Pseudo-spin skyrmions in the under-doped cuprates

K.B. Efetov (Bochum)
H. Meier
M. Einenkel
T. Kloss
V. S. de Carvalho

X. Montiel

C. Morice & D.Chakraborty

Catherine Pépin (IPhT, CEA-Saclay)

Intertwined 17, Santa Barbara, Sept. 12th, 2017

X.Montiel, T. Kloss and CP, PRB 2017

C.Morice, D. Chakraborty, X.Montiel and CP, preprint

1987...

⁸⁹Y NMR Evidence for a Fermi-Liquid Behavior in YBa₂Cu₃O_{6+x}

H. Alloul, T. Ohno, (a) and P. Mendels

Physique des Solides, Université de Paris-Sud, 91405 Orsay, France
(Received 15 May 1989)

We report NMR shift ΔK and T_1 data of ⁸⁹Y taken from 77 to 300 K in YBa₂Cu₃O_{6+x} for 0.35 < x < 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid picture is found to apply for the spin part K_s of ΔK . The spin contribution $\chi_s(x,T)$ to χ_m is singled out, as the T variation of ΔK scales linearly with the macroscopic susceptibility χ_m . This implies that Cu(3d) and O(2p) holes do not have independent degrees of freedom. Their hybridization, which has a σ character, hardly varies with doping. These results put severe constraints on theoretical models of high- T_c cuprates.

PACS numbers: 74.70.Vy, 75.20.En, 76.60.Cq, 76.60.Es

FIG. 1. The shift ΔK of the ⁸⁹Y line, referenced to YCl₃ plotted vs T, from 77 to 300 K. The lines are guides to the eye.

⁸⁹Y NMR Evidence for a Fermi-Liquid Behavior in YBa₂Cu₃O_{6+x}

H. Alloul, T. Ohno, (a) and P. Mendels

Physique des Solides, Université de Paris-Sud, 91405 Orsay, France
(Received 15 May 1989)

We report NMR shift ΔK and T_1 data of ⁸⁹Y taken from 77 to 300 K in YBa₂Cu₃O_{6+x} for 0.35 < x < 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid picture is found to apply for the spin part K_s of ΔK . The spin contribution $\chi_s(x,T)$ to χ_m is singled out, as the T variation of ΔK scales linearly with the macroscopic susceptibility χ_m . This implies that Cu(3d) and O(2p) holes do not have independent degrees of freedom. Their hybridization, which has a σ character, hardly varies with doping. These results put severe constraints on theoretical models of high- T_c cuprates.

PACS numbers: 74.70.Vy, 75.20.En, 76.60.Cq, 76.60.Es

FIG. 1. The shift ΔK of the ⁸⁹Y line, referenced to YCl₃ plotted vs T, from 77 to 300 K. The lines are guides to the eye.

Charge modulations ...

Hoffman, 2002

Doiron-Leyraud et al. (2007) Sebastian et al. (2011)

Cyr-Choignière, preprint 2015

Doiron-Leyraud et al. (2007) Sebastian et al. (2011) Wise et al, Nat. Phys. (2008) **BSCCO** (opt. doped) а 2.0 Intensity (arb. units) $-\Delta R_{xy}$ (m Ω) 0 -0.4 0.6 0.8 1.0 0.2 Wave vector $(2\pi/a_0)$ 0.015 0.020 0.025

Cyr-Choignière, preprint 2015

1 / B (T⁻¹)

YBa₂Cu₃O_{6+x}

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

YBa₂Cu₃O_{6+x}

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

YBa₂Cu₃O_{6+x}

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW $-T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

YBa₂Cu₃O_{6+x}

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW $-T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

Stable CDW under magnetic field & Fermi surface reconstruction (NMR, quantum oscillation, ultrasound)

D. Lebocui, Malare 2001.

T. Wu et al., *Nature* 2011.

Nematicity

Charge order Landscape

YBa₂Cu₃O_{6+x}

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW – $T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

