1-\text { loop }}=Z_{1-\text { loop }}(a, m) \quad$ is the perturbative contribution
$-Z_{\text {inst }}=\left|Z_{\text {Nek }}(q, 1 / r, 1 / r, a, m)\right|^{2} \quad$ is the instanton contribution $\left(q=e^{2 \pi i \tau}\right)$

Gauge Theory:

The partition function of $\mathcal{N}=2 \mathrm{SCYM}$ on S^{4} results

$$
Z_{S^{4}}=\int d a^{(1)} Z_{\mathrm{cl}} Z_{1-\mathrm{loop}} Z_{\mathrm{inst}}
$$

the partition function localizes to a matrix integral in $a^{(1)}$, the VEV of the scalar in the vector multiplet that parameterize the Coulomb branch

- where
$-Z_{\text {cl }}=e^{-\frac{4 \pi^{2} r^{2}}{g^{2}} \operatorname{Tr}\left(a^{(1)}\right)^{2}} \quad$ is the classical contribution
$-Z_{1-\text { loop }}=Z_{1-\text { loop }}(a, m) \quad$ is the perturbative contribution
$-Z_{\text {inst }}=\left|Z_{\text {Nek }}(q, 1 / r, 1 / r, a, m)\right|^{2} \quad$ is the instanton contribution $\left(q=e^{2 \pi i \tau}\right)$
- Half-BPS Wilson loop $\quad\langle W\rangle=\int d a^{(1)} Z_{\text {cl }} Z_{1-\text { loop }} Z_{\text {inst }} \operatorname{Tr}_{R} e^{2 \pi r i a^{(1)}}$

Liouville CFT:

- Primaries: $V_{\alpha}(z, \bar{z})=e^{2 \alpha \phi(z, \bar{z})}$ characterized by one imaginary parameter
- Conformal Bootstrap Approach: any correlator can be expressed in terms of 3 -point functions and conformal blocks

Liouville CFT:

- Primaries: $V_{\alpha}(z, \bar{z})=e^{2 \alpha \phi(z, \bar{z})}$ characterized by one imaginary parameter
- Conformal Bootstrap Approach: any correlator can be expressed in terms of 3 -point functions and conformal blocks

For our basic example

$$
\begin{aligned}
& \left\langle V_{\beta_{1}}(\infty) V_{\beta_{2}}(1) V_{\beta_{3}}(z) V_{\beta_{4}}(0)\right\rangle \\
& =\int d \alpha^{(1)}\left\langle\beta_{1}\right| V_{\beta_{2}}\left|\alpha^{(1)}\right\rangle\left\langle\alpha^{(1)}\right| V_{\beta_{3}}\left|\beta_{4}\right\rangle \mathcal{F}_{\alpha, \beta}(z) \overline{\mathcal{F}}_{\alpha, \beta}(\bar{z})|z|^{2\left(\Delta_{\alpha}-\Delta_{\beta_{3}}-\Delta_{\beta_{4}}\right)}
\end{aligned}
$$

Liouville CFT:

- Primaries: $V_{\alpha}(z, \bar{z})=e^{2 \alpha \phi(z, \bar{z})}$ characterized by one imaginary parameter
- Conformal Bootstrap Approach: any correlator can be expressed in terms of 3 -point functions and conformal blocks

For our basic example

$$
\begin{aligned}
& \left\langle V_{\beta_{1}}(\infty) V_{\beta_{2}}(1) V_{\beta_{3}}(z) V_{\beta_{4}}(0)\right\rangle \\
& =\int d \alpha^{(1)}\left\langle\beta_{1}\right| V_{\beta_{2}}\left|\alpha^{(1)}\right\rangle\left\langle\alpha^{(1)}\right| V_{\beta_{3}}\left|\beta_{4}\right\rangle \mathcal{F}_{\alpha, \beta}(z) \overline{\mathcal{F}}_{\alpha, \beta}(\bar{z})|z|^{2\left(\Delta_{\alpha}-\Delta_{\beta_{3}}-\Delta_{\beta_{4}}\right)}
\end{aligned}
$$

and this specific decomposition is schematized by the diagram

AGT

$\int d a^{(1)} Z_{\text {cl }} Z_{\text {1-loop }} Z_{\text {inst }}=\int d \alpha^{(1)}\left\langle\beta_{1}\right| V_{\beta_{2}}\left|\alpha^{(1)}\right\rangle\left\langle\alpha^{(1)}\right| V_{\beta_{3}}\left|\beta_{4}\right\rangle \mathcal{F}_{\alpha, \beta}(z) \overline{\mathcal{F}}_{\alpha, \beta}(\bar{z})|z|^{2\left(\Delta_{\alpha}-\Delta_{\beta_{3}}-\Delta_{\beta_{4}}\right)}$

