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A variety of heavy fermion compounds show quantum critical behavior of some sort

But not much universality

So each is entitled to study their own favorite

Hilbert’s is CeCu6−xAux, mine is YbRh2Si2 (YRS)

Why YRS?

A bit of history:

Superconductivity in CeCu2Si2 discovered in 1979.

Tc = 0.6 K, EF = 10 K, m∗ ≈ 200

The first high-Tc superconductor!

in CeCu2Si2, the Ce ion has one f -electron. YRS has the same crystal structure

But the Yb ion has one f -hole. This particle-hole transformation reduces Tc to
nearly zero, if not zero

The phase diagram of YRS has interesting features all of which are very small:

• An antiferromagnetic phase, TN = 70 mK with tiny ordered moment < 0.02µB
that is shut down at a QCP tuned by H = .070 T

• Perhaps superconductivity at H = 0 with Tc < 3 mK

• A “T ∗-line” (purple), across which various transport quantities appear to
jump. Sometimes interpreted as a change from a small Fermi surface to a
large one, left to right
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FIG. 4. (Color online) Experimental phase diagram of YRS [28].
In the FL region (blue) the resistivity is ∝T 2. NFL denotes the
non-Fermi-liquid region where the resistivity varies with T as T α

with α ! 1. The purple region is where several experimental probes
exhibit a crossover behavior, called the T ∗ line. The dots are
the theoretical positions of the onset of spin-flip scattering—from
quantum fluctuations (yellow) and at higher (T ,H ), from the spin
resonance (red). The red dots at H < 0.1T are calculated using
unpublished data [27].

associated with T ∗
1 and T ∗

2 vary with temperature as T 3/4 and
T 2, respectively, which explains why the T ∗

1 feature is less
important at higher T , and vice versa.

IX. CONCLUSION

We have addressed the crossover behavior in transport and
thermodynamic quantities that occurs across the line T ∗(H )
in the small (T ,H ) region of the phase diagram of YRS. We
propose that the T ∗ line marks the onset of spin-flip scattering
processes. We show in detail how these processes are switched
on provided the temperature and therefore the thermal energy
is sufficiently high to allow additional scattering processes of at
least two different types: (1) quasiparticle spin-flip scattering
off the quantum fluctuations associated with the QCP of
YRS—this involves excitation over the Zeeman gap, which we
show to nearly vanish at the QCP; and (2) scattering off spin-
resonance bosons, relevant at higher magnetic fields. While
the second contribution is noncritical and therefore affects
only the transport quantities, the first involves quantum critical
excitations and is therefore operative in both the transport and
the thermodynamic quantities. We have demonstrated that the
observed magnetoresistivity and the Hall coefficient may be
quantitatively explained by our model calculation.

In our calculation of the magnetotransport properties, we
have made extensive use, as input, of experimental data on
specific heat, susceptibility, and magnetization. This enables
us to conclude that in the experimentally relevant temperature
regime the rapid drop of the Zeeman splitting h as the magnetic
field is lowered to below the critical field at fixed temperature
is not so much controlled by the decrease of the quasipar-
ticle weight Z(H,T ) but governed by the H dependence
of the differential susceptibility and of the magnetization.
Therefore the T ∗ line is not necessarily tied to the critical field
(although at lower temperature it presumably is). This is to say
that if the QCP is shifted to higher or lower values of magnetic
field by doping the pure compound appropriately this does
not necessarily mean that the T ∗(H ) as obtained above will
follow the shift of the QCP. Rather, it may stay approximately
at the unshifted position. This may be easily checked as
soon as sufficient data on specific heat, magnetization, and
susceptibility become available. The part of the T ∗ line at
higher temperature, which according to our calculation is
controlled by the scattering off the spin-resonance excitations,
will stay unchanged upon doping as long as the resonance
frequency is not affected by doping.

We emphasize that our description of the T ∗(H ) line derives
from the magnetic field induced changes (1) of the fermionic
spectrum as expressed by the Zeeman splitting and (2) of
the bosonic spectrum through the tuning parameter. The T ∗

features result from incorporating spin-flip scattering from
critical fluctuations and scattering from the spin-resonance
mode into the transport and thermodynamic responses. Within
this picture, which successfully accounts for the observed
crossover phenomena, there are no additional effects that
would further change the spectra from those at H = 0.
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Phys. 79, 1015 (2007).
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Yellow and red dots represent a theoretical alternative to “Kondo breakdown”

“Conventional (‘Hertz-Millis’) picture of antiferromagnetic metals near QCP

Quantum fluctuations of the of the order parameter (spin fluctuations) described
by a bosonic field theory weakly coupled to conduction electrons

The corresponding action is of G-L-W type with deff = d + z > 4, hence in the
Gaussian regime

This theory gives predictions for thermodynamic and transport properties, often
confirmed.

But sometimes not! e.g. CeCu6−xAux and YbRh2Si2.

