Magnetic and nematic orders of (111) 2DEGs

A. Paramekanti (University of Toronto)

N. Boudjada, G. Wachtel, AP, arXiv:1705.10795

CIFAR CANADIAN INSTITUTE FOR ADVANCED RESEARCH

Oxide heterostructures

A. Ohmoto, H. Hwang, Nature (2004)

Ability to create atomically flat oxide layers

- Molecular beam epitaxy
- Pulsed laser deposition

Polar catastrophe

(001) LaAlO₃-SrTiO₃

Nakagawa, Hwang, Muller, Nature (2006)

LaAlO3/SrTiO3 interface along [100]

H. Y. Hwang, J.M. Triscone, J. Mannhart, R. Ashoori, K. A. Moler, ...

Expts: Magnetism + superconductivity

3d-3d Superlattices alon	g [111]		Applied Physics	
nature materials	LETTERS ONLINE 22 JANUARY 2012 DOI: 10.1038/NMAT3224	Local electronic and magneti Benjamin Gray, Ho Nyung Lee, Jian I	c studies of an artificial La 2 FeC	rO 6 double perovskite
Exchange bias in LaNiO ₃ -LaMn Marta Gibert ¹ *, Pavlo Zubko ¹ , Raoul Scherwitzl ¹ , Jorge Íñiguez	$1O_3$ superlattices z^2 and Jean-Marc Triscone ¹	Citation: Applied Physics Letters 97, (013105 (2010); doi: 10.1063/1.3455323	z B TY
	Q	uantum Wells, Mo	dulation Doping	GdTIO3
3d/5d Superlattices alor	ng [111] S.	Stemmer group (UCSB)	GdTIO ₃
H. Takagi group (APL 2015)	M	lagnetism, Mott t	ransitions, Non-F	Fermi Liquid

ARTICLE

Received 20 Jun 2011 | Accepted 18 Nov 2011 | Published 20 Dec 2011 DOI: 10.1038/ncomms1602

Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

Di Xiao¹, Wenguang Zhu^{1,2}, Ying Ran³, Naoto Nagaosa^{4,5} & Satoshi Okamoto¹

Rapid Communication

Topological insulators from complex orbital order in transition-metal oxides heterostructures

Andreas Rüegg and Gregory A. Fiete Phys. Rev. B **84**, 201103(R) – Published 14 November 2011

Prediction of topological phases in simple TMO bilayers

Realizing high Tc quantum anomalous Hall effect

Fe layer: Magnetism Re layer: SOC

DFT + Effective model

QAH gap ~ 100 meV Ferromagnetic Tc ~ 300 K

A.M. Cook, **AP** (*PRL* 2014); S. Baidya, U.Waghmare, **AP**,T.Saha-Dasgupta (PRB,2015+16)

L. Miao, R. Du, Y. Yin, Qi Li (APL 2016)

Transport sees signatures of broken hexagonal symmetry below ~30K (depends on electron density)

- (111) STO is polar = more correlated?
- All t_{2g} orbitals equivalent
- Electron correlation driven nematic?
- Phonon/structural? (Aharony, et al?)

$$\begin{split} H_{\text{int}} &= U \sum_{i\ell} n_{i\ell\uparrow} n_{i\ell\downarrow} + \frac{1}{2} V \sum_{i\ell \neq \ell'} n_{i\ell} n_{i\ell'} \\ &- \frac{1}{2} J \sum_{i\ell \neq \ell'} \mathbf{S}_{i\ell} \cdot \mathbf{S}_{i\ell'} + \frac{1}{2} J' \sum_{i\ell \neq \ell'} c^{\dagger}_{i\ell\uparrow} c^{\dagger}_{i\ell\downarrow} c_{i\ell'\downarrow} c_{i\ell'\uparrow} \end{split}$$

Interactions might get scaled down by 2DEG "thickness"

- Generalized RPA calculation
- - Charge, spin, orbital
- Susceptibilities ~ orbital diagonal
- Dominant instability ~ spin (Q=2k_f) [tips of the ellipse]
- Subdominant ~ charge nematic (Q=0) [doublet]

Effective spin model

$$-J_{1}\sum_{r,\ell}\vec{S}_{\ell}(r)\cdot\vec{S}_{\ell}(r+\delta_{\ell}^{\parallel})+J_{2}\sum_{r,\ell,\delta_{\ell}^{\perp}}\vec{S}_{\ell}(r)\cdot\vec{S}_{\ell}(r+\delta_{\ell}^{\perp})-J_{H}\sum_{r,\ell<\ell'}\vec{S}_{\ell}(r)\cdot\vec{S}_{\ell'}(r)$$

$$\uparrow \mathbf{Dominant}$$
Weaker

O(9) spin model: Monte Carlo Simulations $J_{effective} \sim scale$ with (electron density)²

Effective spin model

Nematic transition: Tc ~ J_2 (interchain coupling)

