Quantized moduli spaces of flat connections, Liouville theory, and integrable models

Jörg Teschner

DESY Hamburg

Motivation

Low energy physics of certain $N=24 d$ SUSY gauge theories admits a family of interesting regularizations / compactifications:

$$
\mathbb{R}^{4} \text { (Seiberg-Witten) }
$$

$\mathbb{R}^{3} \times S^{1}$ (Moore-Gaiotto-Neitzke) $\quad \mathbb{R}^{2} \times \mathbb{R}_{\epsilon}^{2}$ (Nekrasov-Shatashvili)

$$
\begin{gathered}
\mathbb{R}_{\epsilon_{1} \epsilon_{2}}^{4} \text { (Moore-Nekrasov-Shatashvili), or } \\
S^{4} \text { (Pestun) }
\end{gathered}
$$

In a large class of examples \mathcal{G}_{C} (Gaiotto) there exist interesting relations to integrable models, CFT, and (quantized) Hitchin moduli spaces: (Nekrasov-Shatashvili, Alday-Gaiotto-Tachikawa, Gaiotto-Moore-Neitzke)

To understand why this is so, we may need to understand the relations in (1) a little better.

Motivation II

Putting gauge theory in finite volume
\Rightarrow quantization of zero modes like constant parts of scalars Φ.
Emerging picture: - (Drukker-Gomis-Okuda-J.T., Nekrasov-Witten)

- Quantization of zero modes \Rightarrow subspace \mathcal{H}_{0} of zero energy states.
- Algebra of operators on \mathcal{H}_{0} generated by SUSY loop operators (Wilson, 't Hooft).
- Expectation values of loop operators reduce (localize) to overlaps in \mathcal{H}_{0}, e.g.

$$
\langle\mathcal{L}\rangle=\langle q| \mathcal{L}_{0}|q\rangle_{\mathcal{H}_{0}} .
$$

In order to fully understand the relations above, we will in particular need to answer the following questions:
(A) How is Liouville theory related to quantized moduli spaces of flat connections?
(B) How is Liouville theory related to the quantized Hitchin systems?

Moduli spaces of flat connections

Consider flat complex connections

$$
d+\mathcal{A}=\left(\partial_{z}+\mathcal{A}_{z}\right) d z+\left(\partial_{\bar{z}}+\mathcal{A}_{\bar{z}}\right) d \bar{z}
$$

modulo gauge transformations. Flat connections modulo gauge transformations characterized by holonomies. They define representations

$$
\rho: \pi_{1}(C) \rightarrow \operatorname{PSL}(2, \mathbb{C})
$$

The moduli space of flat connections is therefore isomorphic to

$$
\mathcal{M}=\operatorname{Hom}\left(\pi_{1}(C), \operatorname{SL}(2, \mathbb{C})\right) / \operatorname{SL}(2, \mathbb{C})
$$

There is a holomorphic symplectic form on \mathcal{M},

$$
\varpi=\frac{1}{2} \int_{C} \operatorname{tr}(\delta \mathcal{A} \wedge \delta \mathcal{A})
$$

Nothing depends on a (possible) choice of complex structure so far.

Coordinates for \mathcal{M}

One may distinguish

- Coordinates associated to triangulations.

Penner, Fock, Fock-Goncharov, Gaiotto-Moore-Neitzke....

- Coordinates associated to pants decompositions.

Fenchel-Nielsen, Nekrasov-Rosly-Shatashvili,...
We shall be interested in the latter.

Preparation:

Each cutting curve γ specifies either a four-holed sphere or a once-punctured torus embedded in C. Choosing a numbering of the boundary components of each pair of pants one can associate to γ a pair of dual curves $\check{\gamma}, \hat{\gamma}$.

Loop coordinates for \mathcal{M}

To a point in \mathcal{M} let us associate coordinate functions

$$
X_{\gamma}:=-\operatorname{Tr}\left(M_{\gamma}\right), \quad Y_{\gamma}:=-\operatorname{Tr}\left(M_{\tilde{\gamma}}\right), \quad Z_{\gamma}:=-\operatorname{Tr}\left(M_{\hat{\gamma}}\right),
$$

where $M_{\gamma}:=\operatorname{Pexp}\left(\int_{\gamma} \mathcal{A}\right)$. There are relations: For given four-punctured sphere $C_{\gamma} \hookrightarrow C$:

$$
\begin{aligned}
X_{\gamma} Y_{\gamma} Z_{\gamma}= & X_{\gamma}^{2}+Y_{\gamma}^{2}+Z_{\gamma}^{2}-4 \\
& +X_{\gamma}\left(M_{1} M_{2}+M_{3} M_{4}\right)+Y_{\gamma}\left(M_{2} M_{3}+M_{1} M_{4}\right)+Z_{\gamma}\left(M_{1} M_{3}+M_{2} M_{4}\right) \\
& +M_{1}^{2}+M_{2}^{2}+M_{3}^{2}+M_{4}^{2}+M_{1} M_{2} M_{3} M_{4}
\end{aligned}
$$

where $M_{k}=-\operatorname{Tr}\left(M_{\gamma_{k}}\right), \gamma_{k}$: k-th boundary curve of C_{γ}.
The symplectic structure on \mathcal{M} induces a simple Poisson structure:

$$
\{X, Y\}=2 Z-X Y+M_{1} M_{3}+M_{2} M_{4}
$$

Darboux-coordinates for $\mathcal{M}, \mathbf{I}-($ Nekrasov-Rosly-Shatashvili)

Introduce (Darboux coordinates) $\left(\lambda_{\gamma}, \kappa_{\gamma}\right)$ with $\left\{\lambda_{\gamma}, \kappa_{\gamma^{\prime}}\right\}=\delta_{\gamma, \gamma^{\prime}}$ and reconstruct loop coordinates as:

$$
\text { "Wilson loop": } \quad X_{\gamma}=2 \cosh \left(\lambda_{\gamma}\right)
$$

"'t Hooft loop":

$$
\begin{aligned}
Y_{\gamma}\left(X_{\gamma}^{2}-4\right)= & 2\left(M_{2} M_{3}+M_{1} M_{4}\right)+X_{\gamma}\left(M_{1} M_{3}+M_{2} M_{4}\right) \\
& +2 \cosh \left(\kappa_{\gamma}\right) \sqrt{c_{12}\left(X_{\gamma}\right) c_{34}\left(X_{\gamma}\right)}
\end{aligned}
$$

Furthermore:

$$
\left(-2 Z_{\gamma}+X_{\gamma} Y_{\gamma}-M_{1} M_{3}-M_{2} M_{4}\right) 2 \sinh \left(\lambda_{\gamma}\right)=2 \sinh \left(\kappa_{\gamma}\right) \sqrt{c_{12}\left(X_{\gamma}\right) c_{34}\left(X_{\gamma}\right)}
$$

Here $c_{i j}(X)=X^{2}+M_{i}^{2}+M_{j}^{2}+X M_{i} M_{j}-4$.

Darboux-coordinates for \mathcal{M}, II

Remarks:

- Restricted to the real slice where $X_{\gamma}, Y_{\gamma}, Z_{\gamma} \in \mathbb{R}_{+}$for all γ one recovers the FenchelNielsen coordinates
- There is a freedom to to redefine $\kappa_{\gamma} \rightarrow \kappa_{\gamma}+f(\lambda)$. This freedom is fixed by demanding existence of a natural origin: Expressions for loop coordinates are symmetric w.r.t. $\left(\lambda_{\gamma}, \kappa_{\gamma}\right) \rightarrow\left(-\lambda_{\gamma},-\kappa_{\gamma}\right)$.
- For FN -coordinates the origin is defined geometrically!

Complex-structure dependent Darboux coordinates, I

An interesting part of \mathcal{M}, called \mathcal{M}_{0}, can be represented in terms of connections gauge equivalent to the form

$$
\nabla^{\prime}=\partial_{y}+\left(\begin{array}{cc}
0 & t(y) \\
1 & 0
\end{array}\right)
$$

Under changes of local coordinates $y=y(x), t(y)$ transforms as

$$
t(y) \mapsto\left(y^{\prime}(x)\right)^{2} t(y(x))-\frac{1}{2}\{y, x\}, \quad\{y, x\}:=\frac{y^{\prime \prime \prime}}{y^{\prime}}-\frac{3}{2}\left(\frac{y^{\prime \prime}}{y^{\prime}}\right)^{2}
$$

The equation for parallel transport implies the Fuchsian differential equation

$$
\mathcal{P}_{y} \psi(y)=\left(\partial_{y}^{2}-t(y)\right) \psi(y)=0
$$

Connections of this form are nowadays often called $\mathfrak{s l}_{2}$-opers.