In YRS, at 300 mK there appears to be a crossover from “conventional” non-Fermi
liquid behavior

ρ(T ) = ρ0 + c/T

C(T )/T = log(T/T0)

T = 300 mK corresponds to the crossover to 3d spin fluctuations and anomalous
critical behavior that needs explaining

Theory of critical qps

When the Fermions themselves develop critical behavior ( e.g. Z → 0, they act
back on the boson spectrum.
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FIG. 3. Yb increment to the specific heat as DC!T vs T (on
a logarithmic scale) at varying fields applied along the a axis.
The dotted line, representing DC!T ! g0

0 ln"T0!T#, is a guide
to the eye. The thick solid line represents the B ! 6 T data after
subtracting the hyperfine contribution. Inset: scaling of the data
as $C"B#!T 2 C"0#!T % vs B!Tb , with b ! 1.05 6 0.05, in the
temperature range 0.35 , T , 10 K.

exponent. As displayed in Fig. 2(a), ≠ lnDr!≠ lnT re-
mains within the value "1 6 0.05# in a wide range of
temperatures, up to almost 10 K. The application of a mag-
netic field leads to a gradual recovery of a Dr"T # ! T2

law below a crossover temperature that increases upon
increasing B [see Fig. 2(b)].

In Fig. 3 the Yb increment to the specific heat, as DC!T
vs T , is shown between 80 mK and 250 K. Since the en-
tropy gain at 10 K accounts for 0.45R ln2, while the full
entropy expected for the J ! 7!2 multiplet of Yb31 is
recovered at room temperature, the broad hump at T &
60 K indicates pronounced crystal-field splitting of the
Yb31 ion, implying a doublet ground state. In accor-
dance with the linear T dependence of Dr"T #, DC!T is
found to be proportional to 2 lnT in a wide temperature
range, 0.3 , T , 10 K. Here the data can be described
by DC!T ! g0

0 ln"T0!T #, with g0
0 ! 0.17 J!mol K2 and

T0 & 24 K, T0 being a characteristic spin-fluctuation tem-
perature [6]. Below 300 mK, an additional upturn ap-
pears in DC!T (see Fig. 3), which might be related to
the AF transition observed in the x"T # measurements just
below the temperature limit of our calorimeter and/or to
the unexplained upturns observed in the nonmagnetic HF
compounds UBe13 [9], “S-type” CeCu2Si2 [12], CeNi2Ge2
[25], and CeRu4Sb12 [26]. Application of a magnetic field
parallel to the tetragonal plane leads to a gradual recov-
ery of the properties of a LFL, in agreement with Dr"T #
and similar observations made in other NFL compounds
[1,3,10,11,16]. The inset of Fig. 3 shows that, in the tem-
perature range 0.35 , T , 10 K, the data collapse on one
universal function when plotted as $C"B#!T 2 C"0#!T %
vs B!Tb , with b ! 1.05 6 0.05 [27]. Such scaling be-
havior [28] has been observed experimentally for several
NFL systems in the crossover regime near a QCP [27,29]

and may be taken as further evidence of the proximity of
YbRh2Si2 to a magnetic instability.

In summary, our results at ambient pressure demonstrate
that in the stoichiometric HF compound YbRh2Si2 the low-
temperature electrical resistivity and specific heat display,
in an extended temperature range, pronounced deviations
from the properties of a conventional LFL, namely, Dr ~
T and DC!T ~ 2 lnT .

Below we discuss our resistivity results obtained at finite
pressures. As seen in the inset of Fig. 1, the low-T drop
of r"T # becomes steeper and shifts continuously towards
lower temperatures as p increases up to '3 GPa, indicat-
ing a pronounced reduction of the interaction between the
4f and the conduction electrons as observed for other Yb
compounds [13–15,22]. With such a pressure dependence,
one can expect magnetism to become stabilized at low
temperature. In fact, two anomalies in r"T #, not visible
at p ! 0, develop at temperatures denoted Tm and Tl , re-
spectively, upon increasing pressure [see Fig. 4(a)]. The
phase diagram displayed in Fig. 4(b) suggests an evolution
towards complex magnetic ordering for p . 0, a subject
that deserves closer scrutiny in the future. An extrapola-
tion of the data for p , 1.5 GPa indicates that the order-
ing temperature Tm matches TN at p ! 0 and vanishes at a
critical pressure pc near 2"0.4 6 0.1# GPa. This pressure
corresponds to a tiny volume change of only (0.3%, using
the bulk modulus B0 ( "130 6 20# GPa of other isostruc-
tural Yb compounds [15]. We are presently trying to find
out whether this phase transition in undoped YbRh2Si2
can be suppressed just by changes in the Si-to-Rh ratio,
like “phase A” disappears upon choosing a slight excess
of Cu in CeCu2Si2 [12].

FIG. 4. (a) Low-temperature electrical resistivity of YbRh2Si2
for p ! 1.5 GPa. Anomalies at Tm and at a lower temperature
denoted Tl are observed to develop from a linear dependence
above Tm. Inset: temperature derivative of r"T# showing well-
defined, second-order-type transitions at Tm and Tl . (b) Pressure
dependence of Tm and Tl measured in three different samples.
The symbol at p ! 0 corresponds to the value of TN extracted
from the magnetic susceptibility. The dashed lines are guides to
the eye.
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For T > Tcrit, �� �0 / T

T0 ⇠ “TK” ⇠ 25 KTcr ⇠ 0.3 K
Tcr ⇠ 0.3 K

� =
�C

T
/ ln(T0/T ),

Tcr < T < T0

Anomalous properties of YRS

The latter in turn modifies the qp spectrum- A self-consistent problem.

