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� Supersymmetric vacua of gauge theories with four supercharges
⇔ Bethe eigenstates and excitation spectrum of integrable lattice

models, Hitchin systems, its limits (quantum many body systems)

• Thermodynamic Bethe ansatz (TBA) type of equations,
developed for quantum integrable systems, play the central role

• TBA type equations appear in the study of wall-crossing
phenomena in counting of BPS states in N=2 theories

• Correspondence between 4d instanton calculus and two 2d CFT
has important consequences, both for CFT and gauge theory

• TBA type equations appear in computing the amplitudes and the
expect. values of Wilson and ’t Hooft loops for maximal SUSY

• Quantum integrability is central in the study of maximally
supersymmetric gauge theories in four dimensions when computing
the anomalous dimensions, and in AdS/CFT correspondence



• The spectrum of the equivariant Donaldson theory and its
generalizations ⇔ the spectrum of the quantized SW theory

• Partition functions of closed topological strings ⇔ the
tau-functions of classical integrable hierarchies, and the inclusion
of open strings connects to quantum integrability

• Dimer models and their applications to the topological strings on
the toric Calabi-Yau manifolds links to the quantum integrability

• Geometric Langlands correspondence, its quantum field theory
realization, and the possibility to reach out to number theory

• SLE, random growth and matrix models, emergent geometry

� Connections and inter-relations with representation theory

• The integrable QFT’s in 1+1 dimensions (sine-Gordon, etc.)

• Theory of solitons ⇔ Classical Inverse Scattering Method, Lax
pairs, Spectral curves, etc. and quantization



NS ’09: For every quantum integrable system, solved by BA, there
is a SUSY gauge theory with 4 supercharges, Q+, Q−, Q̄+, Q̄− s.t.:

a) exact Bethe eigenstates correspond to SUSY vacua,

b) ring of commuting Hamiltonians ⇔ (twisted) chiral ring.

• The effective twisted superpotential ⇔ Yang-Yang function

W̃ eff (σ) = Y (λ)

σi = λi; i = 1, ..., N ; G = U(N)

• VEV of chiral ring operators Ok ⇔ Energies:

< λ|Ok|λ >= Ek(λ)

HkΨ(λ) = Ek(λ)Ψ(λ)

Vacua/Bethe Equations - critical points of W̃ eff (σ)/Y (λ) as
functions of abelian components of scalar eld σi / rapidities λi.



What are these quantum integrable systems?

After massive fields (2d) are integrated out chiral ring generators
are invariant functions of Σ = σ + ... on Coulomb branch.

SUSY vacua - there are two options: 1. topological or 2. physical.

1. Topologically twisted (on cylinder) abelianized theory has the
action completely determined by W̃ eff (σ) of physical theory:

Stop =

∫ [
∂W̃ eff (σ)

∂σi
F i(A) +

∂2W̃ eff (σ)

∂σi∂σj
λi ∧ λj

]

compare S2d−YM =

∫ [
σiF

i(A) + λi ∧ λj
]

Canonical quantization - momentum conjugate to the monodromy
of abelian gauge field xi =

∫
S1 A

i is quantized:

1

2πi

∂W̃ eff (σ)

∂σi
= ni



2. Physical: suppose we have the theory with the effective twisted
superpotential W̃ eff(σ) (abelianized).

The target space of the effective sigma model is disconnected, with
~n labeling the connected components (gauge flux quantization)
with potential:

U~n(σ) =
1

2
gij

(
−2πini +

∂W̃
eff

∂σi

)+2πinj +
∂ ˜̄W

eff

∂σ̄j


Now we need to find the minimum of potential - again:

1

2πi

∂W̃ eff(σ)

∂σi
= ni

Or equivalently - SUSY vacua correspond to solution of equation:

exp

(
∂W̃ eff(σ)

∂σi

)
= 1



• XXX spin chain - 2d gauge theory

For SU(2), s = 1
2 spin chain of length L in N -particle sector ⇔

U(N) 2d N = 2 gauge theory with L fundamentals, L anti-funds
and 1 adjoint, with twisted masses mi and complexified θ term; mi

are impurities µi, θ - quasi-periodic boundary conditions, ...

• XXZ spin chain - 3d gauge theory on R2 × S1

• XY Z spin chain - 4d gauge theory on R2 × T 2

• Arbitrary spin group, representation, impurities, limiting models

————————————————————————-

• NLS, N -particles on S1, δ-function potential - 2d N = 4 +...

• Periodic Toda - 4d pure N = 2 theory on R2 ×R2
ε

• Elliptic Calogero-Moser - 4d N = 2∗ theory on R2 ×R2
ε



Connection to representation theory - 2d N = 2∗

Consider 2d pure N = 4 gauge theory (G = U(N)) broken down
to N = 2 by the twisted mass (m) term for the adjoint chiral
multiplet - N = 2∗. Add tree level twisted superpotential:

W̃ (σ) =
1

2
trσ2

Vacuum equations:

eiσj =

N∏
i=1

σi − σj +m

σi − σj +m

For m = ic, c ∈ R, this is Bethe equation for NLS quantum
theory in N -partical sector.

