Topologically protected nodes: Application to Sr_2RuO_4 and UTe_2

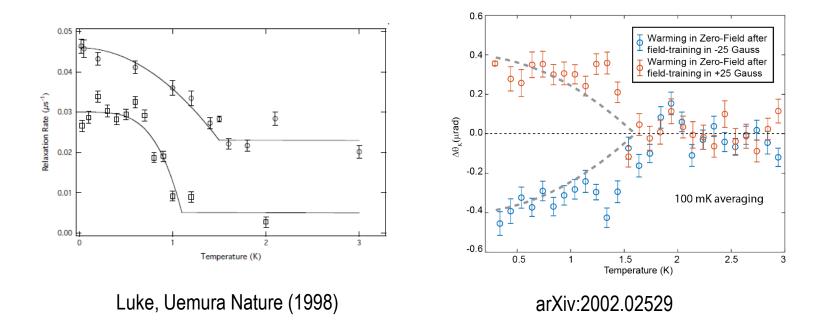
Daniel F. Agterberg, University of Wisconsin – Milwaukee

Philip Brydon, Nick Butch, J. Collini, Yun Suk Eo, Mark Fischer, Ian Hayes, Henri Menke, Tristan Metz, Aharon Kapitulik, Johnpierre Paglione, Aline Ramires, Sheng Ran, S. Saha, Tatsuya Shishidou, Manfred Sigirst, Han Gyeol Suh, Carsten Timm, DiDi Wei, Mike Weinert, and J Zhang.

- 1- Key superconducting symmetries, pseudospin singlet and triplet pairing
- 2- Topological nodal classification
- 3- Bogoliubov Fermi surfaces in Sr₂RuO₄
- 4- Weyl superconductivity in UTe₂
- 5- New results from theory on UTe_2

NSF DMREF-1335215, PRL **118**, 127001 (2017), PRB **98**, 224509 (2018), PRL **121**, 157003 (2018), PRB **100**, 220504(R) (2019), PR Research **2**, 032023(R) (2020), arXiv:2002.02529

Why UTe₂ and Sr₂RuO₄?

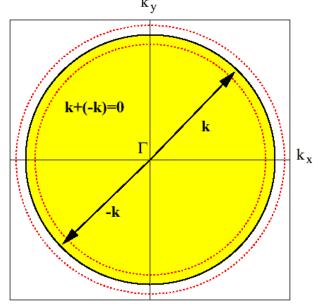


Both are unconventional superconductors that spontaneously break time-reversal symmetry ("intertwined order")

I will argue both have nodes that are not dictated by symmetry – but are topologically protected.

Superconductivity Symmetries

Superconductivity is stabilized by key symmetries:



- To ensure that states **k** and **-k** are on the Fermi surface requires symmetries (inversion, time-reversal): I or T
- Note that antiunitary (IT)²=-1 and takes **k** to **k**, this ensures 2-fold degeneracy at each **k** (pseudospin).

Single Band Cooper Pairing

Pseudospin: Kramers degenerate fermions with same k: $|k, \uparrow\rangle$, $IT |k, \uparrow\rangle \equiv |k, \downarrow\rangle$ Pair these states at **k** and $-\mathbf{k}$: Parametrization of the gap function $\Delta_{\mathbf{k},ss'}$

Even parity, pseudospin singlet:

$$\hat{\Delta}_{\vec{k}} = \begin{pmatrix} 0 & \psi(\vec{k}) \\ -\psi(\vec{k}) & 0 \end{pmatrix} = i\sigma^{y}\psi(\vec{k})$$

Scalar wave function:
$$\psi(\vec{k})$$
 with $\psi(-\vec{k}) = \psi(\vec{k})$ even parity

Odd parity, pseudospin triplet:

$$\hat{\Delta}_{\vec{k}} = \begin{pmatrix} -d_x + id_y & d_z \\ d_z & d_x + id_y \end{pmatrix} = i\vec{d}(\vec{k}) \cdot \vec{\sigma} \sigma^y$$

Vector wave function: $\vec{d}(\vec{k})$ with $\vec{d}(-\vec{k}) = -\vec{d}(\vec{k})$ odd parity