Formulation with Peter Wölfle and Jörg Schmalian:

Quasiparticle self energy determined by interaction with magnetic fluctuations:

χ′′(q, ω) ∼ (λ2ω/vFQ)

(r + q2)2 + (λ2ω/vFQ)2

r ∝ H −Hc is the distance to the critical point , q is measured from the ordering
vector Q,

λ contains all the feedback effects of the quasiparticles on the spin fluctuation
spectrum: Renormalization of vF , DOS and Landau damping as well as corrections
at the spin fluctuation-electron vertex.

Problem presented: The fluctuations couple only the “hot spots” on the FS, con-
nected by ~Q.

For critical behavior over the whole FS, invoke impurity averaging.

OR -Problem solved courtesy Subir and co workers (PRB 2011):

Couple to composite operator consisting of two spin fluctuations peaked at Q and
-Q

We view this as an energy fluctuation:

KE ∼ 〈~Si · ~Sj, ~Sk · ~Sl〉 ∼ 〈S+
i S
−
l 〉〈S+

k S
−
j 〉+Kconnected

Our energy fluctuation propagator is then built as χE(q+q′) ∼ λ4
∑
GGχ(q) ·χ(q′)

with q, q′ near Q,−Q so χE(q) is peaked near q = 0 and scattering from energy
fluctuations involves the whole FS
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Critical fluctuations: a. Single spin fluctuation Q. b. Structure of the energy fluctuation χE.
A second contribution has the two spin fluctuation lines crossed.The dashed lines represent the
particle-hole excitations at the Fermi surface to which the fluctuations couple. The full lines are
excitations far from the Fermi surface, and the black dots represent vertex function λ.

Critical quasiparticles:

The quasiparticle propagator G(k, ω) has the form Z(k, ω)/(ω − Ek + iΓ)

Z = 1/(1− ∂ReΣ/∂ω) is the quasiparticle weight.

If Z = 0, usual case of “non-Fermi liquid” - no qp peak in the spectral function

But - a well-defined peak at ω = Ek when Γ < Ek. Then Ek → Zεk.

Then 1/Z is interpreted as a correlation-induced mass enhancement m∗/m

Suppose Σ ∝ ω1−η. Compare Γ(= ZImΣ) to Ek, get Γ/|Ek| = tan(πη/2)

Then if 0 < η < 1/2, qp peak is well-defined and Z ∝ ωη.

Although Z → 0 at the FS, as long as Z 6= 0 at non-zero ω (or T ) there are
defined “critical qps”. And Z is contained in the vertex functions λ by various
Ward identities

Self-consistent scheme:

1. Compute energy fluctuation propagator and use it to (re)compute qp self en-
ergy

2. The result contains powers of Z and ω.

3. Use the new self energy to (re)compute Z(ω)

4. Solve the equation with Ansatz Z ∝ ωη

5. Result: η = 1/4 (d = 3), 1/8 (d = 2).

The qp condition is satisfied!

Exponents

Because of the dependence of the spin fluctuation propagators on λ(Z) and Z, the
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critical exponents may be read off immediately:

z = 4d/3

ν = 3/(3 + 2d)

Comparison to experiment: Thermodynamics and Transport

The free energy of the qps involves an integral over the qp self energy.

The actual expression for Σ involves quantities from the self-consistently deter-
mined fluctuation propagator, hence z and ν as well as η. One obtains scaling form
for free energy density. Example:

f(T, r) ∝ T 2−η[1 + c(rzν/T )η]−1

Specifc heat: C/T ∝ T β β = −1/4,−1/8 for d = 3, 2

RAPID COMMUNICATIONS

QUASIPARTICLES BEYOND THE FERMI LIQUID AND . . . PHYSICAL REVIEW B 84, 041101(R) (2011)

replace ω by T . Since c3(kF ξ0)−3 ≈ 1, we can say that as long
as Z−3(T )(T/vF Q)1/2 ≪ 1 for any T , the system will be in
the Gaussian fluctuation regime all the way down to the critical
point. If, however, the initial value of Z−1(T ), when one enters
the 3D AFM fluctuation regime, is sufficiently large, such that
Z−3(T )(T/vF Q)1/2 ≫ 1, a new regime is accessed, which is
of a strong-coupling nature. We find the characteristics of this
new regime within the present approximation by solving the
self-consistent Eq. (4) to get

Z(T ) = [c3(kF ξ0)−3]1/2(T/vF Q)1/4. (5)

In the case of only 3D AFM fluctuations, it is difficult to satisfy
the strong-coupling condition unless Z−1(T ) is sufficiently
large. Therefore, if on the initial approach to the critical point,
fluctuations dominate that lead to a growing Z−1(T ) with
decreasing T , the condition may be met at some point. The
precise crossover point is determined by the crossover of these
precursor fluctuations to the critical 3D AFM fluctuations and
by the condition above that leads to Eq. (5). As mentioned
in the Introduction, there are clear indications in the data on
YbRh2Si2 of both quasi-2D AFM and 3D FM fluctuations. In
both cases, one finds Z−1(T ) ∝ ln(T0/T ), so that Z−1 grows
as T → 0 and is about 40 in the heavy Fermi liquid region of
the phase diagram.