Stable CDW under magnetic field & Fermi surface reconstruction (NMR, quantum oscillation, ultrasound)

D. Leboeui, Nature 2001.

T. Wu et al., *Nature* 2011.

Nematicity

YBa₂Cu₃O_{6+x}

loop currents

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW – $T_m < T^*$

 $Q^* = (\delta, 0)$ and $(0, \delta)$ with $\delta \sim 0.3$

Chang , Nature Phys. 2012 Ghiringhelli, Science 2012

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

Stable CDW under magnetic field & Fermi surface reconstruction (NMR, quantum oscillation, ultrasound)

D. Leboeui, Nature 2001.

T. Wu et al., *Nature* 2011.

Nematicity

Inversion symmetry

loop currents

anomalous Kerr effect $T_k < T^*$

Xia, PRL 2008

Incipient CDW $-T_m < T^*$

 $Q^* = (\delta,0)$ and $(0,\delta)$ with $\delta \sim 0.3$ Chang, Nature Phys. 2012

Ghiringhelli, Science 2012

YBa₂Cu₃O_{6+x}

glassy SDW : $T_{SDW} \ll T^*$ (neutron, μ SR, RMN)

Haug, New J. Phys. 2010 T. Wu et al., PRB 2013

Stable CDW under magnetic field & Fermi surface reconstruction (NMR, quantum oscillation, ultrasound)

D. Leboeui, Nature 2001.

T. Wu et al., *Nature* 2011.

Why is there so many competing orders occurring around T*?

Why is there so many competing orders occurring around T*?

Orders at q=0 don't open a gap in the electron's density of states.

Why is there so many competing orders occurring around T*?

Orders at q=0 don't open a gap in the electron's density of states.

Is the Pseudo-Gap a phase transition or a cross over?

Mott transition

Mott transition

Fluctuations

9

Mott transition

Fluctuations

The context: doping a Mott insulator

Resonating Valence Bond (RVB)

$$H = P \left[-\sum_{\langle ij \rangle, \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{i\sigma} + J \sum_{\langle ij \rangle} \left(\mathbf{S}_{i} \cdot \mathbf{S}_{j} - \frac{1}{4} n_{i} n_{j} \right) \right] P$$

Anderson, Sachdev, Lee, Nagaosa, Rice ...

P: projection on no double occupancy

The context: doping a Mott insulator

Resonating Valence Bond (RVB)

$$H = P \left[-\sum_{\langle ij \rangle, \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{i\sigma} + J \sum_{\langle ij \rangle} \left(S_i \cdot S_j - \frac{1}{4} n_i n_j \right) \right] P$$

Anderson, Sachdev, Lee, Nagaosa, Rice ...

P: projection on no double occupancy

The context: doping a Mott insulator

Resonating Valence Bond (RVB)

$$H = P \left[-\sum_{\langle ij \rangle, \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{i\sigma} + J \sum_{\langle ij \rangle} \left(S_i \cdot S_j - \frac{1}{4} n_i n_j \right) \right] P$$

Anderson, Sachdev, Lee, Nagaosa, Rice ...

