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Motivation

Low energy physics of certain N=2 4d SUSY gauge theories admits a family of interesting

regularizations / compactifications:

R4 (Seiberg-Witten)

R3 × S1 (Moore-Gaiotto-Neitzke) R2 × R2
ϵ (Nekrasov-Shatashvili)

R4
ϵ1ϵ2

(Moore-Nekrasov-Shatashvili), or
S4 (Pestun)

In a large class of examples GC (Gaiotto) there exist interesting relations to

integrable models, CFT, and (quantized) Hitchin moduli spaces: (Nekrasov-Shatashvili,

Alday-Gaiotto-Tachikawa, Gaiotto-Moore-Neitzke)

Hitchin system
ϵ2 ↙ ↘ ϵ1

Flat quantum Hitchin
connections system

ϵ1 ↘ ↙ ϵ2
Liouville theory

(1)

To understand why this is so, we may need to understand the relations in (1) a little better.
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Motivation II

Putting gauge theory in finite volume

⇒ quantization of zero modes like constant parts of scalars Φ.

Emerging picture: — (Drukker-Gomis-Okuda-J.T., Nekrasov-Witten)

• Quantization of zero modes ⇒ subspace H0 of zero energy states.

• Algebra of operators on H0 generated by SUSY loop operators (Wilson, ’t Hooft).

• Expectation values of loop operators reduce (localize) to overlaps in H0, e.g.

⟨ L ⟩ = ⟨ q | L0 | q ⟩H0
.

In order to fully understand the relations above, we will in particular need to answer the

following questions:

(A) How is Liouville theory related to quantized moduli spaces of flat connections?

(B) How is Liouville theory related to the quantized Hitchin systems?
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Moduli spaces of flat connections

Consider flat complex connections

d+A = (∂z +Az)dz + (∂z̄ +Az̄)dz̄ ,

modulo gauge transformations. Flat connections modulo gauge transformations

characterized by holonomies. They define representations

ρ : π1(C) → PSL(2,C) .

The moduli space of flat connections is therefore isomorphic to

M = Hom(π1(C), SL(2,C))/SL(2,C) .

There is a holomorphic symplectic form on M,

ϖ =
1

2

∫
C

tr(δA ∧ δA) .

Nothing depends on a (possible) choice of complex structure so far.
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Coordinates for M

One may distinguish

• Coordinates associated to triangulations.

Penner, Fock, Fock-Goncharov, Gaiotto-Moore-Neitzke....

• Coordinates associated to pants decompositions.

Fenchel-Nielsen, Nekrasov-Rosly-Shatashvili,...

We shall be interested in the latter.

Preparation:

Each cutting curve γ specifies either a four-holed sphere or a once-punctured torus embedded

in C. Choosing a numbering of the boundary components of each pair of pants one can

associate to γ a pair of dual curves γ̌, γ̂.
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Loop coordinates for M

To a point in M let us associate coordinate functions

Xγ := −Tr(Mγ) , Yγ := −Tr(Mγ̌) , Zγ := −Tr(Mγ̂) ,

where Mγ := Pexp(
∫
γ
A). There are relations: For given four-punctured sphere Cγ ↪→ C:

XγYγZγ =X2
γ + Y 2

γ + Z2
γ − 4

+Xγ(M1M2 +M3M4) + Yγ(M2M3 +M1M4) + Zγ(M1M3 +M2M4)

+M2
1 +M2

2 +M2
3 +M2

4 +M1M2M3M4 ,

where Mk = −Tr(Mγk), γk: k-th boundary curve of Cγ.

The symplectic structure on M induces a simple Poisson structure:

{X , Y } = 2Z −XY +M1M3 +M2M4 .
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Darboux-coordinates for M, I — (Nekrasov-Rosly-Shatashvili)

Introduce (Darboux coordinates) (λγ, κγ) with {λγ, κγ′} = δγ,γ′ and reconstruct loop

coordinates as:

”Wilson loop”: Xγ = 2 cosh(λγ) ,

”’t Hooft loop”:

Yγ(X
2
γ − 4) = 2(M2M3 +M1M4) +Xγ(M1M3 +M2M4)

+ 2 cosh(κγ)
√
c12(Xγ)c34(Xγ) ,

Furthermore:

(−2Zγ +XγYγ −M1M3 −M2M4)2 sinh(λγ) = 2 sinh(κγ)
√
c12(Xγ)c34(Xγ) ,

Here cij(X) = X2 +M2
i +M2

j +XMiMj − 4.