Specific heat and electrical resistivity. Within the ap-
proximation of neglecting the momentum dependence of
the self-energy, the entropy density is given by S/V =
(2N0/T )

∫
dω ω(−∂f/∂ω)[ω − Re$(ω)]. Substituting the

power law dependence found above, Re$(ω) ∝ |ω|3/4 sgn(ω),
we find a specific heat coefficient diverging in the limit T → 0,

γ (T ) = cγ N0(T/vF Q)−1/4. (6)

A comparison of the theoretical temperature dependence of
Eq. (6) with experiment17 is shown in Fig. 1. To achieve
this excellent fit, a T -independent constant specific heat was
added. Such a term could arise from very low frequency
(ω ≪ T ) oscillators. Its magnitude represents about 0.4%
of the total number of formula units. A possible source
of such oscillators is spatially and temporally fluctuating
AFM domains that oscillate about the preferred direction. An
anisotropic exchange interaction has been proposed to explain
the observed electron spin resonance g-shift.18 We estimate the
corresponding oscillator quantum as 0.5σ K, where σ ≪ 1
is the staggered magnetization per formula unit of a typical
domain.

As mentioned above, beyond the critical regime proper, at
temperatures T > Tcr ≈ 0.3 K, the data on YRS indicate the
existence of Gaussian fluctuations of quasi-2D AFM or 3D FM
character. This leads to γ (T ) = cGN0(∂/∂T ){T ln[Th/(T +
TFL)]}, where TFL is the crossover temperature into the Fermi
liquid regime and Th ≈ 20 K is a high-temperature cutoff scale
of the order of the lattice Kondo temperature.

The electrical resistivity in the presence of impurity
scattering may be obtained from the quasiparticle relaxation
rate ' as ρ(T ) = ρ(0) + c′

ρ(m/e2n)(m∗/m)'. Using the above
results in the scaling regime, we find

ρ(T ) − ρ(0) = cρ(m/e2n)(vF Q)1/4T 3/4. (7)

C/T = 0.0343T -1 + 0.454T -1/4

C
/T

 (
J/

m
ol

 K
2 )

T (K)

data

FIG. 1. (Color online) Specific heat: Comparison of theory,
Eq. (6), and data of Ref. 17 at the critical magnetic field and below
the critical temperature for quantum critical scaling.

Upon entering the Gaussian fluctuation regime at T > Tcr,
this fractional power law behavior crosses over into a linear
T dependence. A comparison of the theoretical temperature
dependence of Eq. (7) with experiment19 at the critical
magnetic field is shown in Fig. 2.

Local susceptibility. The local (q-integrated) susceptibility
χloc(ω) determines the nuclear spin relaxation time T1 through
the relation

1
T1T

∝
[

1
ω

Imχloc(ω)
]

ω≃0
=

∑

q

1
vF Qξ 4

0

N0(m∗/m)4

[ξ−2 + q2]2

= N0(m∗/m)4(ξ/ξ0)/(8πvF Qξ 3
0 ),

where ξ is the physical spin correlation length already defined
below Eq. (1) as ξ = ξ0{(m∗/m)[1 + F (Q)]}−1/2 and we used
Eq. (1). Close to but not quite at the critical point, such that
limT →0[1 + F (Q)] > 0, we then find

1
T1T

∝
(

m∗

m

)7/2

= Z−7/2 ∼ T −7/8. (8)

ρ = 0.49 + 1.07 Τ 3/4

ρ  
(µ

Ω
 c

m
)

T (K)

data

FIG. 2. (Color online) Resistivity: Comparison of theory, Eq. (7),
and data of Ref. 19 at the critical magnetic field and below the critical
temperature for quantum critical scaling.

041101-3

Also power laws for magnetization, susceptibility, magnetic Grüneisen ratio

Resistivity: Obtained from the qp Γ = ZImΣ. Find ρ ∝ T α α = 3/4, 7/8 for
d = 3, 2
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the 3D AFM fluctuation regime, is sufficiently large, such that
Z−3(T )(T/vF Q)1/2 ≫ 1, a new regime is accessed, which is
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new regime within the present approximation by solving the
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fluctuations dominate that lead to a growing Z−1(T ) with
decreasing T , the condition may be met at some point. The
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in the Introduction, there are clear indications in the data on
YbRh2Si2 of both quasi-2D AFM and 3D FM fluctuations. In
both cases, one finds Z−1(T ) ∝ ln(T0/T ), so that Z−1 grows
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we find a specific heat coefficient diverging in the limit T → 0,

γ (T ) = cγ N0(T/vF Q)−1/4. (6)

A comparison of the theoretical temperature dependence of
Eq. (6) with experiment17 is shown in Fig. 1. To achieve
this excellent fit, a T -independent constant specific heat was
added. Such a term could arise from very low frequency
(ω ≪ T ) oscillators. Its magnitude represents about 0.4%
of the total number of formula units. A possible source
of such oscillators is spatially and temporally fluctuating
AFM domains that oscillate about the preferred direction. An
anisotropic exchange interaction has been proposed to explain
the observed electron spin resonance g-shift.18 We estimate the
corresponding oscillator quantum as 0.5σ K, where σ ≪ 1
is the staggered magnetization per formula unit of a typical
domain.

