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Density wave vs. Q=0 quantum critical
fluctuations

Antiferromagnetic QCP Ising nematic QCP

Hot spots ¢

J. Sau and S. Sachdev, Phys. Rev. B 89, 075129 (2014)
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The questions

* Can an Ising nematic QCP lead to high T,
superconductivity? Non-Fermi liquid?
— Monte Carlo studies, with Yoni Schattner (Stanford),
Erez Berg (Chicago), Steve Kivelson (Stanford)

— PRX 6, 031028 (2016); PNAS 114, 4905 (2017)

 What are some distinctive experimental
consequences of an Ising nematic QCP?
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Pairing vs non-Fermi liquid

* |sing nematic quantum critical fluctuations
incompatible with Fermi liquid ground state

* Near-critical fluctuations dramatically enhance
pairing

So who wins?



Does SC preempt non-Fermi liquid?

Quantum critical ¢
Coherent electrons

SC

Fermi liquid Fermi liquid

M. Metlitski et al, arxiv: 1403.3694 12



Or non-Fermi liquid above T
(like cuprates)?
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M. Metlitski et al, arxiv: 1403.3694
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Or non-Fermi liquid above T
(like cuprates)?
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Microscopic Hamiltonian
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Microscopic Hamiltonian

Hnem =V Z O-(Zz',j>0-(zk,l> + I Z U?@'J)
((6.3), (k1) (53)




Microscopic Hamiltonian

Snem 0] = / drd®r [(0;¢)° + 2 (V¢)? + m?¢* + ¢*]




Microscopic Hamiltonian
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Determinant Quantum Monte Carlo

 Maps 2-dimensional quantum model to (2+1)-
dimensional classical model with size 8 = T~}
iIn imaginary time direction

* Numerically exact algorithm:
expensive but correct!

* Model is free of fermion sign problem

R. Blankenbecler, D.J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981)



Parameter choices

Temperatures T'= Er to T' < Er /100
System sizes 6 X 6 to 24 x 24

Imaginary time step A7 = 0.05¢ 1

t =1
V =0.5
1 =1.0
h =tunable parameter
a=1.5
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Basic results

* Transition remains continuous

* Bosons strongly renormalized by coupling to
fermions

* Fermions strongly renormalized by coupling to
bosons, superconductivity emerges at large
enough a
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Determining T, (h=h. shown)
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An important caveat for dynamics

* Algorithm is in imaginary time, measurements
in real time



An important caveat for dynamics

* Algorithm is in imaginary time, measurements
in real time

* Need analytic continuation iw,, — w +i0" to
compute measurable quantities



An important caveat for dynamics

* Algorithm is in imaginary time, measurements
in real time

* Need analytic continuation iw,, — w +i0" to
compute measurable quantities

e Difficult for numerical data; introduces
uncontrolled errors



A probe of spectral weight at at
frequencies ~ T
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A probe of spectral weight at at
frequencies ~ T

(1) = [k

* In a Fermiliquid regime, 2G(k,B/2) is the
effective quasiparticle residue Z




2G(k,B/2) for free fermions (5=6)




2 G(k,B/2), tuning towards h. (5=6)
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Self energy at h=h_
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Variation of damping rate y on “Fermi
surface”
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ARPES linewidths for optimally doped

Bi-2212
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Results from w >>T regime at h=h_

Self energy has minimal temperature
dependence for T < T < t=E;/3

(Nearly) coherent quasiparticles at the cold
spot
Elsewhere, no apparent Fermi surface:

— Low frequency scattering rate essentially
independent of temperature, extends to high w,

Much like disorder scattering from a nematic
glass; unlike any known theoretical treatment



Transport from the current-current
correlator
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Methods to estimate DC resistivity

* Analytic continuation by maximum entropy

 Forming a “resistivity proxy” using A(t) and its
second derivative at t=£/2 (correct for narrow
Lorentzian)

* Analytic continuation by curve fitting

(assuming o’ is a sum of two Lorentz
oscillators)



Analytic continuation from curve

fitting
15 - - . . ,
T(a) (b) ——T-0.17
2 - = T=0.33 | -
11 } -=-==T=0.5
0.5
ol | . .
0 20 40 60




Phase diagram with transport
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Temperature dependence

—%— h<h_
e,
i,




Temperature dependence

1 [ e,
b,
e,
P1
1 | h
62
0




Summary

* For sufficiently strong coupling, our model
exhibits:



Summary

* For sufficiently strong coupling, our model
exhibits:

— High T, superconductivity



Summary

For sufficiently strong coupling, our model
exhibits:

— High T, superconductivity

— Non-Fermi liguid normal state in a range of

temperatures above T, with highly anisotropic
single-particle lifetimes



Summary

For sufficiently strong coupling, our model
exhibits:

— High T, superconductivity

— Non-Fermi liguid normal state in a range of

temperatures above T, with highly anisotropic
single-particle lifetimes

— Transport consistent with T-linear resistivity
violating the loffe-Regel limit, i.e. “bad metal”
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The questions

* Can an Ising nematic QCP lead to high T
superconductivity? Non-Fermi liquid?
— Yes to both!

 What are some distinctive experimental
consequences of an Ising nematic QCP?

— Diagrammatic calculations for Raman scattering, with
Avi Klein (MN), Debanjan Chowdhury (MIT), EB,
Andrey Chubukov (MN)

— Arxiv:1708.05308
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Raman scattering

* |nelastic light scattering
e Essentially zero momentum transfer
* Polarization analysis=>symmetry sensitivity
. Ip,, x[1+np(w)]x"(w), where
x(w) =87 (iw, — w +i0™)

dre™ 7 (p(7)p(0))

[
2}; cos(ky) — COS(ky)]C;;Ck

7 (twn)
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Quirks of =0, w>0

e Qutside of the scaling regime w~g? (assuming
z2>1)

* |f order parameter is conserved (total charge,

total spin, etc), response must vanish, since
the uniform density is time-independent

— Microscopically, nematicity/quadrupole density is
not conserved, but it is conserved at one loop

order...
lim I (q,iq0 = 0) ~ po, II1(q=0,ig0) =0
q—0



Two loop diagrams

Jierg kE+p+gq

Jx x
k fk+% k +p




Two loop diagrams
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Analytic control

* Coupling constant (dimensions of energy) is
__ 2
g =29 Xo

» Weassume 9 < Er

* (At least) three parametrically broad regimes of
low-energy behavior:

V . Ep > w > w; ~+\/gEF :bosonsand fermions
essentially free

V 1. w1 > w > wy ~ gz/EF: boson dressed by Landau
damping, fermions essentially free

x Il. wp > w:non-Fermiliquid regime



Methods

* Regime I: perturbatlon theory

Regime |I: perturbatlon theory W|th dressed
DOoson propagator, the above + Aslamazov-

Larkin: §_<
k

Regime IlI: the above, with dressed boson,
dressed fermions, ladder series of vertex
corrections (uncontrolled)




Results

* Regime I:

II(q = 0,iq0) ~ (Eip> o [AI + BflEq—jJ] , w1 < |qo] < EF
* Regime Il: _ L

II(q = 0,iqp) = (E%) po | Arr + By (gggg ] , wo < |qo] < wr
* Regime llI:

: g
H(q — O,Zq()) ~ <E—> 00



Connecting to experiment
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Conclusions

Part |

* |sing nematic quantum criticality=>non-Fermi
liquid (transport and single-particle)

— Non-Fermi liquid transitions to a high T
superconductor

Part |l

* B;, Raman response near Ising nematic QCP
has singular power law dependence