AGT

$\int d a^{(1)} Z_{\text {cl }} Z_{\text {1-loop }} Z_{\text {inst }}=\int d \alpha^{(1)}\left\langle\beta_{1}\right| V_{\beta_{2}}\left|\alpha^{(1)}\right\rangle\left\langle\alpha^{(1)}\right| V_{\beta_{3}}\left|\beta_{4}\right\rangle \mathcal{F}_{\alpha, \beta}(z) \overline{\mathcal{F}}_{\alpha, \beta}(\bar{z})|z|^{2\left(\Delta_{\alpha}-\Delta_{\beta_{3}}-\Delta_{\beta_{4}}\right)}$

- Dictionary:
- Coulomb branch parameters $a^{(1)} \Leftrightarrow$ primaries in the internal channels $\alpha^{(1)}$
- Hypermultiplets masses $m \Leftrightarrow$ primaries in the external channels β
$-Z_{1 \text {-loop }} \Leftrightarrow$ product of 3-point functions (DOZZ formulas)
$-Z_{\text {inst }} \Leftrightarrow$ conformal block $\mathcal{F}_{\alpha, \beta}$
$-q=e^{2 \pi i \tau} \Leftrightarrow z$

M-theory picture: 4D $\mathcal{N}=2$ gauge theories describe the low energy dynamics of a stack of M5-branes compactified on a punctured Riemann surface [Gaiotto][Witten]

- punctures \Leftrightarrow flavor symmetry of the gauge theory
- thin tubes connecting the pair of pants \Leftrightarrow weakly coupled gauge groups

M-theory picture: 4D $\mathcal{N}=2$ gauge theories describe the low energy dynamics of a stack of M5-branes compactified on a punctured Riemann surface [Gaiotto][Witten]

- punctures \Leftrightarrow flavor symmetry of the gauge theory
- thin tubes connecting the pair of pants \Leftrightarrow weakly coupled gauge groups

Example: $\mathcal{N}=2 S U(2)$ SCYM

M-theory picture: 4D $\mathcal{N}=2$ gauge theories describe the low energy dynamics of a stack of M5-branes compactified on a punctured Riemann surface [Gaiotto][Witten]

- punctures \Leftrightarrow flavor symmetry of the gauge theory
- thin tubes connecting the pair of pants \Leftrightarrow weakly coupled gauge groups

Example: $\mathcal{N}=2 S U(2)$ SCYM

- 4 punctures $\Longleftrightarrow(S U(2))^{4}$ flavor group (one puncture for any $S U(2)$)
- 1 tube $\Longleftrightarrow S U(2)$ gauge group

Liouville theory is defined on the Gaiotto curve $C_{(4,0)}$. To any puncture is associated an insertion in the correlation function.

Outline

- introduction
- $S U(2)$ AGT
- higher rank AGT
- AGT for quiver tails
- adding non-local operators to the AGT proposal
- surface operators from 2D CFT
- Conclusion

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]
A_{N-1} Toda theory:
It is described by a 2D Lagrangian $S_{A_{N-1}}=S_{A_{N-1}}(\phi, b)$

- $\phi=\sum_{k=1}^{N-1} \varphi_{k} e_{k}$ where e_{k} is a simple root of A_{N-1} algebra
- b is a dimensionless coupling constant

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]
A_{N-1} Toda theory:
It is described by a 2D Lagrangian $S_{A_{N-1}}=S_{A_{N-1}}(\phi, b)$

- $\phi=\sum_{k=1}^{N-1} \varphi_{k} e_{k}$ where e_{k} is a simple root of A_{N-1} algebra
- b is a dimensionless coupling constant
A_{1} Toda is Liouville CFT. For generic N, it is a generalization of Liouville

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]
A_{N-1} Toda theory:
It is described by a 2D Lagrangian $S_{A_{N-1}}=S_{A_{N-1}}(\phi, b)$

- $\phi=\sum_{k=1}^{N-1} \varphi_{k} e_{k}$ where e_{k} is a simple root of A_{N-1} algebra
- b is a dimensionless coupling constant
A_{1} Toda is Liouville CFT. For generic N, it is a generalization of Liouville
A_{N-1} Toda field theory is invariant under \mathcal{W}_{N} algebra

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]
A_{N-1} Toda theory:
It is described by a 2D Lagrangian $S_{A_{N-1}}=S_{A_{N-1}}(\phi, b)$

- $\phi=\sum_{k=1}^{N-1} \varphi_{k} e_{k}$ where e_{k} is a simple root of A_{N-1} algebra
- b is a dimensionless coupling constant
A_{1} Toda is Liouville CFT. For generic N, it is a generalization of Liouville
A_{N-1} Toda field theory is invariant under \mathcal{W}_{N} algebra

The \mathcal{W}_{N} primaries are given by $V_{\alpha} \sim e^{\langle\alpha, \phi\rangle}$