As mentioned above, beyond the critical regime proper, at
temperatures T > Tcr ≈ 0.3 K, the data on YRS indicate the
existence of Gaussian fluctuations of quasi-2D AFM or 3D FM
character. This leads to γ (T ) = cGN0(∂/∂T ){T ln[Th/(T +
TFL)]}, where TFL is the crossover temperature into the Fermi
liquid regime and Th ≈ 20 K is a high-temperature cutoff scale
of the order of the lattice Kondo temperature.

The electrical resistivity in the presence of impurity
scattering may be obtained from the quasiparticle relaxation
rate ' as ρ(T ) = ρ(0) + c′

ρ(m/e2n)(m∗/m)'. Using the above
results in the scaling regime, we find

ρ(T ) − ρ(0) = cρ(m/e2n)(vF Q)1/4T 3/4. (7)
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Upon entering the Gaussian fluctuation regime at T > Tcr,
this fractional power law behavior crosses over into a linear
T dependence. A comparison of the theoretical temperature
dependence of Eq. (7) with experiment19 at the critical
magnetic field is shown in Fig. 2.
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0 ),

where ξ is the physical spin correlation length already defined
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Eq. (1). Close to but not quite at the critical point, such that
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and data of Ref. 19 at the critical magnetic field and below the critical
temperature for quantum critical scaling.

041101-3
Good agreement for CeCu6−xAux and YbRh2Si2: New critical exponents for mea-
sured quantities

Conclusion: This was an advertisement for our semi-phenomenological theory of
critical quasiparticles.

To be fair, there do exist efforts to make more universal statements. For example,
a “Global Phase Diagram” (QM Si 2011):

FIG. 6: The T = 0 global phase diagram of the AF Kondo lattice. G describes the quantum

fluctuations of the magnetic Hamiltonian of the local moments, and jK is the normalized Kondo

coupling. PL and PS respectively describe paramagnetic phases with Fermi surfaces that are large

and small, in the sense specified in the main text; AFL and AFS denote the corresponding phases

in the presence of an AF order. (From Ref.19, and based on Ref.40.)

Néel order. This parameter can be a measure of magnetic frustration, e.g., G = Innn/Inn,

the ratio of the next-nearest-neighbor exchange interaction to the nearest-neighbor one, or

it can be the degree of spatial anisotropy. The horizontal axis is jK ≡ JK/W , the Kondo

coupling normalized by the conduction-electron bandwidth. We are considering a fixed value

of I/W , which is typically much less than 1, and a fixed number of conduction electrons per

site, which is taken to be 0 < x < 1 without a loss of generality.

The AFS phase describes the small-Fermi-surface AF state, whose existence has been

established asymptotically exactly using the RG method as described in the previous section.

The PL phase is the standard heavy Fermi liquid with heavy quasi-particles and a large Fermi

surface10. The AFL phase corresponds to an AF state in the presence of Kondo screening.

It can either be considered as resulting from the AFS phase once the Kondo screening sets

in, or from the PL phase via an SDW instability. As alluded to in Ref.40 and explicitly

discussed in Ref.19, a PS phase should naturally arise, describing a paramagnetic phase with

a Kondo breakdown (and, hence, a small Fermi surface) which either breaks or preserves

translational invariance. Related considerations are also being pursued in Ref.41.

This global phase diagram contains three routes for a system to go from the AFS phase

to the PL phase.

19

T = 0 phase diagram of Kondo lattice. G ∼ magnetic frustration (of the RKKY). J ∼ Kondo
coupling. 4 phases with L(arge) and S(mall) FS

And another: A suggested phase diagram for one of three types of heavy fermion
quantum criticality (Yang, Pines, Lonzarich PNAS 2017)
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about the origins of two parts of the scaling behavior seen in
heavy electron liquid that have led it to be called a Kondo liquid
(KL): (i) universal scaling behavior, characterized by the energy
scale, T ⇤, of the effective order parameter f (T ) that measures
its strength (Eq. 2) and (ii) the scaling with lnT of the intrin-
sic KL state density seen in uniform magnetic susceptibility and
specific heat experiments (20, 21). A central thesis of the present
paper is that these two parts represent distinct scaling phenom-
ena of distinguishable physical origins.

As first shown by Yang et al. (22), T ⇤ is determined by the
nearest-neighbor coupling between local moments in the Kondo
lattice. Their interaction produces collective hybridization below
T ⇤ that is quite different from the single-ion Kondo hybridiza-
tion (screening) found for isolated magnetic moments. In the
present paper, we argue that the lnT scaling behavior seen in
the KL state density is brought about by the HY QCP fluctu-
ations (and/or their associated gauge fluctuations) whose influ-
ence is cut off above T ⇤.

