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energy effective theories of spin liquids, FQHE, 
deconfined criticality and many more.  

Fundamental problem:  
Lattice gauge theories at finite fermion density are  
plagued by the numerical sign problem  

I will present a simple model that is free of the 
sign problem even at finite fermion density.  

Symmetry breaking and confinement coincide.



Ising Lattice Gauge Theory
Wegner (1971)




Ising Lattice Gauge Theory
Wegner (1971)


HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b



Ising Lattice Gauge Theory
Wegner (1971)


HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

EM “dictionary”
�z
b = eiAb Ab = 0/⇡

Eb = 0/⇡�x

b

= eiEb



Ising Lattice Gauge Theory
Wegner (1971)


HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

Magnetic flux
Y

b2⇤
�z
b = ei

R
⇤ Ab = ei�

0

⇡0

⇡ 0

⇡

EM “dictionary”
�z
b = eiAb Ab = 0/⇡

Eb = 0/⇡�x

b

= eiEb



Ising Lattice Gauge Theory
Wegner (1971)


HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

Magnetic flux
Y

b2⇤
�z
b = ei

R
⇤ Ab = ei�

0

⇡0

⇡ 0

⇡

EM “dictionary”
�z
b = eiAb Ab = 0/⇡

Eb = 0/⇡�x

b

= eiEb

Ising “Gauss law”
Y

b2+r

�x

b

= 1
⇣
r · ~E = 0

⌘



Ising Lattice Gauge Theory
Wegner (1971)


HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

Magnetic flux
Y

b2⇤
�z
b = ei

R
⇤ Ab = ei�

0

⇡0

⇡ 0

⇡

EM “dictionary”
�z
b = eiAb Ab = 0/⇡

Eb = 0/⇡�x

b

= eiEb

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2

⇣
r · ~E = ⇢

⌘



Ising Gauge Theory



Ising Gauge Theory

hc

HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2



Ising Gauge Theory

hc

HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

confined

|GSi =
Y

b

|�x

b

= 1i

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2



Ising Gauge Theory

hc

HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

confined

|GSi =
Y

b

|�x

b

= 1i

V (L) ⇠ hL

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2



Ising Gauge Theory

hc

0 0

0 0

0

0

HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

deconfined

|GSi =
Y

⇤
|B⇤ = 0i

confined

|GSi =
Y

b

|�x

b

= 1i

V (L) ⇠ hL

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2



Ising Gauge Theory

hc

HZ2 = �J
X

⇤

Y

b2⇤
�z

b

� h
X

b

�x

b

deconfined

|GSi =
Y

⇤
|B⇤ = 0i

confined

|GSi =
Y

b

|�x

b

= 1i

0 0

0

0

⇡⇡

V (L) ⇠ hL

Ising “Gauss law”
Y

b2+r

�x

b

= ⇢Z2



Ising gauge theory with matter fields 

Senthil, Fisher (2000)

Moessner, Sondhi, Fradkin (2002)




Ising gauge theory with matter fields 

Senthil, Fisher (2000)

Moessner, Sondhi, Fradkin (2002)


Hf = �t
X

b=hi,ji

�z
b c

†
i,↵cj,↵ + h.c

� µ
X

i,↵

c†i,↵ci,↵ �z
b t



Ising gauge theory with matter fields 

Ising “Gauss law”
Y

b2+r

�x

b

= (�1)n
f
r

Senthil, Fisher (2000)

Moessner, Sondhi, Fradkin (2002)


Hf = �t
X

b=hi,ji

�z
b c

†
i,↵cj,↵ + h.c

� µ
X

i,↵

c†i,↵ci,↵ �z
b t



Ising gauge theory with matter fields 

Ising “Gauss law”
Y

b2+r

�x

b

= (�1)n
f
r

Senthil, Fisher (2000)

Moessner, Sondhi, Fradkin (2002)


Hf = �t
X

b=hi,ji

�z
b c

†
i,↵cj,↵ + h.c

� µ
X

i,↵

c†i,↵ci,↵ �z
b t

Key observation - for real gauge theories the fermion 
determinant is also real 

det(") det(#) = det(")2 > 0
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Single continuous transition

SU(2) symmetry breaking and confinement coincide.  

Without fine tuning:


1. 1st order phase transition  

2. Two split second order transitions

Numerics suggest a single and continuous transition

new universality class?  
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Obeys hyper-scaling 2� ↵ = d⌫
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Outlook

Field theory description of the confinement transition. How to 

force confinement and symmetry breaking coincide?

Can we introduce “physical”, i.e gauge neutral, fermions to realize 

Fermi liquids?

Other Gauge groups?
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Summary

Sign problem free lattice gauge theory at 

finite fermion density.

BCS* to BEC transition driven by confinement

Emergent Dirac fermion at zero chemical 

potential and large hopping amplitude

New universality class where symmetry 

breaking and confinement coincide
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