This is the first example treated in the topological field theory
language in MNS ’97 and later in GS ’06-’07.



This topological theory, YMH theory, computes equaivariant
intersection numbers on the moduli space of Higgs bundles
introduced by Hitchin:

Fzz̄(A) = [Φz,Φz̄]

∇z(A)Φz̄ = 0

∇z̄(A)Φz = 0

modulo unitary gauge transformations :

A→ g−1Ag + g−1dg; Φ→ g−1Φg

z - local coordinates on Riemann surface, Φ - adjoint 1-form.

Moduli space of solutions to Hitchin equations - phase space of
algebraic integrable system. It is hyperkahler. See later.

NLS in N -particle sector is described by integrable system of N
non-relativistic particles on S1 with δ-function interactions.



H2 = −1

2

N∑
i=1

∂2

∂x2
i

+ c
∑

1≤i<j≤N
δ(xi − xj)

Eigenvectors - spherical vectors in the representation theory of
degenerate double affine Hecke algebra.

Latter is connected to the representation theory of GL(N,Qp) -
the wave functions are a limit of Hall-Littlewood polynomials,
generalized zonal spherical functions for GL(N,Qp):∏

i

1− t
1− tmi

∑
w∈SN

(−1)l(w)w(Λµ11 ...ΛµNN

∏
i<j

Λi − Λjt

Λi − Λj
)

(µ1, ..., µN ) is a partition of length at most N : (1m1 , .., rmr , ...).

NLS wave-functions correspond to analytic continuation with

µi =
xi
ε
, Λi = e2πεσi , t = e2πicε, ε→ 0 [p→ 1]

This is continuous limit of discretized version of H2.



GL(N,Qp) zonal spherical functions are Macdonald’s M(q, t) for
q = 0, t = p−1. Eigenfunctions of H2 discretized (van Diejen, ’06).

M(q, t = qν): relativistic Calogero-Moser-Sutherland (Ruijsenaars
’87) → G/G WZW , with Wilson lines (Gorsky, Nekrasov ’94).

There is another 2d (generalized) G/G WZW interpretation
which has limit to YMH topological theory for k →∞ (GS ’06).

Partition function is sum over (Bethe equations):

e2πiσj(k+cv)
∏
i 6=j

te2πi(σi−σj) − 1

te2πi(σj−σi) − 1
= 1

These are Bethe equations for XXZ spin chain with spin s and in
s→ −i∞ limit. Latter corresponds to supersymmetric vaua of 3d
N = 2 gauge theory (form the list shown earlier) on R2 × S1.

For elliptic case - Ω-background instead of KK. Elliptic version of
Ruijsenaars ’87 appears in 5d SYM on (S1 ×R2

ε )×R2, connects
to everything. What about 6d theory on (T 2 ×R2

ε )×R2?



Mac(q, t)
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4d SYM and Algebraic Integrable Systems

SW prepotential F(a) interpreted in terms of classical AIS -
pToda, eCM (GKMMM ’95, MW ’95, DW ’95):

• A complex algebraic manifold M2N of complex dimension 2N
with non-degenerate, closed holomorphic (2, 0)-form Ω2,0

C

• A holomorphic map H : M → CN , fibers Jh = H−1(h) are
(polarized) abelian varieties (complex tori), {Hi, Hj} = 0

Polarization - Kahler form ω whose restriction on each fiber is
integral class: [w] ∈ H2(Jh, Z) ∩H1,1(Jh). < Ai, B

j >= δji ,
basis in H1(Jh, Z). “Action variables”:

ai =

∫
Ai

ΘC , aiD =

∫
Bi

ΘC , Ω2,0
C = dΘC

Twice as many as the dimension of base - they must be related:

aiD =
∂F(a)

∂ai
; θ =

N∑
i=1

aiDdai = dF(a)



N = 2 gauge theory on 2d Ω-background R2×R2
ε is a deformation

of N = 2 theory on R2 ×R2 with one, equivariant, parameter ε
which corresponds to the rotation of second R2 around its origin.

Only 2d super-Poincare invariance is unbroken, four Q’s. The

effective theory is 2d with four supercharges. Alternative to KK.

NS ’09: As such it has 2d effective Weff ; computed as a limit of
the partition function Z({a}, ε1, ε2) in general Ω-background
R2
ε1 ×R

2
ε2 , e.g. for N = 2∗ theory (eCM; q = eiτ ; τ = i/g2 + θ):

Weff (a; q,m, ε) = lim
ε2→0

ε2logZ(a; q,m, ε, ε2) =
FeCM (a; q,m)

ε
+...