Our main focus in this paper will be on class I materials; mate-
rials belonging to the other two classes are discussed only briefly.
It is, in fact, possible that, in class I materials, the localization
and magnetic QCPs are never exactly identical, because the com-
bined effects of the HY and AF quantum critical fluctuations
may act to move the AF and HY QCPs in opposite directions,
reflecting the way in which hybridization fluctuations interfere
with long-range magnetic order and spin fluctuations interfere
with collective hybridization in the vicinity of the putative identi-
cal QCP.

Absent superconductivity, an analysis of a number of exper-
iments on heavy electron materials at comparatively high tem-
peratures (> 2 K) yields the general phase diagram shown in
Fig. 3, in which heavy electrons begin to emerge at a tempera-
ture of the order of T ⇤ as a result of collective hybridization of
local moments with the background (light) conduction electrons,
and behave like a new quantum state of matter that exhibits
HY quantum critical scaling between T ⇤ and TQC . Below TQC ,
although one continues to have coexisting local moments and
heavy electrons over much of the phase diagram, the heavy elec-

Fig. 3. A suggested phase diagram for class I materials. T⇤ is the coherence
temperature that marks the emergence of the heavy electron liquid whose
intrinsic density of states (as defined via the linear coefficient of the specific
heat) displays logarithmic scaling behavior brought about by the HY QCP;
TQC denotes the boundary between this and the AF quantum critical scaling
regime; TN is the temperature at which the hybridized local moments begin
to order; TL is the hybridization line well below which all f electrons become
itinerant; and TFL marks the onset of Landau Fermi liquid behavior for the
heavy electron liquid.

trons no longer exhibit their KL scaling behavior but potentially
display a more dramatic power law divergence because of the
proximity of the AF QCP.

Three other important temperature scales are shown there (3):
TN , the Néel temperature at which hybridized local moments
begin to exhibit long-range magnetic order; TL, the temperature
at which collective hybridization of the local moments is nearly
complete, so that, well below it, one finds only heavy electrons;
and TFL, the temperature at which those heavy electrons begin
to exhibit Fermi liquid behavior.

The phenomenological two-fluid model of the behavior of the
coexisting KL and hybridized local moments helps one deter-
mine their relative importance for physical phenomena at any
pressure or temperature in the phase diagram. For example, the
spin susceptibility takes the form

� = [1 � f (T )]�SL + f (T )�KL, [1]

where �SL and �KL are the intrinsic susceptibility of the spin
liquid (hybridized local moments) and the KL, respectively, and
f (T ), the strength of the KL component, takes the form

f (T ) = f0(1 � T/T ⇤)3/2
, [2]

where f0, the temperature-independent intrinsic “hybridization
strength,” is the pressure-dependent control parameter depicted
in Figs. 2 and 3.

We see that, for weakly hybridizing materials, characterized
by f0 < 1, heavy electrons coexist with hybridized local moments
until one reaches T = 0, with the latter ordering antiferromag-
netically at TN . The f0 must be unity at the HY QCP at which
collective hybridization is complete. For strongly hybridizing
(f0 > 1) materials, that coexistence ends along a line of tempera-
tures, TL, at which the hybridization of local moments is essen-
tially complete. Eq. 2 yields the simple expression

TL = T ⇤
⇣
1 � f

�2/3
0

⌘
. [3]

Below TL, these heavy electrons form a quantum liquid that
exhibits anomalous quantum critical behavior between TL and
TFL, and Landau Fermi liquid behavior below it.

Some additional comments are in order:
Not shown in Fig. 3 is the possible emergence at very low

temperatures of a second regime of quantum critical behavior,
for which the microscopic theory developed by Abrahams and
Wölfle (8) may be valid.

Around (and slightly above) the HY QCP, there will be a
region in which some local moments may be present, but these
can reasonably be assumed not to influence the quantum criti-
cal behavior of the vast majority of heavy electrons (as required
by the Abrahams–Wölfle model); we arbitrarily take this upper
limit to be ⇠5%, in which case the two-fluid model tells us that
this region will begin at ⇠T ⇤/30.

At T ⇡ 0 , we expect that, well to the left of the HY QCP, the
Fermi surface will be “small,” as it consists of those parts of light
electron Fermi surface that have not hybridized with the local
moments. To the right of this QCP, the Fermi surface should be
“large,” as local moments are no longer present. We note that it
could be possible that one may observe effectively a large Fermi
surface in some regions to the left of the HY QCP in which the
local moment fraction is too small to preserve the small Fermi
surface.

It is likely that many, if not all, of the lines shown in Fig. 3 do
not represent a phase transition but are indicative of crossover
behavior.

To the extent that one is far from ferromagnetic order, one can
neglect the influence of vertex corrections on the static spin sus-
ceptibility. Under these circumstances, in both the Kondo liquid
and magnetic quantum critical regimes, the uniform magnetic
susceptibility � and the specific heat C depend only on the heavy

6252 | www.pnas.org/cgi/doi/10.1073/pnas.1703172114 Yang et al.