- $\langle\cdot, \cdot\rangle$ is the scalar product in the root space
- α is a vector in the root space of the A_{N-1} algebra, $\alpha=Q \rho+\gamma$
- the conformal dimension is given by $\Delta(\alpha)=\frac{1}{2}\langle\alpha, 2 Q \rho-\alpha\rangle$

Higher Rank AGT: The partition function of conformal $\mathcal{N}=2$ theories on S^{4} with gauge group $S U(N)^{k}$ is equivalent to a correlation function in A_{N-1} Toda CFT [Wyllard][Kanno, Matsuo, Shiba]
A_{N-1} Toda theory:
It is described by a 2D Lagrangian $S_{A_{N-1}}=S_{A_{N-1}}(\phi, b)$

- $\phi=\sum_{k=1}^{N-1} \varphi_{k} e_{k}$ where e_{k} is a simple root of A_{N-1} algebra
- b is a dimensionless coupling constant
A_{1} Toda is Liouville CFT. For generic N, it is a generalization of Liouville
A_{N-1} Toda field theory is invariant under \mathcal{W}_{N} algebra

The \mathcal{W}_{N} primaries are given by $V_{\alpha} \sim e^{\langle\alpha, \phi\rangle}$

- $\langle\cdot, \cdot\rangle$ is the scalar product in the root space
- α is a vector in the root space of the A_{N-1} algebra, $\alpha=Q \rho+\gamma$
- the conformal dimension is given by $\Delta(\alpha)=\frac{1}{2}\langle\alpha, 2 Q \rho-\alpha\rangle$
V_{α} depend on $N-1$ parameters γ

Semi-degenerate representations of Toda CFT

- in the orthonormal basis $\alpha=Q\left(-\frac{N+1}{2}, \ldots, \frac{N+1}{2}\right)+\left(\gamma_{1}, \ldots, \gamma_{N}\right)$
- when γ is imaginary, the descendants form an irreducible representation of $\mathcal{W}_{\mathcal{N}}$ algebra

Semi-degenerate representations of Toda CFT

- in the orthonormal basis $\alpha=Q\left(-\frac{N+1}{2}, \ldots, \frac{N+1}{2}\right)+\left(\gamma_{1}, \ldots, \gamma_{N}\right)$
- when γ is imaginary, the descendants form an irreducible representation of $\mathcal{W}_{\mathcal{N}}$ algebra
- Semi-degenerate states have descendants that are null vectors
- Physical semi-degenerate states have all the null states at level 1
[Kanno, Matsuo, Shiba, Tachikawa]
- γ has real components
$-\alpha$ is invariant under a subgroup of the permutation group S_{N}
- subgroups of S_{N} are described by partition of N, i.e. Young diagram with N boxes
- For instance, the degenerate state of A_{2} Toda

β_{1}
- $\quad[2,1]$ diagram, is invariant under $S_{2} \times S_{1} \subset S_{3}$
- The momentum is given by

$$
\begin{aligned}
\alpha & =Q \rho+\left(\beta_{2}, \beta_{1}+\delta_{2,1}, \beta_{1}+\delta_{2,2}\right) \\
& =\left(\beta_{2}+Q / 2, \beta_{1}-Q / 2, \beta_{1}-Q / 2\right)
\end{aligned}
$$

- $\delta_{n, j}=(2 j-n-1) Q / 2$

For example, $\mathcal{N}=2 S U(N)$ SCYM:

For example, $\mathcal{N}=2 S U(N)$ SCYM:

- The flavor group is $(U(1) \times S U(N))^{2}$. Two types of punctures
- simple puncture associated to $U(1)$ flavor group (1 mass parameter)
- full puncture associated to $S U(N)$ flavor group ($N-1$ mass parameters)

For example, $\mathcal{N}=2 S U(N)$ SCYM:

- The flavor group is $(U(1) \times S U(N))^{2}$. Two types of punctures
- simple puncture associated to $U(1)$ flavor group (1 mass parameter)
- full puncture associated to $S U(N)$ flavor group ($N-1$ mass parameters)

A_{N-1} Toda CFT

- simple puncture \Leftrightarrow simple degenerate state $V_{\mu}, \mu \sim \boxminus \quad$ (1 parameter)
- full puncture \Leftrightarrow non-degenerate state $V_{\beta}, \beta \sim \square \quad$ ($N-1$ parameters)

A_{N-1} Toda CFT

- simple puncture \Leftrightarrow simple degenerate state $V_{\mu}, \mu \sim \boxminus \quad$ (1 parameter)
- full puncture \Leftrightarrow non-degenerate state $V_{\beta}, \beta \sim \square \quad$ ($N-1$ parameters)

It results:

$$
Z_{S^{4}}=\left\langle V_{\beta^{(1)}} V_{\mu^{(1)}} V_{\mu^{(2)}} V_{\beta^{(2)}}\right\rangle_{A_{N-1} \text { Toda }}
$$

where the correlation function is decomposed as

- The primary state in the internal channel α, is non-degenerate and depends on $N-1$ parameters. This is the dimension of the Coulomb branch of $S U(N)$ gauge group.