Complex-structure dependent Darboux coordinates II

The difference between two opers $t(y)-t^{\prime}(y)$ transforms as a quadratic differential, so

$$
t(y)=t_{0}(y)+Q(y)=t_{0}(y)+\sum_{r=1}^{3 g-3+n} H_{r} \vartheta_{r}(y),
$$

Q : quadr. differential, $\vartheta_{r}(y)(d y)^{2}$: basis for the $3 g-3+n$-dimensional space of quadratic differentials, $t_{0}(y)$: reference oper.

By standard Teichmüller theory one may associate to any Q a cotangent vector to the Teichmüller space $\mathcal{T}(C)$.

Key fact (Kawai):
The map $T^{*} \mathcal{T} \rightarrow \mathcal{M}_{0}$ defined by the associating to $\partial_{y}^{2}-t(y)$ its monodromy $\rho: \pi_{1}(C) \rightarrow \mathrm{PSL}(2, \mathbb{C})$ is locally biholomorphic and symplectic.

In other words, there exist coordinates $\mathbf{z}=\left(z_{1}, \ldots, z_{3 g-3+n}\right)$, such that $\left(z_{1}, \ldots, z_{3 g-3+n} ; H_{1}, \ldots, H_{3 g-3+n}\right)$ are complex analytic coordinates for \mathcal{M}_{0} with Poisson brackets

$$
\left\{z_{r}, z_{s}\right\}=0, \quad\left\{H_{r}, z_{s}\right\}=\delta_{r, s}, \quad\left\{H_{r}, H_{s}\right\}=0
$$

Complex-structure dependent Darboux coordinates III

Example: n-punctured sphere, $C=C_{0, n}$:
Opers: Fuchsian differential operators $\partial_{y}^{2}+t(y)$ with

$$
t(y)=\sum_{r=0}^{n-1}\left(\frac{\delta_{r}}{\left(y-z_{r}\right)^{2}}+\frac{H_{r}}{y-z_{r}}\right)
$$

where $\delta_{r}=\left(\frac{\lambda_{r}}{2 \pi}\right)^{2}+\frac{1}{4}$. Assume w.l.o.g. $z_{n}=\infty, z_{n-1}=1, z_{0}=0$.
There are three relations among H_{1}, \ldots, H_{n} :

$$
\sum_{r=0}^{n-1} z_{r}^{k}\left(z_{r} H_{r}+(k+1) \delta_{r}\right)=0, \quad k=-1,0,1
$$

\Rightarrow May pick $\left(H_{1}, \ldots, H_{n-3} ; z_{1}, \ldots, z_{n-3}\right)$ as independent coordinates for \mathcal{M}_{0}.

Change of coordinates

Question: How to characterize the change of Darboux coordinates $(\lambda, \kappa) \rightarrow(z, H)$. Define $H_{r}(\lambda, z)$ as the accessory parameters which gives the oper P the monodromy $\rho_{P}: \pi_{1}(C) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ such that

$$
2 \cosh \lambda_{r}:=\operatorname{tr}\left(\rho_{P}\left(\gamma_{r}\right)\right),
$$

for curves $\gamma_{1}, \ldots, \gamma_{3 g-3+n}$ that constitute a cut system. We claim that the function $\mathcal{W}(\lambda, z)$ which does the job can be defined by the equations

$$
H_{r}(\lambda, z)=-\frac{\partial}{\partial z_{r}} \mathcal{W}(\lambda, z)
$$

Variables canonically conjugate to the λ_{r} are then found as

$$
\kappa_{r}=2 \pi i \frac{\partial}{\partial \lambda_{r}} \mathcal{W}(\lambda, m) .
$$

By carefully choosing the complex-structure independent part of $\mathcal{W}(\lambda, z)$, we recover the variables $\kappa_{\gamma}-\mathcal{W}(\lambda, z)$ is the Yang's function of Nekrasov-Rosly-Shatashvili!