– Typeset by FoilTEX – 6



Darboux-coordinates for M, II

Remarks:

• Restricted to the real slice where Xγ, Yγ, Zγ ∈ R+ for all γ one recovers the Fenchel-

Nielsen coordinates

• There is a freedom to to redefine κγ → κγ+f(λ). This freedom is fixed by demanding

existence of a natural origin: Expressions for loop coordinates are symmetric w.r.t.

(λγ, κγ) → (−λγ,−κγ).

– For FN-coordinates the origin is defined geometrically!
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Complex-structure dependent Darboux coordinates, I

An interesting part of M, called M0, can be represented in terms of connections gauge

equivalent to the form

∇′ = ∂y +

(
0 t(y)

1 0

)
.

Under changes of local coordinates y = y(x), t(y) transforms as

t(y) 7→ (y′(x))2 t(y(x))− 1

2
{y, x} , {y, x} :=

y′′′

y′
− 3

2

(
y′′

y′

)2

.

The equation for parallel transport implies the Fuchsian differential equation

Pyψ(y) = (∂2y − t(y))ψ(y) = 0 .

Connections of this form are nowadays often called sl2-opers.
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Complex-structure dependent Darboux coordinates II

The difference between two opers t(y)− t′(y) transforms as a quadratic differential, so

t(y) = t0(y) +Q(y) = t0(y) +

3g−3+n∑
r=1

Hr ϑr(y) ,

Q: quadr. differential, ϑr(y)(dy)
2: basis for the 3g− 3 + n-dimensional space of quadratic

differentials, t0(y): reference oper.

By standard Teichmüller theory one may associate to any Q a cotangent vector to the

Teichmüller space T (C).

Key fact (Kawai):

The map T ∗T → M0 defined by the associating to ∂2y − t(y) its monodromy

ρ : π1(C) → PSL(2,C) is locally biholomorphic and symplectic.

In other words, there exist coordinates z = (z1, . . . , z3g−3+n), such that

(z1, . . . , z3g−3+n;H1, . . . , H3g−3+n) are complex analytic coordinates for M0 with Poisson

brackets

{ zr , zs } = 0 , {Hr , zs } = δr,s , {Hr ,Hs } = 0 .
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Complex-structure dependent Darboux coordinates III

Example: n-punctured sphere, C = C0,n:

Opers: Fuchsian differential operators ∂2y + t(y) with

t(y) =

n−1∑
r=0

(
δr

(y − zr)2
+

Hr

y − zr

)
,

where δr =
(
λr
2π

)2
+ 1

4. Assume w.l.o.g. zn = ∞, zn−1 = 1, z0 = 0.

There are three relations among H1, . . . , Hn:

n−1∑
r=0

zkr (zrHr + (k + 1)δr) = 0 , k = −1, 0, 1 .

⇒ May pick (H1, . . . , Hn−3; z1, . . . , zn−3) as independent coordinates for M0.
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Change of coordinates

Question: How to characterize the change of Darboux coordinates (λ, κ) → (z,H).

Define Hr(λ, z) as the accessory parameters which gives the oper P the monodromy

ρP : π1(C) → PSL(2,C) such that

2 coshλr := tr(ρP (γr)) ,

for curves γ1, . . . , γ3g−3+n that constitute a cut system. We claim that the function

W(λ, z) which does the job can be defined by the equations

Hr(λ, z) = − ∂

∂zr
W(λ, z) .

Variables canonically conjugate to the λr are then found as

κr = 2πi
∂

∂λr
W(λ,m) .

By carefully choosing the complex-structure independent part of W(λ, z), we recover the

variables κγ — W(λ, z) is the Yang’s function of Nekrasov-Rosly-Shatashvili !
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Quantization of the Darboux coordinates, I

The first steps look fairly easy: Recall e.g. formulae for Wilson and ’t Hooft loops

Xγ = 2 cosh(λγ) ,

Yγ =
1

X2
γ − 4

[
2(M2M3 +M1M4) +Xγ(M1M3 +M2M4)

+ 2 cosh(κγ)
√
c12(Xγ)c34(Xγ)

]
,

where {λγ, κγ′} = δγ,γ′. This may be quantized as [λγ, κγ′ ] = 2πib2δγ,γ′,

Xγ = 2 cosh(λγ) ,

Yγ =
1

(2 sinh(λγ))2

(
2(M2M3 +M1M4) +Xγ(M1M3 +M2M4)

)
+

1√
2 sinh(λγ)

e+κγ/2

√
c12(Xγ)c34(Xγ)

2 sinh(λγ)
e+κγ/2

1√
2 sinh(λγ)

+
1√

2 sinh(λγ)
e−κγ/2

√
c12(Xγ)c34(Xγ)

2 sinh(λγ)
e−κγ/2

1√
2 sinh(λγ)

,

This defines noncommutative deformation Ab of the algebra of functions on M.
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Quantization of the Darboux coordinates, II

Problem:

The FN/NRS Darboux coordinates depend on a choice of pants decomposition. How

to quantize the changes of FN/NRS-coordinates associated to changes of the pants

decompositions? This boils down to quantizing elementary F- and S- moves.