The problem

- There are also conformal gauge theories where the gauge group is $\prod_{i} S U\left(N_{i}\right)$ with different values of N_{i}.

For instance:

The problem

- There are also conformal gauge theories where the gauge group is $\prod_{i} S U\left(N_{i}\right)$ with different values of N_{i}.

For instance:

- How the partition function of this class of theories is reproduced in Toda CFT ?

Quiver Tails

- A $\mathcal{N}=2 S U(N)$ gauge theory is conformal when it couples to $N_{F}=2 N$ matter fields in the fundamental and anti-fundamental representation

Quiver Tails

- A $\mathcal{N}=2 S U(N)$ gauge theory is conformal when it couples to $N_{F}=2 N$ matter fields in the fundamental and anti-fundamental representation
- It is possible to end a linear quiver with a finite series of gauge groups of decreasing rank: a quiver tail

- the theory is conformal when $n_{i}=2 N_{i}-N_{i+1}-N_{i-1} \geq 0$
- the tail is characterized by the series $N_{1}<N_{2}<\ldots<N_{k}=N$.

This information can be encoded in a Young diagram with N boxes with the $r^{t h}$ row of length $N_{r}-N_{r-1}$

- For instance

Or

- For instance

Or

- Physical semi-degenerate states in A_{N-1} Toda CFT are characterized by a Young diagram with N boxes.

AGT for Quiver Tails

- Claim: The partition function of a quiver gauge theory with a tail, can be expressed as a correlation function in Toda CFT
[Kanno, Matsuo, Shiba, Tachikawa][Kanno, Matsuo, Shiba][Drukker,FP]
$-S U(N)$ is maximum rank group $\Leftrightarrow A_{N-1}$ Toda CFT
- 1 insertion is a semi-degenerate state with the same Young diagram of the tail
$-k+1$ simple insertions $\mu^{(l)} \sim$ 目

AGT for Quiver Tails

- Claim: The partition function of a quiver gauge theory with a tail, can be expressed as a correlation function in Toda CFT [Kanno, Matsuo, Shiba, Tachikawa][Kanno, Matsuo, Shiba][Drukker,FP]
$-S U(N)$ is maximum rank group $\Leftrightarrow A_{N-1}$ Toda CFT
- 1 insertion is a semi-degenerate state with the same Young diagram of the tail
$-k+1$ simple insertions $\mu^{(l)} \sim$ 回
For instance

Questions to address:

- How are the masses m_{l}, \hat{m}_{l} encoded in the states $\mu^{(l)}, \alpha^{(0)}, \alpha^{(4)}$
- What are the allowed states $\alpha^{(l)}$ in the internal channels, and how are they related to the Coulomb branch parameters $a^{(l)}$

Questions to address:

- How are the masses m_{l}, \hat{m}_{l} encoded in the states $\mu^{(l)}, \alpha^{(0)}, \alpha^{(4)}$
- What are the allowed states $\alpha^{(l)}$ in the internal channels, and how are they related to the Coulomb branch parameters $a^{(l)}$

Let's cut the tail

Questions to address:

- How are the masses m_{l}, \hat{m}_{l} encoded in the states $\mu^{(l)}, \alpha^{(0)}, \alpha^{(4)}$
- What are the allowed states $\alpha^{(l)}$ in the internal channels, and how are they related to the Coulomb branch parameters $a^{(l)}$

Let's cut the tail

- $\alpha^{(1)}$ has 7 parameters: 3 are related to the masses, 4 to the Coulomb branch
- $\alpha^{(2)}$ has 8 parameters: 1 is related to the masses, 7 to the Coulomb branch

The proposal:

- parameters related to red boxes are fixed by mass parameters
- parameters related to white boxes are fixed by Coulomb branch parameters

The proposal:

- parameters related to red boxes are fixed by mass parameters
- parameters related to white boxes are fixed by Coulomb branch parameters

Proof: study fusion rules for semi-degenerate Toda state.

AGT and non-local operators

Consider supersymmetric M-brane intersections

AGT and non-local operators

Consider supersymmetric M-brane intersections
For example, M5-M5 intersection:

$$
10
$$

AGT and non-local operators

Consider supersymmetric M-brane intersections
For example, M5-M5 intersection:

The extra M5-brane

- 2 D on 4 D space \Leftrightarrow surface operator
- wrap the $C_{(n, g)} \Leftrightarrow$ different 2D CFT
[Alday, Tachikawa]

AGT and non-local operators

Consider supersymmetric M-brane intersections
For example, M5-M5 intersection:

The extra M5-brane

- 2 D on 4 D space \Leftrightarrow surface operator
- wrap the $C_{(n, g)} \Leftrightarrow$ different 2D CFT [Alday, Tachikawa]

The symmetry of the 2D CFT depends on the type of surface operator.