Quantization of the Darboux coordinates, I

The first steps look fairly easy: Recall e.g. formulae for Wilson and 't Hooft loops

$$
\begin{aligned}
& X_{\gamma}=2 \cosh \left(\lambda_{\gamma}\right) \\
& Y_{\gamma}=\frac{1}{X_{\gamma}^{2}-4}\left[2\left(M_{2} M_{3}+M_{1} M_{4}\right)+X_{\gamma}\left(M_{1} M_{3}+M_{2} M_{4}\right)\right. \\
& \\
& \left.\quad+2 \cosh \left(\kappa_{\gamma}\right) \sqrt{c_{12}\left(X_{\gamma}\right) c_{34}\left(X_{\gamma}\right)}\right]
\end{aligned}
$$

where $\left\{\lambda_{\gamma}, \kappa_{\gamma^{\prime}}\right\}=\delta_{\gamma, \gamma^{\prime}}$. This may be quantized as $\left[\lambda_{\gamma}, \kappa_{\gamma^{\prime}}\right]=2 \pi i b^{2} \delta_{\gamma, \gamma^{\prime}}$,

$$
\begin{aligned}
\mathcal{X}_{\gamma}= & 2 \cosh \left(\lambda_{\gamma}\right) \\
\mathcal{Y}_{\gamma}= & \frac{1}{\left(2 \sinh \left(\lambda_{\gamma}\right)\right)^{2}}\left(2\left(M_{2} M_{3}+M_{1} M_{4}\right)+X_{\gamma}\left(M_{1} M_{3}+M_{2} M_{4}\right)\right) \\
& +\frac{1}{\sqrt{2 \sinh \left(\lambda_{\gamma}\right)}} e^{+\kappa_{\gamma} / 2} \frac{\sqrt{c_{12}\left(X_{\gamma}\right) c_{34}\left(X_{\gamma}\right)}}{2 \sinh \left(\lambda_{\gamma}\right)} e^{+\kappa_{\gamma} / 2} \frac{1}{\sqrt{2 \sinh \left(\lambda_{\gamma}\right)}} \\
& +\frac{1}{\sqrt{2 \sinh \left(\lambda_{\gamma}\right)}} e^{-\kappa_{\gamma} / 2} \frac{\sqrt{c_{12}\left(X_{\gamma}\right) c_{34}\left(X_{\gamma}\right)}}{2 \sinh \left(\lambda_{\gamma}\right)} e^{-\kappa_{\gamma} / 2} \frac{1}{\sqrt{2 \sinh \left(\lambda_{\gamma}\right)}}
\end{aligned}
$$

This defines noncommutative deformation \mathcal{A}_{b} of the algebra of functions on \mathcal{M}.

Quantization of the Darboux coordinates, II

Problem:

The FN/NRS Darboux coordinates depend on a choice of pants decomposition. How to quantize the changes of FN/NRS-coordinates associated to changes of the pants decompositions? This boils down to quantizing elementary F - and S - moves.

Quantization of the Darboux coordinates, III

The Wilson loop operators associated to non-intersecting curves commute and can be simultaneously diagonalized \Rightarrow Length representation:

States represented by wave-functions $\psi(\lambda)=\langle\lambda \mid \psi\rangle, \lambda=\left(\lambda_{1}, \ldots, \lambda_{3 g-3+n}\right)$. Note that representation depends on choice of pants decomposition $\sigma \Rightarrow \psi(\lambda) \rightarrow \psi_{\sigma}(\lambda)$.

The unitary operators $\mathrm{U}_{\sigma_{2} \sigma_{1}}$ relating the length representations associated to two pants decompositions σ_{2} and σ_{1} can be represented as integral operators of the form

$$
\psi_{\sigma_{2}}\left(\lambda_{2}\right)=\left(\mathrm{U}_{\sigma_{2} \sigma_{1}} \psi_{\sigma_{1}}\right)\left(\lambda_{2}\right)=\int d \lambda_{1} U_{\sigma_{2} \sigma_{1}}\left(\lambda_{2}, \lambda_{1}\right) \psi_{\sigma_{1}}\left(\lambda_{1}\right)
$$

which can be decomposed into the elementary fusion, braiding and S-moves.
The kernels can be characterized as solutions to the difference equations

$$
\left(\mathcal{X}_{\gamma}-\mathcal{Y}_{\gamma}^{\prime}\right) U\left(\lambda, \lambda^{\prime}\right)=0 \quad \Leftrightarrow \quad \mathrm{X}_{\gamma, \sigma_{2}} \cdot \mathrm{U}_{\sigma_{2} \sigma_{1}}=\mathrm{U}_{\sigma_{2} \sigma_{1}} \cdot \mathrm{X}_{\gamma, \sigma_{1}}
$$

Wilson loops mapped to 't Hooft loops under S-duality !

