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Ising nematic order	+	Fermi	surface

OR



Density	wave	vs.	Q=0	quantum	critical	
fluctuations

Cold	spots

Hot	spots

J.	Sau and	S.	Sachdev,	 Phys.	Rev.	B	89,	075129	(2014)

Antiferromagnetic	QCP Ising nematic QCP



The	questions
• Can	an	Ising nematic QCP	lead	to	high	TC
superconductivity?	Non-Fermi	liquid?
– Monte	Carlo	studies,	with	Yoni	Schattner (Stanford),	
Erez Berg	(Chicago),	Steve	Kivelson (Stanford)

– PRX	6,	031028	(2016);	PNAS	114,	4905	(2017)
• What	are	some	distinctive	experimental	
consequences	of	an	Ising nematic QCP?
– Diagrammatic	calculations	for	Raman	scattering,	with	
Avi Klein	(MN),	Debanjan Chowdhury	(MIT),	EB,	
Andrey	Chubukov (MN)

– Arxiv:1708.05308
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Pairing	vs	non-Fermi	liquid

• Ising nematic quantum	critical	fluctuations	
incompatible	with	Fermi	liquid	ground	state

• Near-critical	fluctuations	dramatically	enhance	
pairing

So	who	wins?
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Does	SC	preempt	non-Fermi	liquid?

12M.	Metlitski et	al,	arxiv:	1403.3694
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Determinant	Quantum	Monte	Carlo

• Maps	2-dimensional	quantum	model	to	(2+1)-
dimensional	classical	model	with	size																				
in	imaginary	time	direction

• Numerically	exact	algorithm:	
expensive	but	correct!

• Model	is	free	of	fermion	sign	problem

� = T�1

R.	Blankenbecler,	 D.	J.	Scalapino,	and	R.	L.	Sugar,	Phys.	Rev.	D	24,	2278	(1981)



Parameter	choices
Temperatures T = EF to T < EF /100

System sizes 6⇥ 6 to 24⇥ 24

Imaginary time step �⌧ = 0.05t�1

t =1

V =0.5

µ =1.0

h =tunable parameter

↵ =1.5



Basic	results

• Transition	remains	continuous
• Bosons	strongly	renormalized	by	coupling	to	
fermions	

• No	sign	of	superconductivity
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Basic	results

• Transition	remains	continuous

• Bosons	strongly	renormalized	by	coupling	to	
fermions	

• Fermions	strongly	renormalized	by	coupling	to	
bosons,	superconductivity	emerges	at	large	
enough	α
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Determining	TC (h≈hC shown)
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An	important	caveat	for	dynamics

• Algorithm	is	in	imaginary	time,	measurements	
in	real	time

• Need	analytic	continuation to	
compute	measurable	quantities

• Difficult	for	numerical	data;	introduces	
uncontrolled	errors

i!n ! ! + i0+



A	probe	of	spectral	weight	at	at	
frequencies	~	T	
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A	probe	of	spectral	weight	at	at	
frequencies	~	T	

• In	a	Fermi	liquid	regime,	2G(k,β/2)	is	the	
effective	quasiparticle residue	Z
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2G(k,β/2)	for	free	fermions	(𝛽=6)



2	G(k,β/2),	tuning	towards	hC (𝛽=6)
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Results	from	ωn>>T	regime	at	h≈hc
• Self	energy	has	minimal	temperature	
dependence	for	TC	<	T	<	t≈EF/3

• (Nearly)	coherent	quasiparticles at	the	cold	
spot

• Elsewhere,	no	apparent	Fermi	surface:
– Low	frequency	scattering	rate	essentially	
independent	of	temperature,	extends	to	high	ωn

• Much	like	disorder	scattering	from	a	nematic
glass;	unlike	any	known	theoretical	treatment
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Self	energy	at	h=hc
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Variation	of	damping	rate	γ on	“Fermi	
surface”
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ARPES	linewidths for	optimally	doped	
Bi-2212

Kaminski et	al.	Phys.	Rev.	B	71,	014517	(2005)	

Zone	Diagonal				
(cold	spot)

Zone	boundary	
(hot	region)