Surface operators
A surface operator can be defined imposing a singular behavior of the gauge field on a 2D subspace [Gukov, Witten]

- $\left(z_{1}, z_{2}\right)$ complex coordinates of R^{4}. The operator is placed at $z_{2}=0, z_{2}=r e^{i \theta}$

$$
A_{\mu} d x^{\mu} \sim \operatorname{diagonal}\left(\alpha_{1}, \ldots, \alpha_{N}\right) i d \theta
$$

Surface operators

A surface operator can be defined imposing a singular behavior of the gauge field on a 2D subspace [Gukov, Witten]

- $\left(z_{1}, z_{2}\right)$ complex coordinates of R^{4}. The operator is placed at $z_{2}=0, z_{2}=r e^{i \theta}$

$$
A_{\mu} d x^{\mu} \sim \operatorname{diagonal}\left(\alpha_{1}, \ldots, \alpha_{N}\right) i d \theta
$$

- The structure of the singularity is described by a partition of $N,\left[n_{i}\right]$

$$
\left(\alpha_{1}, \ldots, \alpha_{N}\right)=(\underbrace{\alpha^{(1)}, \ldots, \alpha^{(1)}}_{n_{1}}, \underbrace{\alpha^{(2)}, \ldots, \alpha^{(2)}}_{n_{2}}, \ldots, \underbrace{\alpha^{(M)}, \ldots, \alpha^{(M)}}_{n_{M}})
$$

- the extremal cases are
- full surface operator has $\alpha_{1} \neq \ldots \neq \alpha_{N},\left(\left[n_{i}\right] \sim \square \square\right)$
- simple surface operator has $\left[n_{i}\right] \sim \boxminus$

Surface operators
A surface operator can be defined imposing a singular behavior of the gauge field on a 2D subspace [Gukov, Witten]

- $\left(z_{1}, z_{2}\right)$ complex coordinates of R^{4}. The operator is placed at $z_{2}=0, z_{2}=r e^{i \theta}$

$$
A_{\mu} d x^{\mu} \sim \operatorname{diagonal}\left(\alpha_{1}, \ldots, \alpha_{N}\right) i d \theta
$$

- The structure of the singularity is described by a partition of $N,\left[n_{i}\right]$

$$
\left(\alpha_{1}, \ldots, \alpha_{N}\right)=(\underbrace{\alpha^{(1)}, \ldots, \alpha^{(1)}}_{n_{1}}, \underbrace{\alpha^{(2)}, \ldots, \alpha^{(2)}}_{n_{2}}, \ldots, \underbrace{\alpha^{(M)}, \ldots, \alpha^{(M)}}_{n_{M}})
$$

- the extremal cases are
- full surface operator has $\alpha_{1} \neq \ldots \neq \alpha_{N},\left(\left[n_{i}\right] \sim \square \square\right)$
- simple surface operator has $\left[n_{i}\right] \sim$ ت

Same classification of the punctures, since also the punctures can be realized as intersecting M5-branes.

Conjecture: Given a surface operator characterized by a partition $\left[n_{i}\right]$, the symmetry of the 2 D CFT is $W\left(\hat{S L}(N),\left[n_{i}\right]\right)$. [Braverman, Feigin, Finkelberg, Rybnikov]

$$
[\text { Wyllard }][\text { Tachikawa }][\text { Kanno,Tachikawa }]
$$

Conjecture: Given a surface operator characterized by a partition $\left[n_{i}\right]$, the symmetry of the 2D CFT is $W\left(\hat{S L}(N),\left[n_{i}\right]\right)$. [Braverman, Feigin, Finkelberg, Rybnikov]

$$
[\text { Wyllard }][\text { Tachikawa }][\text { Kanno,Tachikawa }]
$$

Full surface operators. The expected symmetry is $\hat{S L}(N)$.

- the unbroken gauge group is $U(1)^{N-1}$
- $N-1$ monopole numbers $\ell_{i}=\frac{1}{2 \pi} \int_{z_{2}=0} F_{i}$
- the instantons are classical solutions with a singularity

$$
A_{\mu} d x^{\mu}=\bar{A}_{\mu} d x^{\mu}+f(r) \operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{N}\right) i d \theta
$$

- instanton number k is the instanton number of \bar{A}_{μ}
- N topological quantities $k, \ell_{1}, \ldots, \ell_{N-1}$

$$
\vec{k}=\left(k_{1}, \ldots, k_{N}\right) \quad \text { where } \quad k_{1}=k \quad k_{i+1}=k_{i}+\ell_{i}
$$

The instanton partition function is known

[Braverman $][$ Braverman, Etingof $][$ Negut $][$ Alday, Tachikawa $][$ Kanno, Tachikawa $]$

$$
Z_{i n s t}=\sum_{\lambda} Z_{\vec{k}}(\lambda) \prod_{i} y_{i}^{k_{i}}
$$

The instanton partition function is known
[Braverman $][$ Braverman, Etingof $][$ Negut $][$ Alday, Tachikawa $][$ Kanno, Tachikawa $]$

$$
Z_{i n s t}=\sum_{\lambda} Z_{\vec{k}}(\lambda) \prod_{i} y_{i}^{k_{i}}
$$

the N parameters y_{i} correspond to the $N-1$ parameters of the full surface operator and the usual instanton expansion parameter