HY=“hybridization”, LM =“local moment”, f0 =“hybridization strength”

Maybe someone is interested in the colored dots on the T ∗ line in the first figure?

• Red dots: As T is lowered, onset of scattering of critical qp from electron spin
resonance, as observed in ESR.

• Yellow dots: Onset of spin-flip scattering from critical spin fluctuations - de-
pends on renormalized Zeeman splittingSPIN-FLIP SCATTERING OF CRITICAL . . . PHYSICAL REVIEW B 92, 155111 (2015)
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FIG. 4. (Color online) Experimental phase diagram of YRS [28].
In the FL region (blue) the resistivity is ∝T 2. NFL denotes the
non-Fermi-liquid region where the resistivity varies with T as T α

with α ! 1. The purple region is where several experimental probes
exhibit a crossover behavior, called the T ∗ line. The dots are
the theoretical positions of the onset of spin-flip scattering—from
quantum fluctuations (yellow) and at higher (T ,H ), from the spin
resonance (red). The red dots at H < 0.1T are calculated using
unpublished data [27].

associated with T ∗
1 and T ∗

2 vary with temperature as T 3/4 and
T 2, respectively, which explains why the T ∗

1 feature is less
important at higher T , and vice versa.

IX. CONCLUSION

We have addressed the crossover behavior in transport and
thermodynamic quantities that occurs across the line T ∗(H )
in the small (T ,H ) region of the phase diagram of YRS. We
propose that the T ∗ line marks the onset of spin-flip scattering
processes. We show in detail how these processes are switched
on provided the temperature and therefore the thermal energy
is sufficiently high to allow additional scattering processes of at
least two different types: (1) quasiparticle spin-flip scattering
off the quantum fluctuations associated with the QCP of
YRS—this involves excitation over the Zeeman gap, which we
show to nearly vanish at the QCP; and (2) scattering off spin-
resonance bosons, relevant at higher magnetic fields. While
the second contribution is noncritical and therefore affects
only the transport quantities, the first involves quantum critical
excitations and is therefore operative in both the transport and
the thermodynamic quantities. We have demonstrated that the
observed magnetoresistivity and the Hall coefficient may be
quantitatively explained by our model calculation.

In our calculation of the magnetotransport properties, we
have made extensive use, as input, of experimental data on
specific heat, susceptibility, and magnetization. This enables
us to conclude that in the experimentally relevant temperature
regime the rapid drop of the Zeeman splitting h as the magnetic
field is lowered to below the critical field at fixed temperature
is not so much controlled by the decrease of the quasipar-
ticle weight Z(H,T ) but governed by the H dependence
of the differential susceptibility and of the magnetization.
Therefore the T ∗ line is not necessarily tied to the critical field
(although at lower temperature it presumably is). This is to say
that if the QCP is shifted to higher or lower values of magnetic
field by doping the pure compound appropriately this does
not necessarily mean that the T ∗(H ) as obtained above will
follow the shift of the QCP. Rather, it may stay approximately
at the unshifted position. This may be easily checked as
soon as sufficient data on specific heat, magnetization, and
susceptibility become available. The part of the T ∗ line at
higher temperature, which according to our calculation is
controlled by the scattering off the spin-resonance excitations,
will stay unchanged upon doping as long as the resonance
frequency is not affected by doping.

We emphasize that our description of the T ∗(H ) line derives
from the magnetic field induced changes (1) of the fermionic
spectrum as expressed by the Zeeman splitting and (2) of
the bosonic spectrum through the tuning parameter. The T ∗

features result from incorporating spin-flip scattering from
critical fluctuations and scattering from the spin-resonance
mode into the transport and thermodynamic responses. Within
this picture, which successfully accounts for the observed
crossover phenomena, there are no additional effects that
would further change the spectra from those at H = 0.
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These scattering processes depend on T,H and effect transport. Example: Mag-
netoresistivity SPIN-FLIP SCATTERING OF CRITICAL . . . PHYSICAL REVIEW B 92, 155111 (2015)

ρ ρ

ρ
ρ

H

HH

H

FIG. 2. (Color online) Magnetoresistivity ρ(T ,H ) at various T .
Clockwise from upper left, T = 18,38,65, and 100 mK. H is in Tesla
and ρ is in µ" cm. Dots are theory, Eq. (17); triangles are from the
data, Ref. [24].

scattering rate on the magnetic field. The characteristic energy
u = h2/ϵF , where ϵF ≈ 10 K and h is obtained from Eq. (2), as
shown in Fig. 1. The remaining unknown parameter set {a ≈
1 µ"cm, c1 ≈ 0.9 µ"cm, c2 ≈ 0.5 µ"cm/T2} was chosen to
give the best fit to the data for all the temperatures chosen. As
one can see, the experimental data are described quite well by
the theory, with the single set of parameters. The width of the
step $H is found to approximately scale with T .

The agreement of our simplified model calculation with
experiment is remarkable, considering that we have adopted
a number of approximations, including the neglect of the H
dependence of Z (assuming that the magnetic field region
considered here lies completely inside the critical regime) and
neglect of the difference of effective masses of spin (↑,↓)
quasiparticles.