Superconductivity, pairing states

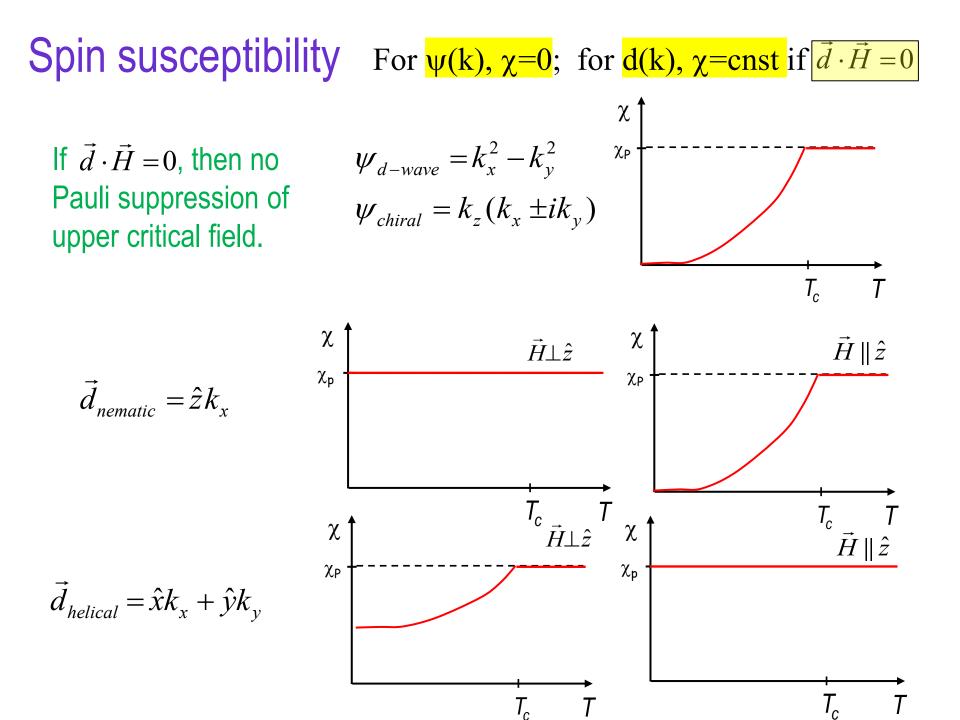
Assume materials has time-reversal (T) and parity (I) symmetries

$$\Delta(\mathbf{k}) = [\psi(k) + \vec{d}(k) \cdot \vec{\sigma}](i\sigma_{y}) = \begin{pmatrix} -d_{x} + id_{y} & d_{z} + \psi \\ d_{z} - \psi & d_{x} + id_{y} \end{pmatrix}$$
Additional symmetry further dictates
structure of Cooper pairs (and nodes):
$$\frac{\Gamma}{A_{1u}} \quad \frac{\Delta(\mathbf{k})}{d_{helical}} = \hat{x}k_{x} + \hat{y}k_{y}$$

$$\mathcal{U}_{u_{x}} \operatorname{Bi}_{2} \operatorname{Se}_{3} \cdot \mathcal{U}_{u_{x}} = k_{x}^{2} - k_{y}^{2}$$

$$E_{u} \text{ and } \operatorname{E}_{g} \text{ have two superconducting degrees of freedom - allows for multiple ground states}$$

$$\operatorname{Sr}_{2} \operatorname{RuO}_{4}? \quad \mathcal{I}_{u} = \frac{1}{2} \int_{u_{x}} \frac{1}{2} \int_{$$



Topological Nodal Classification

Many topological nodal classifications based on symmetries: Beri, Bzdusek, Fischer, Ryu, Sato, Yanase, Samokhin, Sato, Schynder, Shiozaki, Sigrist, Sumita, Ryu, Volovik, and Yanase

1- Includes key superconducting symmetries T and I and particle-hole symmetry C (all these take k to -k).
T. Bzdušek and M. Sigrist, PRB 96, 155105 (2017)
2- Nodes classified by symmetries that take k to k

TI and CI and S= (CI)(TI)=CT (take k to k), 10-fold way (AZ classes)

