Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Ising gauge theories

Snir Gazit, Mohit Randeria and Ashvin Vishwanath

Intertwined Order and Fluctuations in Quantum Materials KITP 2017

Nature Physics 13, 484-490 (2017)

see also – Assaad, Grover, Phys. Rev. X 6, 041049

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x$$

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x \qquad \qquad \mathbb{Z}_2 \text{ symmetry} \\ \sigma^z \to -\sigma^z$$

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - h \sum_i \sigma_i^x \qquad \qquad \mathbb{Z}_2 \text{ symmetry} \\ \sigma^z \to -\sigma^z$$

$$\mathcal{H}_{\mathrm{TC}} = -J \sum_{+} \prod \sigma_b^x - J \sum_{\Box} \prod \sigma_b^z$$

$$\mathcal{H}_{\mathrm{TC}} = -J \sum_{+} \prod \sigma_b^x - J \sum_{\Box} \prod \sigma_b^z$$

$$-h_x \sum_b \sigma_b^x - h_z \sum_b \sigma_b^z$$

$$\mathcal{H}_{\mathrm{TC}} = -J \sum_{+} \prod \sigma_b^x - J \sum_{\Box} \prod \sigma_b^z$$

$$-h_x \sum_b \sigma_b^x - h_z \sum_b \sigma_b^z$$

Phase transitions in a model w/o symmetries

$$\mathcal{H}_{\mathrm{TC}} = -J \sum_{+} \prod \sigma_b^x - J \sum_{\Box} \prod \sigma_b^z$$

$$-h_x \sum_b \sigma_b^x - h_z \sum_b \sigma_b^z$$

Tupitsyn (2010)

Phase transitions in a model w/o symmetries

Emergent Gauge theory

$$\mathcal{H}_{\mathrm{TC}} = -J \sum_{+} \prod \sigma_b^x - J \sum_{\Box} \prod \sigma_b^z$$

$$-h_x \sum_b \sigma_b^x - h_z \sum_b \sigma_b^z$$

Phase transitions in a model w/o symmetries

Emergent Gauge theory Higgs (confinement) transition

Tupitsyn (2010)

Dimer covering on a triangular lattice

Dimer covering on a triangular lattice

Dimer covering on a triangular lattice

The dimer hardcore constraint translates into an Ising "Gauss law"

$$\prod_{b \in r} \sigma_b^x = -1$$

 Gauge theories in condensed matter physics – Low energy effective theories of spin liquids, FQHE, deconfined criticality and many more.

- <u>Gauge theories in condensed matter physics</u> Low energy effective theories of spin liquids, FQHE, deconfined criticality and many more.
- Fundamental problem:

Lattice gauge theories at finite fermion density are plagued by the numerical sign problem

- <u>Gauge theories in condensed matter physics</u> Low energy effective theories of spin liquids, FQHE, deconfined criticality and many more.
- Fundamental problem: Lattice gauge theories at finite fermion density are plagued by the numerical sign problem
- I will present a simple model that is free of the sign problem even at finite fermion density.

- <u>Gauge theories in condensed matter physics</u> Low energy effective theories of spin liquids, FQHE, deconfined criticality and many more.
- Fundamental problem: Lattice gauge theories at finite fermion density are plagued by the numerical sign problem
- I will present a simple model that is free of the sign problem even at finite fermion density.
- Symmetry breaking and confinement coincide.

Ising Lattice Gauge Theory

Ising Lattice Gauge Theory

Ising Lattice Gauge Theory

EM "dictionary" $\sigma_b^z = e^{iA_b} \quad A_b = 0/\pi$ $\sigma_b^x = e^{iE_b} \quad E_b = 0/\pi$

Ising Lattice Gauge Theory

EM "dictionary" $\sigma_b^z = e^{iA_b} \quad A_b = 0/\pi$ $\sigma_b^x = e^{iE_b} \quad E_b = 0/\pi$

Magnetic flux $\prod_{b\in\Box}\sigma_b^z=e^{i\int_{\Box}A_b}=e^{i\Phi}$

Ising Lattice Gauge Theory

EM "dictionary" $\sigma_b^z = e^{iA_b} \quad A_b = 0/\pi$ $\sigma_b^x = e^{iE_b} \quad E_b = 0/\pi$

Magnetic flux $\prod_{b\in\Box}\sigma_b^z=e^{i\int_{\Box}A_b}=e^{i\Phi}$

Ising "Gauss law"