Results	from	ωn>>T	regime	at	h≈hc
• Self	energy	has	minimal	temperature	
dependence	for	TC	<	T	<	t≈EF/3

• (Nearly)	coherent	quasiparticles at	the	cold	
spot

• Elsewhere,	no	apparent	Fermi	surface:
– Low	frequency	scattering	rate	essentially	
independent	of	temperature,	extends	to	high	ωn

• Much	like	disorder	scattering	from	a	nematic
glass;	unlike	any	known	theoretical	treatment



Transport	from	the	current-current	
correlator
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Methods	to	estimate	DC	resistivity

• Analytic	continuation	by	maximum	entropy
• Forming	a	“resistivity	proxy”	using	𝛬(𝜏)	and	its	
second	derivative	at	𝜏=𝛽/2	(correct	for	narrow	
Lorentzian)

• Analytic	continuation	by	curve	fitting	
(assuming	𝜎’	is	a	sum	of	two	Lorentz	
oscillators)



Analytic	continuation	from	curve	
fitting



Phase	diagram	with	transport
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Temperature	dependence
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Temperature	dependence
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Summary

• For	sufficiently	strong	coupling,	our	model	
exhibits:
– High	Tc superconductivity
– Non-Fermi	liquid	normal	state	in	a	range	of	
temperatures	above	TC,	with	highly	anisotropic	
single-particle	lifetimes

– Transport	consistent	with	T-linear	resistivity	
violating	the	Ioffe-Regel	limit,	i.e.	“bad	metal”



The	questions
• Can	an	Ising nematic QCP	lead	to	high	TC
superconductivity?	Non-Fermi	liquid?
– Yes	to	both!ErezBerg	(Chicago),	Steve	Kivelson
(Stanford)

– PRX	6,	031028	(2016);	PNAS	114,	4905	(2017)
• What	are	some	distinctive	experimental	
consequences	of	an	Ising nematic QCP?
– Diagrammatic	calculations	for	Raman	scattering,	with	
Avi Klein	(MN),	Debanjan Chowdhury	(MIT),	EB,	
Andrey	Chubukov (MN)

– Arxiv:1708.05308
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Raman	scattering

• Inelastic	light	scattering
• Essentially	zero	momentum	transfer
• Polarization	analysisàsymmetry sensitivity
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Quirks	of	q=0,	𝜔>0

• Outside	of	the	scaling	regime𝜔∼qz (assuming	
z	≥	1)

• If	order	parameter	is	conserved	(total	charge,	
total	spin,	etc),	response	must	vanish,	since	
the	uniform	density	is	time-independent
– Microscopically,	nematicity/quadrupole density	is	
not	conserved,	but	it	is	conserved	at	one	loop	
order…

lim
q!0

⇧1(q, iq0 = 0) ⇠ ⇢0, ⇧1(q = 0, iq0) = 0



Two	loop	diagrams
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Analytic	control

• Coupling	constant	(dimensions	of	energy)	is	

• We	assume	
• (At	least)	three	parametrically	broad	regimes	of	
low-energy	behavior:
I. :	perturbation	theory	is	

valid
II. :	boson	dressed	by	Landau	

damping,	fermions	essentially	unaffected
III. :	non-Fermi	liquid	regime

ḡ ⌘ g2�0

ḡ ⌧ EF
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Methods

• Regime	I:	perturbation	theory:

• Regime	II:	perturbation	theory	with	dressed	
boson	propagator,	the	above	+	Aslamazov-
Larkin:

• Regime	III:	the	above,	with	dressed	boson,	
dressed	fermions,	ladder	series	of	vertex	
corrections	(uncontrolled)
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Results

• Regime	I:

• Regime	II:

• Regime	III:
⇧(q = 0, iq0) ⇡

✓
ḡ
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Connecting	to	experiment
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Conclusions

Part	I
• Ising nematic quantum	criticalityànon-Fermi
liquid	(transport	and	single-particle)
– Non-Fermi	liquid	transitions	to	a	high	TC
superconductor

Part	II
• B1g Raman	response	near	Ising nematic QCP	
has	singular	power	law	dependence
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