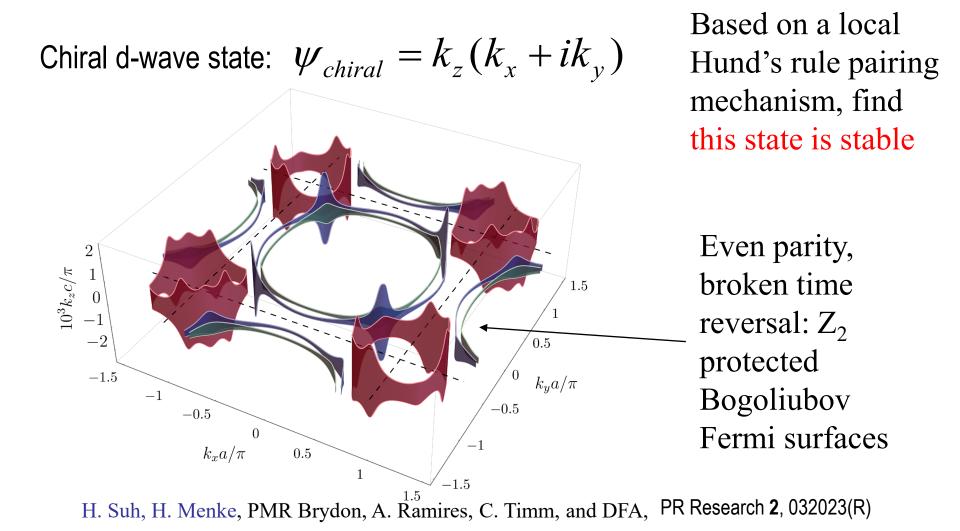
label	Example	FS	line	point
DIII (even I, T yes)	$\psi_{d-wave} = k_x^2 - k_y^2$		2Z	
D (even I, T no)	$\psi_{chiral} = k_z (k_x \pm i k_y)$ $\vec{d}_{helical} = \hat{x}k_x + \hat{y}k_y$	\mathbb{Z}_2		2Z
CII (odd I, T yes)	$d_{helical} = \hat{x}k_x + \hat{y}k_y$	Ť		
C (odd I, T no)	$\vec{d}_{chiral} = \hat{z}(k_x \pm ik_y)$			Z

DFA, PMR Brydon, and C. Timm PRL 118, 127001 (2017)

2D generalization: MH Fischer, M Sigrist, DFA, PRL 121, 157003 (2018)

Bogoliubov Fermi Surfaces in Sr₂RuO₄

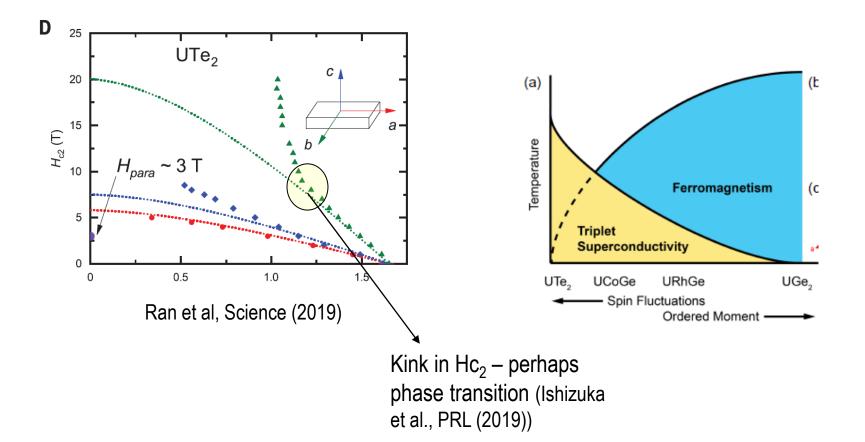
Joerg Schamlian and Andrew Mackenzie talks: singlet superconductor Shear c₆₆ modulus jump at Tc: Ghosh et al., arXiv:2002.06130and Benhabib et al., arXiv:2002.05916.