V. HALL COEFFICIENT RH

Electronic structure calculations [25], in particular within
the “renormalized band theory,” i.e., taking the Kondo res-
onance scattering at the Yb ions into account [26], have
revealed two relevant bands involved in transport, one of
particle, the other of hole character. As a consequence,
substantial compensation is observed in the Hall coefficient
data, leading to small values of RH and an enhanced sensitivity
to disorder [6,24,26]. The Hall coefficient is given in terms of
the partial Hall (σ j

xyz) and longitudinal (σ j
xx) conductivities of

the two bands (j = 1,2) as [26]

RH (T ,H ) =
∑

j=1,2 σ
j
xyz

( ∑
j=1,2 σ

j
xx

)2 , (19)

where

σ j
xyz =

∑

k

τ ∗2
k,j u

∗
k,xy,j

(
∂f

∂ϵ∗
kj

)

, (20)

σ j
xx =

∑

k

τ ∗
k,j v

∗2
k,x,j

(

− ∂f

∂ϵ∗
kj

)

. (21)

Here u∗
k,xy,j = [v∗

k,x,j v
∗
k,x,jM

∗−1
yx,j − v∗2

k,x,jM
∗−1
yy,j ], and v∗

k,x,j

and M∗−1
yx,j are the x component of the quasiparticle velocity and

the yx component of the inverse quasiparticle mass tensor of
the j th band (as earlier, the asterisk indicates the quasiparticle
renormalization). As in the case of the magnetoconductivity,
we use the fact that the inelastic scattering from critical
fluctuations gives only a small contribution to the scattering
rate, thus allowing expansion in the small parameter τ

imp
kj /τ ∗

kj :

$σ j
xyz(T ,H ) = 2

∑

k

(
τ

∗imp
k,j

)3

τ ∗inel
kj

u∗
k,xy,j

(
∂f

∂ϵ∗
kj

)

∝
(
N0v

2
F /m

)(
τ

imp
j

)3
uj

∫
dω

(
− ∂f

∂ω

)
Im)j (ω),

(22)

where $σ
j
xyz(T ,H ) = σ

j
xyz(T ,H ) − σ

j
xyz(0,H ). Here, we have

used u∗
k,xy,j (∂f/∂ϵ∗

kj ) → uj (v2
F /m)Z2

j (ω)(∂f/∂ω), and have
accounted for band-structure effects in an average way by
the dimensionless factor uj ≶ 0. We recall that the impurity
relaxation rate in the case of unitary scattering (which
we assume to be dominant) is renormalized as 1/τ

∗imp
kF ,j ∝

Z(ω)/τ imp
kF ,j . In the critical regime, using the results obtained

for Z(ω) and Im)(ω) for YRS in the regime dominated by
three-dimensional antiferromagnetic fluctuations [5] we may
scale out the temperature dependence by using Zj (ω) ∝ |ω|1/4

and Im)j (ω) ≈ γj |ω|3/4, γj > 0. As mentioned above, both
data and theory suggest that the Hall coefficient RH (0,H ) at
T = 0, and therefore σxyz(0,H ) =

∑
j σ

j
xyz(0,H ), are rather

small, as particle and hole contributions almost compensate.
The temperature-dependent contribution may be approximated
as

RH (T ,H ) = [ρ(T ,H )]2[σxyz(0,H ) + σ ′
xyz(T ,H )], (23)

where, using Eq. (22),

σ ′(T ,H ) =
∑

j

$σ j
xyz(0,H )

= a′
H

n(τ imp)3b

m2
T 3/4L(u/T ). (24)

L(z) was defined in Eq. (18). Here the dimensionless
quantity b ∝ (b1γ1 + b2γ2) with b1 > 0 (particles) and b2 < 0
(holes) describes the extent of compensation. We note that
in the extreme limit of low temperature, when the inelastic
component of σ

j
xx may be neglected, such that the denominator

of Eq. (19) may be replaced by [ρ(0,H )]−2 ∝ (τ imp)2, two
powers of τ imp in Eq. (22) are cancelled and the T -dependent
contribution to RH scales with disorder strength as $RH =
RH (T ,H ) − RH (0,H ) ∝ τ imp.

For the numerical evaluation of Eq. (23), we used again
a parameterization of the impurity scattering contribution
of the form σxyz(0,H ) = cH1 + cH2H

2 and defined aH =
a′

H n(τ imp)3u/m2. In Fig. 3, we show a comparison of the
calculated RH curves with experimental data [24], again
choosing a single set of parameters {cH1 ≈ 1.7, cH2 = 1.5,
aH ≈ 0.5} and the magnetoresistivity as determined above in
Sec. IV. We conclude that the theory accounts well for the
observed behavior.

155111-5

Magnetoresistivity: Dots are theory, triangles are data. Clockwise from upper left, T =
18, 38, 65, 100 mK

One may eyeball the jump at the four temperatures and plot the result

The issue is: Is the jump non-zero as T → 0? In the “Kondo breakdown” scenario,
it is. In our scattering scenario, the jump → 0. In my rough estimation, shown
here, it is inconclusive.
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Jump in the magnetoresistance as function of temperature
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