 $\prod_{b \in +_r} \sigma_b^x = 1 \qquad \left(\nabla \cdot \vec{E} = 0 \right)$

Ising Lattice Gauge Theory

EM "dictionary" $\sigma_b^z = e^{iA_b} \quad A_b = 0/\pi$ $\sigma_b^x = e^{iE_b} \quad E_b = 0/\pi$

Magnetic flux $\prod_{b\in \Box} \sigma_b^z = e^{i\int_{\Box} A_b} = e^{i\Phi}$

Ising "Gauss law"

 $\prod_{b \in +_r} \sigma_b^x = \rho_{\mathbb{Z}_2} \quad \left(\nabla \cdot \vec{E} = \rho \right)$

Ising Gauge Theory

 h_c

Ising "Gauss law" $\prod_{b \in +_r} \sigma_b^x = \rho_{\mathbb{Z}_2}$

Ising Gauge Theory

$$\mathcal{H}_{\mathbb{Z}_2} = -J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z - h \sum_b \sigma_b^x$$

Ising "Gauss law" $\prod_{b \in +_r} \sigma_b^x = \rho_{\mathbb{Z}_2}$

$$h_c$$
 confined
 $|GS\rangle = \prod_b |\sigma_b^x = 1\rangle$

Ising Gauge Theory

$$\mathcal{H}_{\mathbb{Z}_2} = -J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z - h \sum_{b} \sigma_b^x$$

Ising "Gauss law" $\prod_{b \in +r} \sigma_b^x = \rho_{\mathbb{Z}_2}$ $V(L) \sim hL$

$$h_c$$
 confined
 $|GS\rangle = \prod_b |\sigma_b^x = 1\rangle$

Ising Gauge Theory

$$\mathcal{H}_{\mathbb{Z}_2} = -J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z - h \sum_b \sigma_b^x$$

Ising Gauge Theory

$$\mathcal{H}_{\mathbb{Z}_2} = -J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z - h \sum_b \sigma_b^x$$

$$\mathcal{H}_{f} = -t \sum_{b = \langle i,j \rangle} \sigma_{b}^{z} c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c$$
$$-\mu \sum_{i,\alpha} c_{i,\alpha}^{\dagger} c_{i,\alpha} \qquad \sigma_{b}^{z} t \left(\begin{array}{c} \mathbf{f}_{i,\alpha} \mathbf{f}_{i,\alpha}$$

Ising "Gauss law"

<u>Key observation</u> – for real gauge theories the fermion determinant is also real

 $\det(\uparrow) \det(\downarrow) = \det(\uparrow)^2 > 0$

Affleck, Marston (1988) Arovas, Auerbach (1988) Leib (1994)

Affleck, Marston (1988) Arovas, Auerbach (1988) Leib (1994)

What happens at large hopping amplitude t?

Find
$$\{\sigma_b^z\}$$
 that minimizes $\mathcal{H}_f = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^\dagger c_{j,\alpha} + h.c$

Affleck, Marston (1988) Arovas, Auerbach (1988) Leib (1994)

What happens at large hopping amplitude t?

Find
$$\{\sigma_b^z\}$$
 that minimizes $\mathcal{H}_f = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c$

Affleck, Marston (1988) Arovas, Auerbach (1988) Leib (1994)

What happens at large hopping amplitude t?

Find
$$\{\sigma_b^z\}$$
 that minimizes $\mathcal{H}_f = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c$

Two Dirac nodes

$$E_k = \pm 2t\sqrt{\cos(k_x)^2 + \cos(k_y)^2}$$

Phase Diagram at $\mu = 0$

Frozen gauge field limit $h \rightarrow 0$

 $\mathcal{H} = -t \sum \sigma_b^z c_{i,\alpha}^\dagger c_{j,\alpha} - J \sum \prod \sigma_b^z$ $\Box b \in \Box$ $b = \langle i, j \rangle$

$$\mathcal{H} = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^\dagger c_{j,\alpha} - J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z$$

 $t \ll J$ $% T_{a} = 1$ $% T_{a} = 1$ $T_{a} = 1$ T_{a

$$\mathcal{H} = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^\dagger c_{j,\alpha} - J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z$$

- $t \ll J$ Zero flux phase
 - $\sigma_b^z = 1$ Large FS
- $t \gg J$ π flux phase

