The key ingredients of the electronic structure of $FeSe_{1-x}S_x$. The role of chemical and applied pressure

Amalia Coldea UNIVERSITY OF OXFORD

Intertwined Order and Fluctuations in Quantum Materials, KITP, 18 July 2017

Intertwined electronic orders in FeSC

NATURE PHYSICS | VOL 10 | FEBRUARY 2014

Competing electronic phases in FeSC

Hund's metals (J_{Hund} ~0.35–0.4 eV) (Electrons have dual nature, partly itinerant and partly localized)

Orbitally-dependent renormalization effects (dxy compared with dxz/yz) Z. P. Yin, KH, G. Kotliar, Nature Materials (2011) Annu. Rev. Condens. Matter Phys. 2013. 4:137–78

Hund's rule coupling

Orbital order in metallic systems

The role of the nematic electronic state

A nematic state is a form of electronic order that breaks the rotational symmetries without changing the translational symmetry of the lattice. Not a regular structural transition (tiny distortion) but it is the result of an electronically driven instability, orbital order or spin-driven Ising-nematic order.

Superconductivity and nematicity

DOI: 10.1038/NPHYS2877

Nature Physics, 10, 97 (2014)

I. Introduction to FeSe

FeSe- a nematic superconductor?

Coldea & Watson, arXiv.1706.00338, Annual Reviews Condensed Matter 2018

FeSe- no long range magnetism. "Frustrated" spin fluctuations ?

Wang et al., Nat. Commun. 7, 12182 (2016)

Tc superconductivity up to 75K in monolayer of FeSe grown on SrTiO3

Enhancing superconductivity in bulk FeSe

applied external pressure

b 100 tetragonal Piston Cylinder Cell (PCC) 100-Clamp-type Cubic Anvil Cell (CAC) uniaxial Constant loading CAC pressure ⊢ 80 nem 80 doping doping 60 orthorhombic T (K) $T_{\rm s}$ 60-T (K) $T_{\rm m}$ nematic fluctuation nematic Nematic $T_{\rm c}$ 40 40phase SC SDW 20-20 SC_{h-e} SC 0 0.02 0.04 0.06 0.00 0.08 0.10 8 0 2 6 4 P (GPa) Electron doping per iron

J.P. Sun et al., Nat. Commun. 7, 12146 (2016)

Z. R. Ye et al., arXiv:1512.02526 (2015)

in-situ electron doping with K ions

Enhancing superconductivity in thin flakes of FeSe

PHYSICAL REVIEW B **95**, 020503(R) (2017)

Superconductivity of FeSe

Slavko Rebec et al., PRL. 118, 067002 (2017)

Chemical versus applied pressure in bulk FeSe

chemical pressure

applied external pressure

J.P. Sun et al., Nat. Commun. 7, 12146 (2016)

P. Reiss et al. AIC , arXiv:1705.11139

Strange metal behavior of $Fe(Se_{1-x}S_x)$

FeS

250

300

250 300

Nematic susceptibility of FeSe

Nematic criticality in $Fe(Se_{1-x}S_x)$

5. Hosoi et al., PNAS 113, 8139 (2016)

J. Chu, Science, 337, 710 (2012)

II. ARPES studies in $Fe(Se_{1-x}S_x)$

M. D. Watson et al., AIC, PRB 91, 155106 (2015); PRB 92, 121108 (2015); PRB 94, 201107 (2016); PRB 95, 081106 (2017); P. Reiss et al. AIC , arXiv:1705.11139 (2017)

ARPES studies on FeSe: Hole bands

Orbitally-dependent band renormalization of FeSe

Lifting of degeneracy in P4/nmm symmetry group

ARPES studies on FeSe: Hole bands

-Spin-orbit coupling around 20 meV; -Orbital order ~14.5 meV -Elongation of the hole pocket at low T; d-wave Pomeranchuck instability;

(two ellipses due to the twinning effect);

M. D. Watson et al., PRB 91, 155106; J. Phys. Soc. Jpn. 86, 053703 (2017); arXiv.1706.00338

Suppressing orbital order in $Fe(Se_{1-x}S_x)$

M.D. Watson, AIC, Phys. Rev. B 92, 121108 (2015)

M. D. Watson, AIC, PRB 91, 155106 (2015)

Splitting of the both dxy vs dxz/yz bands at the M point

M. Watson et al., PRB 94, 201107 (2016)

Detwinned ARPES measurements of FeSe

- Strained/detwinned sample, only the peanut-shaped electron pockets along the a axis is observed!
- dxz dispersions are observed; similar renormalization to dyz;

M. Watson et al., arXiv:1705.02286

M. Watson et al., PRB 94, 201107 (2016)

Strong correlations in FeSe. Lower Hubbard band

M.D. Watson et al., PRB 95, 081106 (2017) (collaboration with R. Valenti)

Fermi surface deformation in the nematic phase

M.D. Watson, AIC, Phys. Rev. B 92, 121108 (2015); PRB 91, 155106 (2015)[P. Reiss et al. AIC , arXiv:1705.11139

Anisotropic superconducting gap. Orbitally-selective Cooper pairing in FeSe

P. O. Sprau et al., Science 357, 75 (2017)

III. Quantum oscillations in $Fe(Se_{1-x}S_x)$

M. D. Watson, AIC, PRB 91, 155106 (2015); PRL. 115, 027006 (2015); AIC et al. arXiv:1611.07424;

Quantum oscillations in FeSe

Quantum oscillations in FeSe

Branch	F (kT)	m^*/m_e	A (%BZ)	k_F (Å ⁻¹)		E_F (meV)	
α	0.06 1.9(2)		0.20	0.043		3.6	
β	0.20	0.20 4.3(1)		0.078		5.4	
γ	0.57	0.57 7.2(2)		0.13		9.1	
δ	0.68		2.3	0.14		18	
C 15 F2	ΔB = 19-33 T	d F2	ΔB = 19-33 T		E (T)		
G F1		() ¹⁵			F(1)	m* (m	,)
¹⁰ م				FI	114	3.0(5)	
(a	F4	(ar		F2	200	4.1(5)	
F 5-100	F3		A A	F3	568	6(1)	
ч 🗸 🍆	Al	F3	Mar .	F4	664	4.7(5)	1
0 250	500 750 1000 F (T)		1 0.8 1.2 1. T (K)	6			

M. D. Watson, AIC, PRB 91, 155106 (2015), T. Terashima et al., PRB 90, 144517

Evolution of the Fermi surface in $Fe(Se_{1-x}S_x)$

AIC et al., arXiv:1611.07424

Evolution of the Fermi surface in $Fe(Se_{1-x}S_x)$

AIC et al., arXiv:1611.07424

Fermi surface increase and the Lifshitz transition

Fermi surface shrinking of $Fe(Se_{1-x}S_x)$

L. Ortenzi et al., PRL 103, 046404 (2009); L. Fanfarillo et al., Phys. Rev. B 94, 155138 (201

The effect of interatomic Coulomb interactions V

Lifshitz transitions in FeSe/STO and K-doped FeSe

X. Shi, et al., Nat. Comm. 8, 14988 (2017)

Z. R. Ye et al., arXiv:1512.02526

Competing and intertwined orders in FeSe

Daniel D. Scherer et al., arXiv: 1612.06085; Rui-Qi Xing et al., arXiv 1611.03912

Key ingredients of the electronic structure of FeSe

Coldea &Watson, arXiv.1706.00338