Weyl Superconductivity in UTe₂

arXiv:2002.02529

Superconducting UTe₂



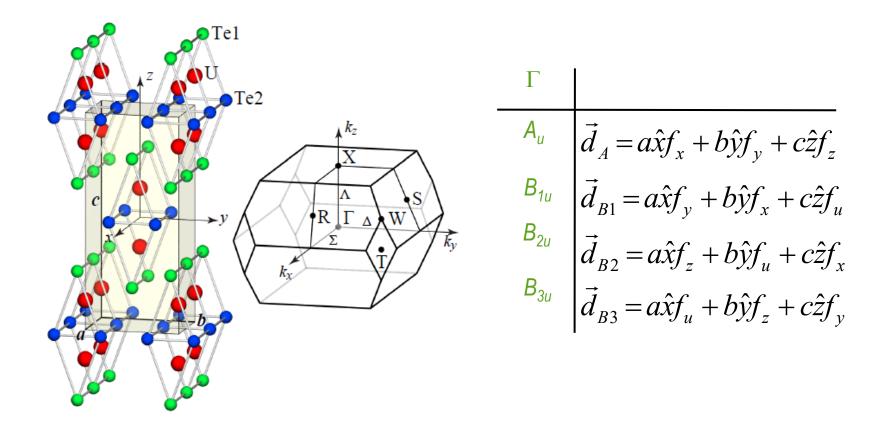
Spin-triplet likely, assumed here: what can we say about the order parameter? How about quasiparticle excitations?

Broken Time-reversal Symmetry



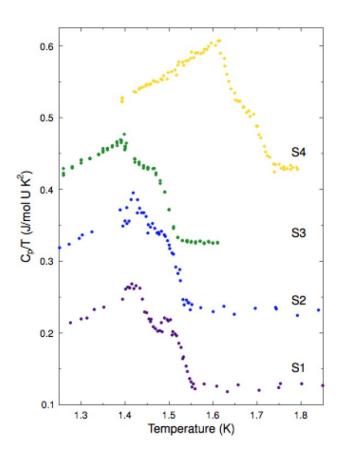
To break time-reversal symmetry, need **two** components to the order parameter. Typically this requires symmetry.

Orthorhombic

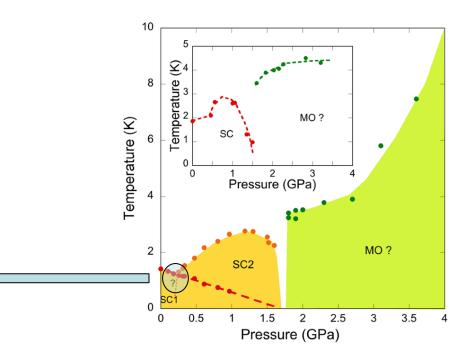


Orthorhombic with point group D_{2h} . All **one** component order parameters. How can time-reversal symmetry be broken?

Multiple Superconducting Transitions



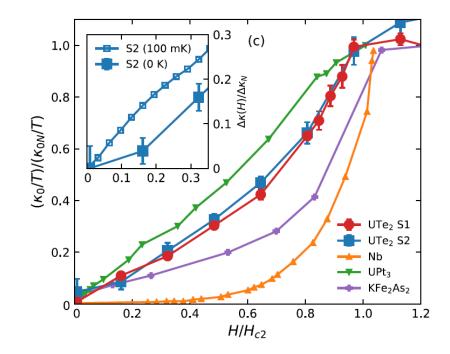
arXiv:2002.02529



Braithwaite et al.,Nat. Phys. Com. (2019).

Thomas et al. arXiv:2005.01659 the two Tc's cross at pressure Pc=0.2 GPa

Nodal excitations:



Suggests point nodes: B_{3u} or B_{2u} state based on assumed time-reversal invariance

Metz et al, PRB (2019)

Possible pairing states

We have time-reversal (T) and inversion (I) symmetries and D_{2h} point group

Little about details of Kondo Fermi liquid state (Z-point electron pocket, Miao et al., PRL 2020).

$$\Gamma$$

$$A_{u} \qquad \vec{d}_{A} = \hat{x}f_{x}, \hat{y}f_{y}, \hat{z}f_{z} \qquad f_{x} \sim k_{x}(\sin k_{x})$$

$$B_{1u} \qquad \vec{d}_{B1} = \hat{x}f_{y}, \hat{y}f_{x}, \hat{z}f_{u} \qquad f_{y} \sim k_{y}(\sin k_{y})$$

$$B_{2u} \qquad \vec{d}_{B2} = \hat{x}f_{z}, \hat{y}f_{u}, \hat{z}f_{x} \qquad f_{z} \sim k_{z}(\sin k_{z})$$

$$B_{3u} \qquad \vec{d}_{B3} = \hat{x}f_{u}, \hat{y}f_{z}, \hat{z}f_{y} \qquad f_{u} \sim k_{x}k_{y}k_{z}$$

