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Outline	

•  Phenomenology	of	Quantum	Cri+cal	metals	
•  T-linear	resis+vity,	1/T	Hall	effect	
•  Fan-like	cri+cal	region	

•  High	Field	Magnetoresistance	in	Ba-122	
•  T-linear/B-linear	MR	
•  Scaling	between	T	and	B,	with	the	same	exponent	

	
•  Phenomenology	of	RH	
•  1/T	enhancement	at	low	temperatures	
•  Reduc+on	of	RH	at	high	fields	and	cut-off	at	high	

dopings	
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BaFe2(As1-xPx)2	

•  Signs	of	strong	correla+ons/cri+cality	are	
seen	in	a	number	of	probes:	Quantum	
oscilla+ons,	heat	capacity,	penetra+on	
depth,	NMR,	charge	transport.	

•  Normal	state	at	op+mal	doping	is	(barely)	
accessible	at	low	temperatures:	Hc2	~	45	
Tesla	
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B/T	Scaling	in	the	magnetotransport	
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Magnetotransport	across	the	phase	diagram	
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Quantum	Cri6cal	Magnetoresistance?	

There	is	a	magne+c	analogue	to	the	T-
linear	resis+vity	at	op+mal	doping	and	
low	temperatures.		
	
T	and	B	have	the	same	exponent	and	
therefore	the	same	scaling	dimension.	
	



Hall	Effect	in	Ba-122	

Low	Field	(3	Tesla)	



RH	across	the	phase	diagram	
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RH	across	the	phase	diagram	



RH	across	the	phase	diagram	

RH ~ A(x) f (T )



RH	across	the	phase	diagram	
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High	Field	Hall	Effect	in	Ba-122	

T		=	75K	



High	Field	Hall	Effect	in	Ba-122	

T		=	75K	

T		=	200K	



High	Field	Hall	Effect	in	Ba-122	

T		=	75K	

T		=	200K	



High	Field	Hall	Effect	in	Ba-122	
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High	Field	Hall	Effect	in	Ba-122	

RH = RHBackground (T )+
1
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T (RH − RHBackground (T )) = f (BT )



High	Field	Hall	Effect	in	Ba-122	

MR	curves	collapse	for	T	<		150K,	
where	the	RH	upturn	is	pronounced.	 RH = RHBackground (T )+

1
T
f (BT )

T (RH − RHBackground (T )) = f (BT )



High	Field	Hall	Effect	in	Ba-122	

MR	curves	collapse	for	T	<		150K,	
where	the	RH	upturn	is	pronounced.	
	
Downturn	in	RH	below	30K	means	the	
data	collapse	only	for	30K	<	T	<	150K.	



High	Field	Hall	Effect	in	Ba-122	

RH	versus	T	at	high	fields	closely	resembles	RH	
versus	T	at	low	fields	and	higher	doping.	
	



High	Field	Hall	Effect	in	Ba-122	

RH	versus	T	at	high	fields	closely	resembles	RH	
versus	T	at	low	fields	and	higher	doping.	
	
64	Tesla	~	40K	cut-off	using	the	scale	factor	
from	the	B-linear	scaling	
	



Summary	and	Outlook	
•  Rhoxx	in	Ba-122	shows	scaling	between	B	and	T	with	both	T-	and	B-linear	

resis+vity,	consistent	with	the	interpreta+on	that	both	tune	a	cut-off	energy	scale	
for	charge	relaxa+on.	

•  RH	shows	a	steep	upturn	at	low	temperatures	similar	to	what	is	seen	in	cuprates	
and	HF	superconductors.	The	upturn	is	cut-off	at	successively	higher	
temperatures	as	one	moves	away	from	op+mal	doping.	RH	is	reduced	at	high-
fields	as	well	as	high	temperatures	

•  It	is	a	open	ques+on	why	field	behaves	as	both	a	tuning	parameter	and	a	scaling	
parameter	in	the	Hall	Channel	