- $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is a vector of Young tableau
- $k_{i}=\sum_{j \geq 1} \lambda_{j}^{i-j+1}$
- $Z_{\vec{k}}(\lambda)$ depends on the field content
$\mathcal{N}=2 S U(N)$ gauge theory with $N_{f}=2 N$
We define [Kozcaz, Pasquetti, FP, Wyllard] $]$
- $Z^{(0), i}$ the sum of all terms with $k_{i} \neq 0$ and $k_{j}=0$ for $i \neq j$
- $Z^{(1), i, j}$ the sum of all terms with $k_{i} \neq 0, k_{j}=1$ for and $k_{r}=0$ for $r \neq i, j$
$\mathcal{N}=2 S U(N)$ gauge theory with $N_{f}=2 N$
We define
- $Z^{(0), i}$ the sum of all terms with $k_{i} \neq 0$ and $k_{j}=0$ for $i \neq j$
- $Z^{(1), i, j}$ the sum of all terms with $k_{i} \neq 0, k_{j}=1$ for and $k_{r}=0$ for $r \neq i, j$

Thus

$$
Z_{\text {inst }}=\sum_{i} Z^{(0), i}+\sum_{i, j} Z^{(1), i, j} \ldots
$$

where

$$
Z^{(0), i}=\sum_{n=1}^{\infty} \frac{\left(\frac{\mu_{i+1}}{\epsilon_{1}}-\frac{a_{i}}{\epsilon_{1}}+\frac{\epsilon_{2}}{\epsilon_{1}}\left\lfloor\frac{i}{N}\right\rfloor+1\right)_{n}\left(\frac{\tilde{\mu}_{i}}{\epsilon_{1}}-\frac{a_{i}}{\epsilon_{1}}\right)_{n}}{\left(\frac{a_{i+1}}{\epsilon_{1}}-\frac{a_{i}}{\epsilon_{1}}+\frac{\epsilon_{2}}{\epsilon_{1}}\left\lfloor\frac{i}{N}\right\rfloor+1\right)_{n} n!}\left(-y_{i}\right)^{n}
$$

- a_{i} are the Coulomb branch parameters
- $\mu_{i}, \tilde{\mu}_{i}$ are the hypermultiplets masses

Claim: the instanton partition function for $\mathcal{N}=2 S U(2)$ gauge theories with a full surface operator are equivalent to modified affine $S L(2)$ conformal blocks [Alday, Tachikawa]

Claim: the instanton partition function for $\mathcal{N}=2 S U(2)$ gauge theories with a full surface operator are equivalent to modified affine $S L(2)$ conformal blocks [Alday, Tachikawa]

Affine $S L(2)$

$$
\left[J_{n}^{0}, J_{m}^{0}\right]=\frac{k}{2} n \delta_{n+m, 0}, \quad\left[J_{n}^{0}, J_{m}^{ \pm}\right]= \pm J_{n+m}^{ \pm}, \quad\left[J_{n}^{+}, J_{m}^{-}\right]=2 J_{n+m}^{0}+k n \delta_{n+m, 0}
$$

- $|j\rangle$ primary state, $J_{0}^{0}|j\rangle=j|j\rangle$ and $J_{1+n}^{-}|j\rangle=J_{1+n}^{0}|j\rangle=J_{n}^{+}|j\rangle=0$
- $V_{j}(x, z)$ primary field, x is an isospin variable and z is the worldsheet coordinate

Claim: the instanton partition function for $\mathcal{N}=2 S U(2)$ gauge theories with a full surface operator are equivalent to modified affine $S L(2)$ conformal blocks [Alday, Tachikawa]

Affine $S L(2)$

$$
\left[J_{n}^{0}, J_{m}^{0}\right]=\frac{k}{2} n \delta_{n+m, 0}, \quad\left[J_{n}^{0}, J_{m}^{ \pm}\right]= \pm J_{n+m}^{ \pm}, \quad\left[J_{n}^{+}, J_{m}^{-}\right]=2 J_{n+m}^{0}+k n \delta_{n+m, 0}
$$

- $|j\rangle$ primary state, $J_{0}^{0}|j\rangle=j|j\rangle$ and $J_{1+n}^{-}|j\rangle=J_{1+n}^{0}|j\rangle=J_{n}^{+}|j\rangle=0$
- $V_{j}(x, z)$ primary field, x is an isospin variable and z is the worldsheet coordinate

