

Jie Shan

KITP Reunion Conference

"Return of the Intertwined: New Developments in Correlated Materials

(July 30, 2020)

Yanhao Tang Lizhong Li

Tingxin Li

Yang Xu

Kin Fai Mak

Theory: Allan MacDonald (UT Austin), Veit Elser (Cornell), Liang Fu (MIT)

WSe₂, WS₂ bulk crystals: Columbia team (Song Liu, Katayun Barmak, Jim Hone)

Boron nitride crystals: Kenji Watanabe, Takashi Taniguchi (NIMS)

Moiré superlattices, new length & energy scale: Correlation engineering

Interacting quantum particles on a lattice

moiré length scale a

Electron-electron interaction energy

$$U \sim \frac{e^2}{\varepsilon a}$$

Bandwidth of lowest electronic miniband

$$W \sim \frac{\hbar^2 k^2}{2m^*} \sim \frac{\hbar^2 \pi^2}{2m^* a^2}$$

Strong correlation

$$\frac{u}{w} \sim m^* a > 1$$

Effect of moiré potential Flat band

For TMD monolayers, $m^* \sim 0.5 m_0$, $\varepsilon \sim 4$, $a \sim 10 \text{ nm}$

$$\frac{U}{W} \sim 5$$

MATBG: superconductivity & insulating states

Prediction: Bistritzer & MacDonald, PNAS (2011) Experiment: Chen, Jarillo-Herrero, Nature (2018)

Monolayer transition metal dichalcogenides (TMD)

Mak, Lee, Hone, Shan, Heinz, PRL (2010) Splendiani, Wang et al. Nano Lett. (2010)

Broken sublattice symmetry:

- Energy gap at K and K'
- Mass ~ $0.5 m_0$
- Spin splitting at K and K' from SOC
- Spin-valley locking

Strong light-matter interaction in TMDs

- Strong exciton effects
- Optical selection rules

TMD hetero-bilayers

E.g. WSe₂-WS₂ bilayer

Type-II band alignment

TMD hetero-bilayers

E.g. WSe₂-WS₂ bilayer (0-degree, 4% Type-II band alignment mismatch, 8 nm) K valley K valley WSe₂ WS₂ Bragg reflection Lattice mismatch -> moiré superlattice $\lambda \approx \frac{a}{\sqrt{\delta^2 + \theta^2}}$

Mini-BZ

Triangular lattice Hubbard model

$$\mathcal{H} = -t \sum_{\langle ij \rangle, \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Inter-site hopping

t ~ 1-10 meV

On-site repulsion

$$U \sim \frac{e^2}{\mathcal{E}a} \sim 10' \text{s} - 100 \text{ meV}$$

12 12 10 10 10 10 10

Wu and MacDonald, PRL (2018)

Twisted bilayer graphene vs TMD hetero-bilayers

- Wannier obstructions
- <u>Total degeneracy</u>: 8-fold
- Magic angle

TMD hetero-bilayer (correlation)

- Localized Wannier orbitals
- Stronger moiré potential (correlation)
- <u>Total degeneracy</u>: 2-fold, spin-valley DOF
- Wide range of twist angle

Sample and device fabrication

Dual-gate device continuous control of fillings Angle-aligned WSe₂/WS₂ (0 and 60 degrees)

Measurements

- Optical measurements (1 micron)
- In-plane transport
- Capacitance (compressibility)

- Crystal axis orientation determined by nonlinear optical techniques
- Alignment of different materials within 0.5 degree

TMD moiré superlattices (v = 1)

Insulating state at half filling (v = 1)

Tang et al. Nature (2020)

Mott insulating state at half filling (v = 1)

Alternative: Charge-transfer insulator (Liang Fu) arXiv:1910.14061

Magnetic susceptibility

[©] Encyclopædia Britannica, Inc.

Magnetic susceptibility measurement

Curie-Weiss law

$$\chi^{-1} \propto T - \theta$$

$$\theta \approx -0.6K \sim -0.05meV$$

$$\theta \sim -J \sim \frac{t^2}{U}$$

$$\frac{t^2}{U}$$

t

Super-exchange

$$U \sim 20 meV$$

$$\rightarrow t \sim 1 meV$$

$$\rightarrow \frac{U}{t} \sim 20$$

$$H_S = \sum_{\textbf{\textit{R}}, \textbf{\textit{R}}'}' J(\textbf{\textit{R}}' - \textbf{\textit{R}}) \mathbf{S}_{\textbf{\textit{R}}} \cdot \mathbf{S}_{\textbf{\textit{R}}'}$$

Heisenberg model

Tang et al. Nature (2020)

Optical signature of the Mott insulating state

Charge-ordered states (v = 1/3, 2/3)

Regan, Wang, Jin et al. Nature (2020)

Extended Hubbard model

Gate separation much bigger than moiré period

$$V(r) \approx \frac{e^2}{4\pi\varepsilon\varepsilon_0 r}$$

Long-range Coulomb > t

Extended Hubbard model

$$H = H_0 + \frac{1}{2} \sum_{i} \sum_{j \neq i} V(r_{ij}) n_i n_j$$

 H_0 Hubbard model Hamiltonian

Charge-ordered states (v < 1)

A new exciton sensing technique

- Metallic (compressible): smaller binding energy, lower intensity
- Insulating (incompressible): larger binding energy, higher intensity

Ordering temperature

(Monte Carlo, Veit Elser)

Xu et al. (arXiv:2007.11128)

Quantum effects

- Asymmetry about ½ indicates effects of quantum fluctuations
- Much weaker states for v>1 -> higher kinetic energy for v>1
- Stronger insulating states on the electron side

Xu et al. (arXiv:2007.11128)

Stripe phases

Xu et al. (arXiv:2007.11128)

Optical detection of stripe phases

In collaboration with Liang Fu Jin, Tao, Li et al. (arXiv:2007.12068)

- Pronounced electronic anisotropy v@¹/₂
- Disappear linearly with T around 35 K
- Anisotropy @ compressible regions -> nematic/smectic phases

Stripe domain patterns

Jin, Tao, Li et al. (arXiv:2007.12068)

Summary and outlook

- TMD moiré system provides a unique platform to study strong correlations with highly tunable parameters
- Extended Hubbard model on triangular lattices
- Experimental observation
 - AF Mott insulator at half filling (v = 1)
 - Abundance of charge-ordered states at fractional fillings
 - Some are stripe crystals, electronic liquid crystals also possible
- The system is very rich. Research is at an early stage.
- Unconventional superconductivity?
- Interplay of topology and correlation?
- Bose-Hubbard model physics (with iexcitons)?
- Ohmic contact?
- new experimental probes that can access the intertwined charge, spin, valley and collective excitations?