F-move: A

3 3 112 2

S-move: S

*

C

C

*
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Quantization of the Darboux coordinates, III

The Wilson loop operators associated to non-intersecting curves commute and can be

simultaneously diagonalized ⇒ Length representation:

States represented by wave-functions ψ(λ) = ⟨λ |ψ ⟩, λ = (λ1, . . . , λ3g−3+n). Note that

representation depends on choice of pants decomposition σ ⇒ ψ(λ) → ψσ(λ).

The unitary operators Uσ2σ1 relating the length representations associated to two pants

decompositions σ2 and σ1 can be represented as integral operators of the form

ψσ2(λ2) = (Uσ2σ1ψσ1)(λ2) =

∫
dλ1 Uσ2σ1(λ2, λ1)ψσ1(λ1) ,

which can be decomposed into the elementary fusion, braiding and S-moves.

The kernels can be characterized as solutions to the difference equations

(Xγ − Y ′
γ)U(λ, λ′) = 0 ⇔ Xγ,σ2 · Uσ2σ1 = Uσ2σ1 · Xγ,σ1 .

Wilson loops mapped to ’t Hooft loops under S-duality !

Fixing Darboux coordinates fixes length representation completely !
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Quantization of the Darboux coordinates, IV

Example: F-move:

U(λ, λ′) =
N(α4, α3, β)N(β, α2, α1)

N(α4, β′, α1)N(β′, α3, α2)

Sb(u1)

Sb(u2)

Sb(w1)

Sb(w2)

∫
iR

dt

4∏
i=1

Sb(t+ ri)

Sb(t+ si)
,

where the special function Sb(x) is closely related to the noncompact quantum dilogarithm

and (using αi =
Q
2 + i µi

2πb, β = Q
2 + i λ

2πb, β
′ = Q

2 + i λ′

2πb, Q = b+ b−1)

r1 =α1 − α2,

r2 =Q − α2 − α1,

r3 =α4 + α3 − Q,

r4 =α4 − α3,

s1 =α4 − α2 + β
′
,

s2 =Q + α4 − α2 − β
′
,

s3 =β,

s4 =Q − β,

u1 =β + α2 − α1,

u2 =2Q − β − α3 − α4,

w1 =β
′
+ α2 − α3,

w2 =2Q − β
′ − α2 − α3,

N(α1, α2, α3) =

=

√
Sb(2α1)Sb(2α2)Sb(2α3)

Sb(2Q − α1 − α2 − α3)Sb(Q − α1 − α2 + α3)Sb(α2 + α3 − α1)Sb(α3 + α1 − α2)
.
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Quantization of the oper-coordinates

States get represented by holomorphic multi-valued wave-functions

Ψ(z) = ⟨ z |Ψ ⟩ , z = (z1, . . . , z3g−3+n) ,

such that the operators zi, Hi associated to zi and Hi get represented as

ziΨ(z) = ziΨ(z) , HiΨ(z) =
1

b2
∂

∂zi
Ψ(z) .

The state | z ⟩: generalization of a coherent state (eigenstate of zi) in quantum mechanics.
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Quantum change of Darboux coordinates:
Oper vs. FN/NRS-coordinates, I

Consider the wave-function Ψz(λ) ≡ ⟨λ | z ⟩. It describes the change of representation

ϕ̃(z) =

∫
dλ ⟨ z |λ ⟩ϕ(λ) .

The wave-function ⟨λ | z ⟩ is characterized by

• Monodromies

ψm.z(λ2) =

∫
dλ2 Um.σ,σ(λ2, λ1)ψz(λ1) ,

where ψm.z(λ): analytic continuation of ψz(λ) along closed path m in Mg,n.

• Asymptotic behavior fixed by quantizing ziHi ∼
(
λi
4π

)2 − 1
4, when zi → 0.