Differential operators

$$
\begin{aligned}
& {\left[J_{n}^{A}, V_{j}(x, z)\right]=z^{n} D^{A} V_{j}(x, z)} \\
& D^{+}=2 j x-x^{2} \partial_{x}, \quad D^{0}=-x \partial_{x}+j, \quad D^{-}=\partial_{x}
\end{aligned}
$$

$\mathcal{N}=2 S U(2)$ SCYM

$$
Z_{\text {instanton }}=(1-z)^{2 j_{2}\left(-j_{3}+k / 2\right)}\left\langle j_{1}\right| \mathcal{V}_{j_{2}}(1,1) \mathcal{V}_{j_{3}}(x, z)\left|j_{4}\right\rangle
$$

where

$$
\mathcal{V}_{j}=\mathcal{K} V_{j} \quad \mathcal{K}(x, z)=\exp \left[-\sum_{n=1}^{\infty} \frac{1}{2 n-1}\left(z^{n-1} x J_{1-n}^{-}+\frac{z^{n}}{x} J_{-n}^{+}\right)\right]
$$

$\mathcal{N}=2 S U(2) \mathrm{SCYM}$

$$
Z_{\text {instanton }}=(1-z)^{2 j_{2}\left(-j_{3}+k / 2\right)}\left\langle j_{1}\right| \mathcal{V}_{j_{2}}(1,1) \mathcal{V}_{j_{3}}(x, z)\left|j_{4}\right\rangle
$$

where

$$
\mathcal{V}_{j}=\mathcal{K} V_{j} \quad \mathcal{K}(x, z)=\exp \left[-\sum_{n=1}^{\infty} \frac{1}{2 n-1}\left(z^{n-1} x J_{1-n}^{-}+\frac{z^{n}}{x} J_{-n}^{+}\right)\right]
$$

It can be evaluated pertubatively considering the decomposition

$$
\sum_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}\left\langle j_{1}\right| \mathcal{V}_{j_{2}}(1,1)|\mathbf{n}, \mathbf{A} ; j\rangle X_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}^{-1}(j)\left\langle\mathbf{n}^{\prime}, \mathbf{A}^{\prime} ; j\right| \mathcal{V}_{j_{3}}(x, z)\left|j_{4}\right\rangle
$$

```
N}=2SU(2) SCYM
```

$$
Z_{\text {instanton }}=(1-z)^{2 j_{2}\left(-j_{3}+k / 2\right)}\left\langle j_{1}\right| \mathcal{V}_{j_{2}}(1,1) \mathcal{V}_{j_{3}}(x, z)\left|j_{4}\right\rangle
$$

where

$$
\mathcal{V}_{j}=\mathcal{K} V_{j} \quad \mathcal{K}(x, z)=\exp \left[-\sum_{n=1}^{\infty} \frac{1}{2 n-1}\left(z^{n-1} x J_{1-n}^{-}+\frac{z^{n}}{x} J_{-n}^{+}\right)\right]
$$

It can be evaluated pertubatively considering the decomposition

$$
\sum_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}\left\langle j_{1}\right| \mathcal{V}_{j_{2}}(1,1)|\mathbf{n}, \mathbf{A} ; j\rangle X_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}^{-1}(j)\left\langle\mathbf{n}^{\prime}, \mathbf{A}^{\prime} ; j\right| \mathcal{V}_{j_{3}}(x, z)\left|j_{4}\right\rangle
$$

The components $Z^{(0), i}$ of the instanton function are reproduced by terms with the following internal states

- $\left(J_{0}^{-}\right)^{n}|j\rangle \quad$ that gives a x^{n} term
- $\left(J_{-1}^{+}\right)^{n}|j\rangle \quad$ that gives a $\left(\frac{z}{x}\right)^{n}$ term

The complete dictionary is

- $y_{1}=x, \quad y_{2}=\frac{z}{x}, \quad j=-\frac{1}{2}+\frac{a_{1}}{\epsilon_{1}}, \quad k=-2-\frac{\epsilon_{2}}{\epsilon_{1}}$
- $j_{1}=-\frac{\epsilon_{1}+\epsilon_{2}+\mu_{1}-\mu_{2}}{2 \epsilon_{1}}, \quad j_{2}=-\frac{2 \epsilon_{1}+\epsilon_{2}+\mu_{1}+\mu_{2}}{2 \epsilon_{1}}$
- $j_{3}=-\frac{2 \epsilon_{1}+\epsilon_{2}-\tilde{\mu}_{1}-\tilde{\mu}_{2}}{2 \epsilon_{1}}, \quad j_{4}=-\frac{\epsilon_{1}+\epsilon_{2}+\tilde{\mu}_{1}-\tilde{\mu}_{2}}{2 \epsilon_{1}}$