Fixing Darboux coordinates fixes length representation completely!

Quantization of the Darboux coordinates, IV

Example: F-move:

$$
U\left(\lambda, \lambda^{\prime}\right)=\frac{N\left(\alpha_{4}, \alpha_{3}, \beta\right) N\left(\beta, \alpha_{2}, \alpha_{1}\right)}{N\left(\alpha_{4}, \beta^{\prime}, \alpha_{1}\right) N\left(\beta^{\prime}, \alpha_{3}, \alpha_{2}\right)} \frac{S_{b}\left(u_{1}\right)}{S_{b}\left(u_{2}\right)} \frac{S_{b}\left(w_{1}\right)}{S_{b}\left(w_{2}\right)} \int_{i \mathbb{R}} d t \prod_{i=1}^{4} \frac{S_{b}\left(t+r_{i}\right)}{S_{b}\left(t+s_{i}\right)}
$$

where the special function $S_{b}(x)$ is closely related to the noncompact quantum dilogarithm and (using $\alpha_{i}=\frac{Q}{2}+i \frac{\mu_{i}}{2 \pi b}, \beta=\frac{Q}{2}+i \frac{\lambda}{2 \pi b}, \beta^{\prime}=\frac{Q}{2}+i \frac{\lambda^{\prime}}{2 \pi b}, Q=b+b^{-1}$)

$$
\begin{array}{lll}
r_{1}=\alpha_{1}-\alpha_{2}, & s_{1}=\alpha_{4}-\alpha_{2}+\beta^{\prime}, & u_{1}=\beta+\alpha_{2}-\alpha_{1} \\
r_{2}=Q-\alpha_{2}-\alpha_{1}, & s_{2}=Q+\alpha_{4}-\alpha_{2}-\beta^{\prime}, & u_{2}=2 Q-\beta-\alpha_{3}-\alpha_{4}, \\
r_{3}=\alpha_{4}+\alpha_{3}-Q, & s_{3}=\beta, & w_{1}=\beta^{\prime}+\alpha_{2}-\alpha_{3} \\
r_{4}=\alpha_{4}-\alpha_{3}, & s_{4}=Q-\beta, & w_{2}=2 Q-\beta^{\prime}-\alpha_{2}-\alpha_{3},
\end{array}
$$

$$
N\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=
$$

$$
=\sqrt{\frac{S_{b}\left(2 \alpha_{1}\right) S_{b}\left(2 \alpha_{2}\right) S_{b}\left(2 \alpha_{3}\right)}{S_{b}\left(2 Q-\alpha_{1}-\alpha_{2}-\alpha_{3}\right) S_{b}\left(Q-\alpha_{1}-\alpha_{2}+\alpha_{3}\right) S_{b}\left(\alpha_{2}+\alpha_{3}-\alpha_{1}\right) S_{b}\left(\alpha_{3}+\alpha_{1}-\alpha_{2}\right)}} .
$$

Quantization of the oper-coordinates

States get represented by holomorphic multi-valued wave-functions

$$
\Psi(z)=\langle z \mid \Psi\rangle, \quad z=\left(z_{1}, \ldots, z_{3 g-3+n}\right)
$$

such that the operators $\mathrm{z}_{i}, \mathrm{H}_{i}$ associated to z_{i} and H_{i} get represented as

$$
\mathrm{z}_{i} \Psi(z)=z_{i} \Psi(z), \quad \mathrm{H}_{i} \Psi(z)=\frac{1}{b^{2}} \frac{\partial}{\partial z_{i}} \Psi(z) .
$$

The state $|z\rangle$: generalization of a coherent state (eigenstate of z_{i}) in quantum mechanics.

Quantum change of Darboux coordinates: Oper vs. FN/NRS-coordinates, I

Consider the wave-function $\Psi_{z}(\lambda) \equiv\langle\lambda \mid z\rangle$. It describes the change of representation

$$
\tilde{\phi}(z)=\int d \lambda\langle z \mid \lambda\rangle \phi(\lambda)
$$

The wave-function $\langle\lambda \mid z\rangle$ is characterized by

- Monodromies

$$
\psi_{m \cdot z}\left(\lambda_{2}\right)=\int d \lambda_{2} U_{m \cdot \sigma, \sigma}\left(\lambda_{2}, \lambda_{1}\right) \psi_{z}\left(\lambda_{1}\right)
$$

where $\psi_{m . z}(\lambda)$: analytic continuation of $\psi_{z}(\lambda)$ along closed path m in $\mathcal{M}_{g, n}$.