P: projection on no double occupancy

Fluctuations

Emery Kivelson 95

	TABLE 1 Phase stiffness and $T_{\theta}^{\sf max}$ for various superconductors							
Material	/ (Å)	λ (Å)	T _c (K)	V _o (K)	T_{θ}^{max}/T_{c}	Ref.		
Pb	830	390	7	6×10^5	2×10 ⁵	17		
Nb₃Sn	60	640	18	2×10^4	2×10^{3}	18		
UBe ₁₃	140	11,000	0.9	10 ²	3×10^{2}	19, 20		
LaMO ₆ S ₈	200	7,000	5	4×10^2	2×10^{2}	12, 21		
$B_{0.6}K_{0.4}BiO_3$	40	3,000	20	5×10^{2}	50	12		
K ₃ C ₆₀	30	4,800	19	10 ²	17	22, 23		
(BEDT) ₂ Cu(NCS) ₂	15.2	8,000	8	15	1.7	24		
$Nd_{2-x}Ce_{x}Cu_{2}O_{4+\delta}$	6.0	1,000	21	4×10^2	16	25		
$Tl_2Ba_2CuO_{6+\delta}$	11.6	2,000	80	2×10^2	2	26, 27		
	11.6	1,800	55	2×10^2	3.6	26, 27		
Bi ₂ Sr ₂ CaCu ₂ O ₈	7.5	1,850	84	140	1.5	28, 29		
Bi ₂ Pb _x Sr ₂ Ca ₂ Cu ₃ O ₁₀	5.9	1,850	105	110	0.9	28		
	8.9	1,850	105	160	1.4	28		
$La_{2-x}Sr_xCuO_{4+\delta}$	6.6	3,700	28	30	1	30		
	6.6	2,200	38	85	2	30		
YBa ₂ Cu ₃ O _{7-δ}	5.9	1,600	92	145	1.4	31		
YBa ₂ Cu ₄ O ₈	6.8	2,600	80	65	0.7	31		

$$V_0 = \frac{(\hbar c)^2 a}{16\pi e^2 \lambda^2(0)}$$

$$T_{\theta}^{\max} \simeq V_0$$

Fluctuations

Emery Kivelson 95

	TABLE 1 Phase stiffness and T_{θ}^{max} for various superconductors						
Material	/ (Å)	λ (Å)	T _c (K)	V _o (K)	T_{θ}^{max}/T_{c}	Ref.	
Pb	830	390	7	6×10^5	2×10⁵	17	
Nb₃Sn	60	640	18	2×10^4	2×10^{3}	18	
UBe ₁₃	140	11,000	0.9	10 ²	3×10^{2}	19, 20	
LaMO ₆ S ₈	200	7,000	5	4×10^2	2×10^{2}	12, 21	
$B_{0.6}K_{0.4}BiO_3$	40	3,000	20	5×10^{2}	50	12	
K ₃ C ₆₀	30	4,800	19	10 ²	17	22, 23	
(BEDT) ₂ Cu(NCS) ₂	15.2	8,000	8	15	1.7	24	
$Nd_{2-x}Ce_{x}Cu_{2}O_{4+\delta}$	6.0	1,000	21	4×10^2	16	25	
$Tl_2Ba_2CuO_{6+\delta}$	11.6	2,000	80	2×10^2	2	26, 27	
	11.6	1,800	55	2×10^{2}	3.6	26, 27	
Bi ₂ Sr ₂ CaCu ₂ O ₈	7.5	1,850	84	140	1.5	28, 29	
Bi ₂ Pb _x Sr ₂ Ca ₂ Cu ₃ O ₁₀	5.9	1,850	105	110	0.9	28	
	8.9	1,850	105	160	1.4	28	
$La_{2-x}Sr_xCuO_{4+\delta}$	6.6	3,700	28	30	1	30	
	6.6	2,200	38	85	2	30	
YBa ₂ Cu ₃ O _{7-δ}	5.9	1,600	92	145	1.4	3 1	
YBa ₂ Cu ₄ O ₈	6.8	2,600	80	65	0.7	31	

$$V_0 = \frac{(\hbar c)^2 a}{16\pi e^2 \lambda^2(0)}$$

$$T_{\theta}^{\max} \simeq V_0$$

Fluctuations of phase, amplitude, and others...

Condensate

Phase fluctuations

Condensate

Amplitude
Fluctuations ...>

Phase fluctuations ...>

Condensate

« Schyzofrenic » SU(2) flucutations

Emergent SU(2) flucutations

Sachdev et al (2013) Efetov, Meier, CP (2013)

SO(5)-group AF AF Type 1 SC Type 1.5 g or μ Uniform AF/SC

Fine-tuning condition?