Keep f - functions general but consistent with symmetry

Kerr training by c-axis field implies coupling: $iB_z(\psi_1\psi_2^*-\psi_2\psi_1^*)$

```
Two possibilities: i) A_{\mu}+iB_{1\mu}
                         ii) B_{2u}+iB_{3u}
```

Weyl Points?

- Under what conditions do Weyl points occur?
- Consider $d_1 + id_2$:

$$E(k) = \pm \sqrt{(\varepsilon(k) - \mu)^2 + |d(k)|^2 \pm |q(k)|}$$

[where q=i(dxd*)]

$$(\varepsilon(k) - \mu)^2 = 0 \qquad |\Delta_{\pm}|^2 = |d|^2 \pm |q| = 0 \text{ or}$$
$$|\Delta_{\pm}| = |d_1|^2 + |d_2|^2 \pm 2|d_1 \times d_2| = 0$$
$$|d_1| = |d_2| \quad \text{and} \quad d_1 \cdot d_2 = 0$$

Together these define a line in momentum space. This line can intersect a Fermi surface at a point. *Weyl points can generically exist*.

$$|d_1| = |d_2|$$
 and $d_1 \cdot d_2 = 0$

$$B_{2u}+iB_{3u}$$
 state

Weyl nodes can generically appear, need detailed a microscopic model Insight from topological semimetals (MoTe₂): look in high-symmetry planes

$$\Gamma$$

$$A_{1u} \qquad \vec{d}_A = \hat{x}f_x, \hat{y}f_y, \hat{z}f_z$$

$$B_{1u} \qquad \vec{d}_{B1} = \hat{x}f_y, \hat{y}f_x, \hat{z}f_u$$

$$B_{2u} \qquad \vec{d}_{B2} = \hat{x}f_z, \hat{y}_u, \hat{y}_x$$

$$B_{3u} \qquad \vec{d}_{B3} = \hat{x}f_u, \hat{y}f_z, \hat{z}f_y$$

Weyl points occur: Surface Fermi arcs See Madhavan talk

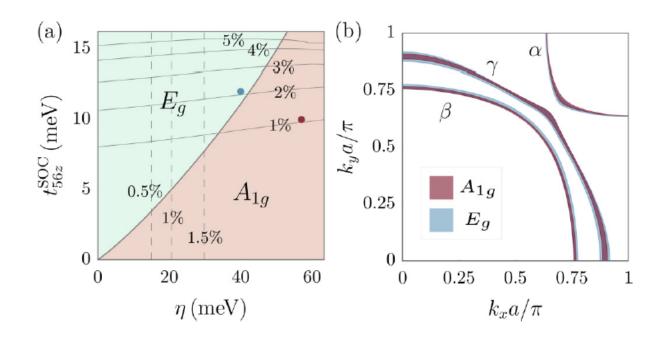
Consider
$$k_x=0$$
: $f_x=f_u=0$ $d_{B2} \cdot d_{B3} = 0$
 $|d_1| = |d_2|$? Yes!
 $k_x = 0$: $|f_{Z2}|^2 - |f_{Z3}|^2 = |f_{Y3}|^2$
 $k_y = 0$: $|f_{Z2}|^2 - |f_{Z3}|^2 = -|f_{X2}|^2$
 k_z
 k_z
 k_z
 k_z
 k_z