- Asymptotic behavior fixed by quantizing $z_{i} H_{i} \sim\left(\frac{\lambda_{i}}{4 \pi}\right)^{2}-\frac{1}{4}$, when $z_{i} \rightarrow 0$.

This defines a Riemann-Hilbert type problem. The solution is essentially unique. It can be constructed in terms of certain vertex operators (J.T. '01, '03).

Quantum change of Darboux coordinates: Oper vs. FN/NRS-coordinates, II

- Consider asymptotics of $\langle\lambda \mid z\rangle$ at boundaries of Teichmüller space, e.g. for $C=C_{0,4}$:

$$
\begin{equation*}
\langle\lambda \mid z\rangle=\sqrt{C_{43}(\lambda) C_{21}(-\lambda)} z^{\Delta_{\lambda}-\Delta_{\mu_{1}}-\Delta_{\mu_{2}}}(1+\mathcal{O}(z)), \tag{2}
\end{equation*}
$$

where $C_{i j}(\lambda)=C\left(\alpha_{1}, \alpha_{j}, \frac{Q}{2}+i \frac{\lambda}{2 \pi b}\right)$,

$$
\begin{aligned}
& C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left[\pi \mu \gamma\left(b^{2}\right) b^{2-2 b^{2}}\right]^{\left(Q-\sum_{i=1}^{3} \alpha_{i}\right) / b} \times \\
& \quad \times \frac{\Upsilon_{0} \Upsilon\left(2 \alpha_{1}\right) \Upsilon\left(2 \alpha_{2}\right) \Upsilon\left(2 \alpha_{3}\right)}{\Upsilon\left(\alpha_{1}+\alpha_{2}+\alpha_{3}-Q\right) \Upsilon\left(\alpha_{1}+\alpha_{2}-\alpha_{3}\right) \Upsilon\left(\alpha_{2}+\alpha_{3}-\alpha_{1}\right) \Upsilon\left(\alpha_{3}+\alpha_{1}-\alpha_{2}\right)} .
\end{aligned}
$$

$C\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is the Liouville three-point function.

- $\langle\lambda \mid z\rangle$: Liouville conformal block: $\langle\lambda \mid z\rangle=\left\langle\prod_{r=1}^{n} e^{2 \alpha_{r}\left(z_{r}\right)}\right\rangle$, also known as co-invariant in tensor products of representations of the Virasoro algebra.

Having fixed the Darboux coordinates fixes normalization (2)!

Intermediate conclusion

Main result:

Liouville conformal blocks are the quantization of the generating
 function for the change of Darboux coordinates $(\lambda, \kappa) \rightarrow(z, H)$.

Remarks:

- Quantization of FN/NRS-coordinates fixes usual ambiguities in holomorphic factorization of Liouville theory.
- Classical limit determines complex-structure independent part of Yang's function - no direct derivation known! (- but see gauge theory approach of NRS.)

We've recovered all the main characteristics of Liouville theory from quantization of moduli space \mathcal{M}_{0} of flat connections.

Quantum Hitchin system - Example: $S L(2, \mathbb{C})$-Gaudin model

Consider the tensor product of n principal series representations \mathcal{P}_{j} of $S L(2, \mathbb{C})$. It corresponds to the tensor product of representations of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ generated by differential operators \mathcal{J}_{r}^{a} acting on functions $\Psi\left(x_{1}, \bar{x}_{1}, \ldots, x_{n}, \bar{x}_{n}\right)$ as

$$
\mathcal{J}_{r}^{-}=\partial_{x_{r}}, \quad \mathcal{J}_{r}^{0}=x_{r} \partial_{x_{r}}-j_{r}, \quad \mathcal{J}_{r}^{+}=-x_{r}^{2} \partial_{x_{r}}+2 j_{r} x_{r},
$$

and complex conjugate operators $\overline{\mathcal{J}}_{r}^{a}$. Casimir parameterized via j_{r} as $j_{r}\left(j_{r}+1\right)$. Let