This defines a Riemann-Hilbert type problem. The solution is essentially unique. It can be

constructed in terms of certain vertex operators (J.T. ’01,’03).
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Quantum change of Darboux coordinates:
Oper vs. FN/NRS-coordinates, II

• Consider asymptotics of ⟨λ | z ⟩ at boundaries of Teichmüller space, e.g. for C = C0,4:

⟨λ | z ⟩ =
√
C43(λ)C21(−λ) z∆λ−∆µ1−∆µ2(1 +O(z)) , (2)

where Cij(λ) = C
(
α1, αj,

Q
2 + i λ

2πb

)
,

C(α1, α2, α3) =

[
πµγ(b

2
)b

2−2b2
](Q−

∑3
i=1 αi)/b

×

×
Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 − Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
.

C(α1, α2, α3) is the Liouville three-point function.

• ⟨λ | z ⟩: Liouville conformal block: ⟨λ | z ⟩ =
⟨ ∏n

r=1 e
2αr(zr)

⟩
, also known as

co-invariant in tensor products of representations of the Virasoro algebra.

Having fixed the Darboux coordinates fixes normalization (2)!
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Intermediate conclusion

Main result:

Liouville conformal blocks are the quantization of the generating

function for the change of Darboux coordinates (λ, κ) → (z,H).

Remarks:

• Quantization of FN/NRS-coordinates fixes usual ambiguities in holomorphic

factorization of Liouville theory.

• Classical limit determines complex-structure independent part of Yang’s function – no

direct derivation known! (— but see gauge theory approach of NRS.)

We’ve recovered all the main characteristics of Liouville theory from quantization of

moduli space M0 of flat connections.
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Quantum Hitchin system — Example: SL(2,C)-Gaudin model

Consider the tensor product of n principal series representations Pj of SL(2,C). It

corresponds to the tensor product of representations of the Lie algebra sl(2,C) generated

by differential operators J a
r acting on functions Ψ(x1, x̄1, . . . , xn, x̄n) as

J−
r = ∂xr, J 0

r = xr∂xr − jr, J +
r = −x2r∂xr + 2jrxr,

and complex conjugate operators J̄ a
r . Casimir parameterized via jr as jr(jr + 1). Let

Hr ≡
∑
s ̸=r

Jrs

zr − zs
, H̄r ≡

∑
s ̸=r

J̄rs

z̄r − z̄s
,

where the differential operator Jrs is defined as

Jrs := ηaa′J a
r J a′

s := J 0
r J 0

s +
1

2

(
J +
r J−

s + J−
r J +

s

)
,

while J̄rs is the complex conjugate of Jrs. The Gaudin Hamiltonians are mutually

commuting,

[Hr , Hs ] = 0 , [Hr , H̄s ] = 0 , [ H̄r , H̄s ] = 0 .
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Quantum SL(2,C)-Gaudin model from Liouville theory

The eigenvalue equations Hrψ = Erψ emerge in the critical level limit of the KZ-equations

(k + 2)∂zΨ(x, z) = HrΨ(x, z) ,

which are solved by the WZNW-correlation functions

ZW (x, z) =

⟨
n∏

r=1

ϕjr(xr, x̄r|zr, z̄r)

⟩
.

The WZNW-correlation functions ZW (x, z) can be constructed from Liouville correlation

functions

ZL(y, z) =

⟨
n∏

r=1

e2αrϕ(zr,z̄r)
n−2∏
s=1

e−ϕ(yr,ȳr)/b

⟩
by some explicitly known integral transformation (Sklyanin)

ZW (x, z) =

∫
dy Kz(x, y)ZL(y, z).
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Quantum SL(2,C)-Gaudin model from Liouville theory

In the critical level limit k → −2 we may use relation between ZW and ZL to show

ZW (x, z) ∼
k→−2

ψ(x) exp

(
1

k + 2
2Re(W(λcl, z))

)
,

where W(λ, z) is the Yang’s function, and λcl is defined by solving

∂

∂λr
Re(W(λ, z))

∣∣∣
λ=λcl

= 0 , r = 1, . . . , n− 3.

This condition characterizes the saddle point of the integral in the factorization expansion

⟨
e2αnϕ(zn,z̄n) · · · e2α1ϕ(z1,z̄1)

⟩
L

=

∫
dµ(p) |Fσ

α,Cq
(p)|2 .

In other words:

Single-valuedness of Liouville correlations functions ⇒

Quantization conditions for Er in terms of Yang’s function.
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Conclusions

We have discussed how the items in

Hitchin system
ϵ2 ↙ ↘ ϵ1

Flat quantum Hitchin
connections system

ϵ1 ↘ ↙ ϵ2
Liouville theory

are related.

The resulting relation between quantum Hitchin system and moduli spaces of flat

connections explains why Yang’s function W(λ, z) gives quantization conditions.

It is hoped that these results will guide the investigation of the links between gauge

theory, integrable models and conformal field theory.
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