Dirac Nodes

$$\mathcal{H} = -t \sum_{b = \langle i,j \rangle} \sigma_b^z c_{i,\alpha}^{\dagger} c_{j,\alpha} - J \sum_{\Box} \prod_{b \in \Box} \sigma_b^z$$

Phase transition at t/J = 6.77

Weak coupling $h \ll J$

How to detect a Dirac fermion? The single particle Green's function is not gauge invariant $G(q, i\omega_m)$

How to detect a Dirac fermion? The single particle Green's function is not gauge invariant $G(q, i\omega_m)$

Orbital magnetic susceptibility

$$\chi(q) = \frac{\partial M(q)}{\partial B(q)} = -\frac{v_F}{4q}$$

Koshino, Arimura, Ando (2009)

How to detect a Dirac fermion? The single particle Green's function is not gauge invariant $G(q, i\omega_m)$

Orbital magnetic susceptibility

$$\chi(q) = \frac{\partial M(q)}{\partial B(q)} = -\frac{v_F}{4q}$$

$$\frac{\tilde{\chi}}{L} = -\frac{4\pi}{Lt}\chi(q = 2\pi/L) \to \frac{v_F}{2t} \to 1$$

Koshino, Arimura, Ando (2009)

Peak at $t_c = 1.8(1)$

SU(2) Pseudo-spin symmetry breaking

Strong coupling

Strong coupling
$$h \gg J$$

SU(2) Pseudo-spin symmetry breaking
SU(2) order parameter

0.02

1.0

1.5

1

2.0

2.5

h/.J

0.00

Same critical coupling!

SU(2) symmetry breaking and confinement coincide.

SU(2) symmetry breaking and confinement coincide.

Without fine tuning:

- 1. 1st order phase transition
- 2. Two split second order transitions

SU(2) symmetry breaking and confinement coincide.

Without fine tuning:

- 1. 1st order phase transition
- 2. Two split second order transitions

Numerics suggest a single and continuous transition

SU(2) symmetry breaking and confinement coincide.

Without fine tuning:

- 1. 1st order phase transition
- 2. Two split second order transitions

Numerics suggest a single and continuous transition

new universality class?

Pairing susceptibility

$$\tilde{P}_{\rm CDW} = L^{1-\eta} P_{\rm CDW}(\delta h L^{1/\nu})$$

$$h_c = 0.71(2), \nu = 0.58(5), \eta = 1.0(3)$$

Pairing susceptibility

$$\tilde{P}_{\rm CDW} = L^{1-\eta} P_{\rm CDW}(\delta h L^{1/\nu})$$

$$h_c = 0.71(2), \nu = 0.58(5), \eta = 1.0(3)$$

$$\tilde{\chi}_B = L^{\alpha/\nu} \chi_B(\delta h L^{1/\nu})$$

Same! h_c and u

Pairing susceptibility

$$\tilde{P}_{\rm CDW} = L^{1-\eta} P_{\rm CDW}(\delta h L^{1/\nu})$$

$$h_c = 0.71(2), \nu = 0.58(5), \eta = 1.0(3)$$

$$\tilde{\chi}_B = L^{\alpha/\nu} \chi_B(\delta h L^{1/\nu})$$

Same! h_c and u

Obeys hyper-scaling $2-\alpha = d\nu$

Field theory description of the confinement transition. How to force confinement and symmetry breaking coincide?

- Field theory description of the confinement transition. How to force confinement and symmetry breaking coincide?
- Can we introduce "physical", i.e gauge neutral, fermions to realize Fermi liquids?

- Field theory description of the confinement transition. How to force confinement and symmetry breaking coincide?
- Can we introduce "physical", i.e gauge neutral, fermions to realize Fermi liquids?
- Other Gauge groups?

Sign problem free lattice gauge theory at

finite fermion density.

Sign problem free lattice gauge theory at

finite fermion density.

BCS* to BEC transition driven by confinement

- Sign problem free lattice gauge theory at finite fermion density.
- BCS* to BEC transition driven by confinement
- Emergent Dirac fermion at zero chemical

potential and large hopping amplitude

- Sign problem free lattice gauge theory at finite fermion density.
- BCS* to BEC transition driven by confinement
- Emergent Dirac fermion at zero chemical potential and large hopping amplitude
- New universality class where symmetry

breaking and confinement coincide

Deconfined / Dirac

t/J

 $\mu = 0$

Confined / BEC+CDW

h/J