$$
\mathrm{H}_{r} \equiv \sum_{s \neq r} \frac{\mathcal{J}_{r s}}{z_{r}-z_{s}}, \quad \overline{\mathrm{H}}_{r} \equiv \sum_{s \neq r} \frac{\overline{\mathcal{J}}_{r s}}{\bar{z}_{r}-\bar{z}_{s}},
$$

where the differential operator $\mathcal{J}_{r s}$ is defined as

$$
\mathcal{J}_{r s}:=\eta_{a a^{\prime}} \mathcal{J}_{r}^{a} \mathcal{J}_{s}^{a^{\prime}}:=\mathcal{J}_{r}^{0} \mathcal{J}_{s}^{0}+\frac{1}{2}\left(\mathcal{J}_{r}^{+} \mathcal{J}_{s}^{-}+\mathcal{J}_{r}^{-} \mathcal{J}_{s}^{+}\right)
$$

while $\overline{\mathcal{J}}_{\text {rs }}$ is the complex conjugate of $\mathcal{J}_{\text {rs }}$. The Gaudin Hamiltonians are mutually commuting,

$$
\left[\mathrm{H}_{r}, \mathrm{H}_{s}\right]=0, \quad\left[\mathrm{H}_{r}, \overline{\mathrm{H}}_{s}\right]=0, \quad\left[\overline{\mathrm{H}}_{r}, \overline{\mathrm{H}}_{s}\right]=0
$$

Quantum $S L(2, \mathbb{C})$-Gaudin model from Liouville theory

The eigenvalue equations $\mathrm{H}_{r} \psi=E_{r} \psi$ emerge in the critical level limit of the KZ-equations

$$
(k+2) \partial_{z} \Psi(x, z)=\mathrm{H}_{r} \Psi(x, z),
$$

which are solved by the WZNW-correlation functions

$$
\mathcal{Z}_{W}(x, z)=\left\langle\prod_{r=1}^{n} \phi^{j_{r}}\left(x_{r}, \bar{x}_{r} \mid z_{r}, \bar{z}_{r}\right)\right\rangle .
$$

The WZNW-correlation functions $\mathcal{Z}_{W}(x, z)$ can be constructed from Liouville correlation functions

$$
\mathcal{Z}_{L}(y, z)=\left\langle\prod_{r=1}^{n} e^{2 \alpha_{r} \phi\left(z_{r}, \bar{z}_{r}\right)} \prod_{s=1}^{n-2} e^{-\phi\left(y_{r}, \bar{y}_{r}\right) / b}\right\rangle
$$

by some explicitly known integral transformation (Sklyanin)

$$
\mathcal{Z}_{W}(x, z)=\int d y K_{z}(x, y) \mathcal{Z}_{L}(y, z)
$$

Quantum $S L(2, \mathbb{C})$-Gaudin model from Liouville theory

In the critical level limit $k \rightarrow-2$ we may use relation between \mathcal{Z}_{W} and \mathcal{Z}_{L} to show

$$
\mathcal{Z}_{W}(x, z) \underset{k \rightarrow-2}{\sim} \psi(x) \exp \left(\frac{1}{k+2} 2 \operatorname{Re}\left(\mathcal{W}\left(\lambda_{\mathrm{cl}}, z\right)\right)\right)
$$

where $\mathcal{W}(\lambda, z)$ is the Yang's function, and $\lambda_{c l}$ is defined by solving

$$
\left.\frac{\partial}{\partial \lambda_{r}} \operatorname{Re}(\mathcal{W}(\lambda, z))\right|_{\lambda=\lambda_{\mathrm{cl}}}=0, \quad r=1, \ldots, n-3
$$

This condition characterizes the saddle point of the integral in the factorization expansion

$$
\left\langle e^{2 \alpha_{n} \phi\left(z_{n}, \bar{z}_{n}\right)} \cdots e^{2 \alpha_{1} \phi\left(z_{1}, \bar{z}_{1}\right)}\right\rangle_{L}=\int d \mu(p)\left|\mathcal{F}_{\alpha, C_{q}}^{\sigma}(p)\right|^{2}
$$

In other words:

Single-valuedness of Liouville correlations functions \Rightarrow
Quantization conditions for E_{r} in terms of Yang's function.

Conclusions

We have discussed how the items in

are related.
The resulting relation between quantum Hitchin system and moduli spaces of flat connections explains why Yang's function $\mathcal{W}(\lambda, z)$ gives quantization conditions.

It is hoped that these results will guide the investigation of the links between gauge theory, integrable models and conformal field theory.