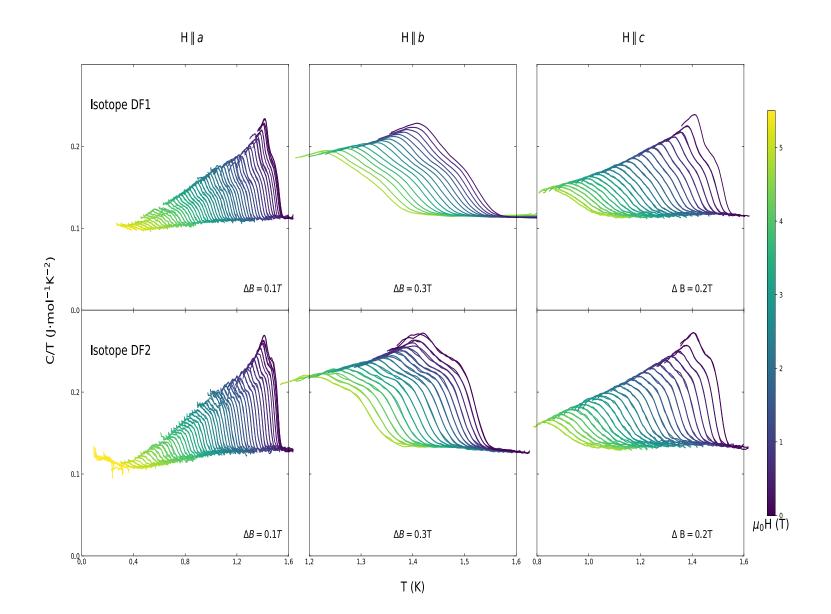
Conclusions:

- Topologically protected nodes can appear in even and odd-parity broken time-reversal
- Z₂ protected Bogoliubov Fermi surfaces possible in Sr₂RuO₄.
- Two transitions and broken time-reversal symmetry in UTe₂ suggests B_{2u}+iB_{3u} or A_u+iB_{1u} order parameters.
- Likely has at least four singly-charged Weyl nodes with associated surface Fermi arcs.

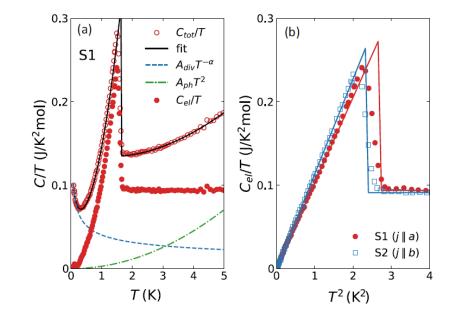
E_g state in Sr₂RuO₄

U'-J on-site attractive interaction (see also Puetter and Kee, Euro. Phys. Lett 2012) Spin-orbit and c-axis dispersion





UTe₂ Specific Heat

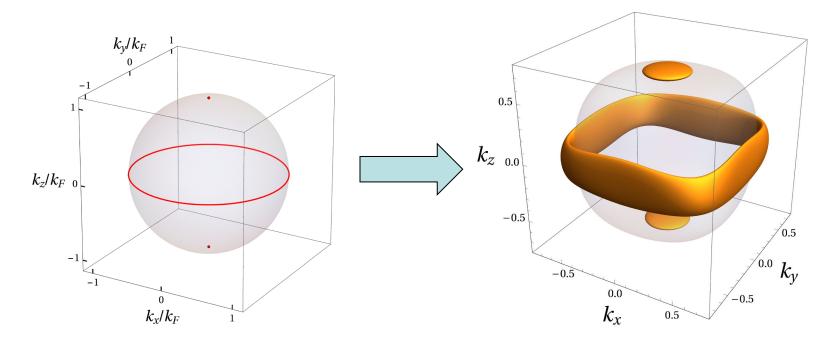


Metz et al, PRB (2019)

Key Surprise:

In clean even parity superconductors with spontaneous time-reversal symmetry breaking, the excitation spectrum is either

- i) Fully gapped
- ii) Has topologically protected Bogoliubov Fermi surfaces



Usual Single band theory does not have Bogoliubov Fermi surfaces, they appear once multiple bands are included. PRL 118, 127001 (2017), PRB (2018).