Weff (a; q,m, ε) =Wpert(a; τ,m, ε) +Winst(a; q,m, ε)

exp(
∂Wpert

∂ai
) = e

πiτai
ε

∏
j 6=i

S(ai−aj); S(x) =
Γ
(−m+x

ε

)
Γ
(−m−x

ε

) Γ
(
1− x

ε

)
Γ
(
1 + x

ε

)



Winst(a) =

∫
dx

[
−χ(x)

2
log
(

1− qQ(x)e−χ(x)
)

+ Li2

(
qQ(x)e−χ(x)

)]
χ(x) =

∫
dy G0(x− y)log

(
1− qe−χ(y)Q(y)

)
G0(x) = ∂x log

(x+ ε)(x+m)(x−m− ε)
(x− ε)(x−m)(x+m+ ε)

Q(x) =
P (x−m)P (x+m+ ε)

P (x)P (x+ ε)
; P (x) =

N∏
l=1

(x− al)

Energy spectrum of properly quantized system:

E2 = εq
∂

∂q
Weff (a; q,m, ε) = ε

∂

∂τ
Weff (a; q,m, ε)

Evaluated on solutions of:

1

2πi

∂Weff (a; q,m, ε)

∂ai
= ni



What is the meaning of this Weff (a; q,m, ε) (Y Y -function) in
terms of the geometry of classical AIS?

Answered in NRS ’11, with the help of NW ’10 interpretation of
above quantization and work on many body systems from ’80-’90’s.

Important example - Hitchin integrable system on Σg,n:

Fzz̄(A) = [Φz,Φz̄]

∇z(A)Φz̄ = 0

∇z̄(A)Φz = 0

modulo unitary gauge transformations :

A→ g−1Ag + g−1dg; Φ→ g−1Φg

Moduli space of solutions to Hitchin equations - phase space of
algebraic integrable system. It is hyperkahler.

g = 1, n = 1, G = U(N): N -particle class. eCM ⇔ N = 2∗ SYM.



Complex structure I - holomorphic coordinates (Az,Φz̄). Depends
on the choice of complex structure on Σg,n:

Ω2,0
I =

∫
Σg,n

δAz ∧ δΦz̄

Poisson commuting Hi’s for PGL2 (µi: 3g− 3 +n Beltrami diffs):

Hi =

∫
Σg,n

µitrΦ
2
z

Σg=0,n - Hitchin Hi’s = Gaudin Hamiltonians.

Pick complex structure J (replace G by LG) - holomorphic coord.
(Az + iΦz, Az̄ + iΦz̄); independent of complex structure on Σg,n:

Ω2,0
J =

∫
Σg,n

δAc ∧ δAc; Ac = A+ iΦ

In complex structure J Hitchin moduli space is the moduli space
of GC flat connections modulo complexified gauge transformations:

{ F (A+ iΦ) = 0 / Gc gauge transformations}



For LG = SL(2, C) - fix some reference complex structure on
Σg,n, local coordinates (w, w̄) and describe generic complex
structure via Beltrami diffs µ = µww̄dw̄∂w; pick a gauge:

Aw̄ − µAw =

(
− 1

2∂µ 0
− 1

2∂
2µ 1

2∂µ

)
, Aw =

(
0 1
T 0

)
where T obeys the compatibility condition (from flatness):(

∂̄ − µ∂ − 2∂µ
)
T = −1

2
∂3µ

Now

Ω2,0
J =

∫
Σg,n

δµ ∧ δT

SL2 oper - 2nd order diff. operator, acting on -1/2 differentials:

D = −∂2 + T (z)

G-opers can be defined for general surface with punctures, where
opers develop poles - here we consider only regular singularities.



Restrict to g = 0 with n marked points.

T (z) =

n∑
a=1

∆a

(z − xa)2
+

n∑
a=1

εa
z − xa

∆a are fixed and εa obey (Ω2,0
J =

∑n
a=1 δεa ∧ δxa):

n∑
a=1

εa = 0

n∑
a=1

(xaεa + ∆a) = 0

n∑
a=1

(
x2
aεa + 2xa∆a

)
= 0

Fix complex structure (xa’s); space of opers, parametrized by εa, is
a Lagrangian submanifold in the moduli space of flat connections.

One can introduce other, topological, Darboux coordinates.

NRS ’11: YY-function is essentially the generating function of this
Lagrangian submanifold in the special Darboux coord (αa, βa).



βa =
∂Weff ({αa}, {xa})

∂αa
; εa =

∂Weff ({αa}, {xa})
∂xa

gi - monodromies around each point,
trgi = mi fixed, and (∆i, µi) expressed in mi. Darboux variables
(αs, βs) ((αt, βt)) correspond to “s-chanel” (“t”) degenerations.

From the point of view of AGT relation this is a classical limit in
CFT, so one should see it purely in CFT language (Teschner ’10).
For special case (particular values of mi’s etc.) such formulas were
seen before in Liouville (Zam.-Zam. ’95, Takhtajan-Zograf ’88) and
should correspond to the particular choice of real slice in NRS ’11.