The complete dictionary is

- $y_{1}=x, \quad y_{2}=\frac{z}{x}, \quad j=-\frac{1}{2}+\frac{a_{1}}{\epsilon_{1}}, \quad k=-2-\frac{\epsilon_{2}}{\epsilon_{1}}$
- $j_{1}=-\frac{\epsilon_{1}+\epsilon_{2}+\mu_{1}-\mu_{2}}{2 \epsilon_{1}}, \quad j_{2}=-\frac{2 \epsilon_{1}+\epsilon_{2}+\mu_{1}+\mu_{2}}{2 \epsilon_{1}}$
- $j_{3}=-\frac{2 \epsilon_{1}+\epsilon_{2}-\tilde{\mu}_{1}-\tilde{\mu}_{2}}{2 \epsilon_{1}}, \quad j_{4}=-\frac{\epsilon_{1}+\epsilon_{2}+\tilde{\mu}_{1}-\tilde{\mu}_{2}}{2 \epsilon_{1}}$

What about the $S U(N)$ gauge theories with $N>2$?

$$
\mathcal{N}=2 S U(N) \text { theories and affine } S L(N) \text { algebra }
$$

[Kozcaz, Pasquetti, FP, Wyllard]

Affine $S L(N)$

$$
J_{n}^{i}, \quad J_{n}^{i+}, \quad J_{n}^{i-}, \quad J_{n}^{i l} \quad(i \neq l)
$$

$$
\mathcal{N}=2 S U(N) \text { theories and affine } S L(N) \text { algebra }
$$

Affine $S L(N)$

$$
J_{n}^{i}, \quad J_{n}^{i+}, \quad J_{n}^{i-}, \quad J_{n}^{i l} \quad(i \neq l)
$$

- $|j\rangle$ primary state, is labeled by $j=\sum_{i=1}^{N-1} j^{i} \omega_{i}$ where ω_{i} are the fundamental weights of $S L(N)$
- $J_{0}^{i}|j\rangle=j^{i}|j\rangle$ and $J_{0}^{i+}|j\rangle=0, \quad J_{0}^{i l}|j\rangle=0(i>l), \quad J_{n}^{A}|j\rangle=0 \quad(n>0)$
- $V_{j}(x, z)$ primary field, x is a vector of isospin variables and z is the worldsheet coordinate

Let's focus on the conformal $\mathcal{N}=2 S U(N)$ gauge theory coupled to $N_{f}=2 N$ hypermultiplets, i.e.

- simple puncture associated to a state V_{χ} (1 parameter)
- full puncture associated to a non-degenerate state V_{j} with generic j (N-1 parameters)

Let's focus on the conformal $\mathcal{N}=2 S U(N)$ gauge theory coupled to $N_{f}=2 N$ hypermultiplets, i.e.

- simple puncture associated to a state V_{χ} (1 parameter)
- full puncture associated to a non-degenerate state V_{j} with generic j (N-1 parameters)

The primary field with $j=\chi=\kappa \omega_{1}$ depends only on $N-1$ isospin variables and the action of the generators on these fields is expressed in terms of differential operators

$$
\left[J_{n}^{A}, V_{j}(x, z)\right]=z^{n} D^{A} V_{j}(x, z)
$$

The instanton function is equivalent to

$$
\sum_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}\left\langle j_{1}\right| \mathcal{V}_{\chi_{2}}(1,1)|\mathbf{n}, \mathbf{A} ; j\rangle X_{\mathbf{n}, \mathbf{A} ; \mathbf{n}^{\prime}, \mathbf{A}^{\prime}}^{-1}(j)\left\langle\mathbf{n}^{\prime}, \mathbf{A}^{\prime} ; j\right| \mathcal{V}_{\chi_{3}}(x, z)\left|j_{4}\right\rangle
$$

where

$$
\mathcal{V}_{\chi_{i}}(x, z)=V_{\chi_{i}}(x, z) \mathcal{K}^{\dagger}(x, z)
$$

and the dictionary is

- $y_{1}=x_{1}, \quad y_{i+1}=\frac{x_{i+1}}{x_{i}} \quad(1 \leq i \leq N-2), \quad y_{N}=\frac{z}{x_{N-1}}$
- $j^{i}=-\frac{1}{2}+\frac{a_{i}-a_{i+1}}{2 \epsilon_{1}}$, $k=-N-\frac{\epsilon_{2}}{\epsilon_{1}}$
- $\frac{\tilde{\mu}_{i}}{2 \epsilon_{1}}=-\frac{\kappa_{3}}{N}+\left\langle h_{i}, j_{4}+\frac{\rho}{2}\right\rangle, \quad \frac{\mu_{i}}{2 \epsilon_{1}}=\frac{\kappa_{2}}{N}+\left\langle h_{i}, j_{1}+\frac{\rho}{2}\right\rangle$

Conclusion

- AGT works also for quiver tails
- the surface operators modify the 2D CFT

Conclusion

- AGT works also for quiver tails
- the surface operators modify the 2 D CFT
- non-local operators in quiver tails?
- can we reproduce the full partition function considering the correlator of some CFT with affine algebra?
- what is the physical meaning of the \mathcal{K} operator?