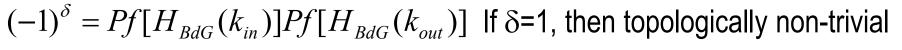
Topological Protection

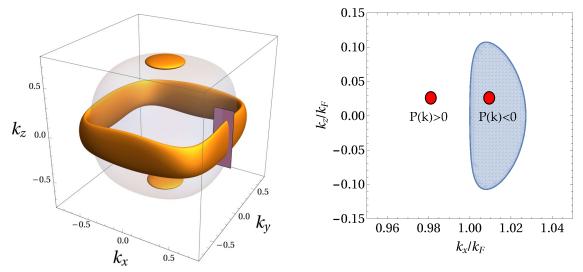
Kobayshi et al PRB (2014), Zhao et al PRL (2016), Bzdusek and Sigrist PRB (2017).

If $(CI)^2=1$, then: Fermi surfaces can be topologically protected with a Z_2 invariant.

We find Z₂ invariant is defined through the Pfaffian.

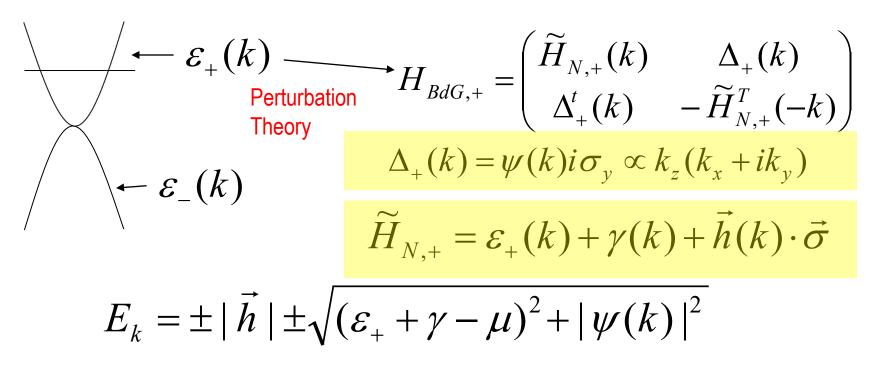
$$Pf(H_{BdG}) = \sqrt{Det(H_{BdG})} = \varepsilon_{+}^{2}\varepsilon_{-}^{2} + \Delta_{0}^{2}(\varepsilon_{+}\varepsilon_{-} + \beta^{2}k_{z}^{2}k_{x}^{2} + \beta^{2}k_{z}^{2}k_{y}^{2})$$





Fermi surface is stable to any perturbation that preserves CI symmetry.

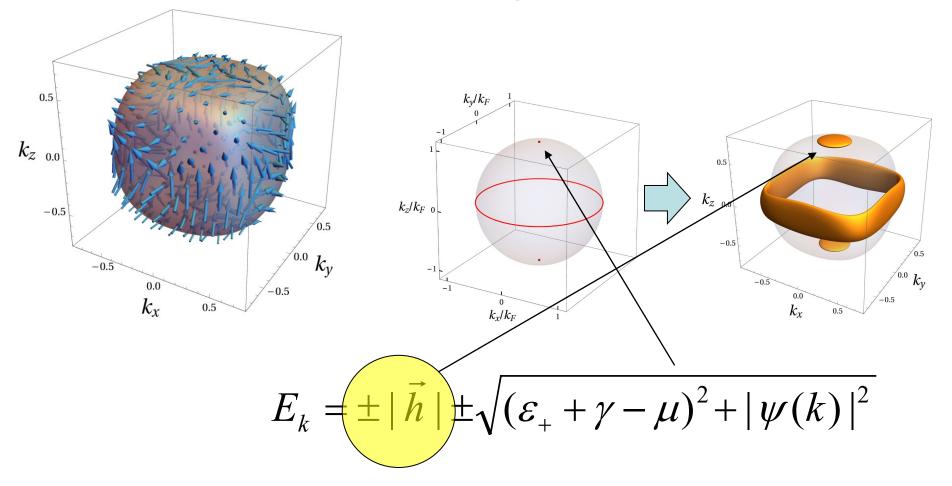
Physical Origin of Bogoliubov Fermi surfaces



The superconductor has created an internal pseudospin magnetic field $|\vec{h}| \cong \frac{\Delta_0^2}{\varepsilon_+ - \varepsilon_-}$

 $\mathcal{E}_{+} - \mathcal{E}_{-}$ This field gives the Bogoliubov Fermi surfaces

Pseudospin magnetic field



h(k) will exist whenever the superconductor breaks time-reversal – the spectrum does not need to be nodal.