Demler, Zhang, Hanke (2005)

SU(2) symmetry related to the SU(2) symmetry of the superexchange hamiltonian and gauge SU(2) symmetry

$$U_{ij} = \begin{pmatrix} -\chi_{ij}^* & \Delta_{ij} \\ \Delta_{ij}^* & \chi_{ij} \end{pmatrix}$$

$$\chi_{ij}\delta_{\alpha\beta} = 2\langle f_{i\alpha}^{\dagger}f_{j\beta}\rangle, \quad \chi_{ij} = \chi_{ji}^{*},$$

$$\Delta_{ij}\epsilon_{\alpha\beta} = 2\langle f_{i\alpha}f_{j\beta}\rangle, \quad \Delta_{ij} = \Delta_{ji}.$$

Sachdev et al (2013) Kotliar and Liu (1988) Lee, Wen, Nagaosa, RMP (2006)

Phase diagram under applied magnetic field

The concept of SU(2) symmetry

C.N. Yang & S-C. Zhang (1989)

Pseudo-Spins

$$\eta^{+} = \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}+\mathbf{Q}\downarrow}^{\dagger}$$

$$\eta_{z} = \sum_{\mathbf{k}} \left(c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{k}\uparrow} + c_{\mathbf{k}+\mathbf{Q}\downarrow}^{\dagger} c_{\mathbf{k}+\mathbf{Q}\downarrow} - 1 \right)$$

l=1 representation

$$\Delta_{1} = -\frac{1}{\sqrt{2}} \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger},$$

$$\Delta_{0} = \frac{1}{2} \sum_{\mathbf{k},\sigma} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}+\mathbf{Q}\sigma},$$

$$\Delta_{-1} = -\Delta_{1}^{\dagger},$$

$$\left[\eta^{\pm}, \Delta_{m}\right] = \sqrt{l\left(l+1\right) - m\left(m\pm1\right)} \Delta_{m\pm1},$$
$$\left[\eta_{z}, \Delta_{m}\right] = m\Delta_{m}.$$

Topology and local structures

0(3) non linear σ -model

Topological structure: Skyrmions in the pseudo spin space

0(3) non linear σ -model

Topological structure: Skyrmions in the pseudo spin space

Homotopy classes

$$\Delta_{-,R}^2 + \Delta_{-,I}^2 + \Delta_{+,R}^2 + \Delta_{+,I}^2 = 1$$
$$\pi_2(S_3) = 0$$

Vortex structure Phase diagram

Homotopy classes

$$\Delta_{-,R}^2 + \Delta_{-,I}^2 + \Delta_{+,R}^2 + \Delta_{+,I}^2 = 1$$
$$\pi_2(S_3) = 0$$

Phase of the CDW is frozen to an integer value

$$\Delta_{-}^{2} + \Delta_{+,R}^{2} + \Delta_{+,I}^{2} = 1$$
$$\pi_{2}(S_{2}) = Z$$

Vortex structure Phase diagram

STM

Hamidian et al. (2015)

Hoffmann (2002)

Key ingredient

Short range AF correlations: J strong enough

$$H = \sum_{i,j,\sigma} c_{i,\sigma}^{\dagger} t_{ij} c_{j,\sigma} + J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\mathbf{S}_i = \sum_{\alpha,\beta} c_{i,\alpha}^{\dagger} \sigma_{\alpha\beta} c_{i\beta}$$

b)

Generalizes the 8 hot spots model close to AF QCP

Metlitski, Sachdev et al (2011) Efetov, Meier, CP (2013)

Degeneracy of wave vectors 0, (q,q), (q,0), (0,q) and SC at the hot spots

Short range AF correlations: J strong enough

$$H = \sum_{i,j,\sigma} c_{i,\sigma}^{\dagger} t_{ij} c_{j,\sigma} + J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\mathbf{S}_i = \sum_{\alpha,\beta} c_{i,\alpha}^{\dagger} \sigma_{\alpha\beta} c_{i\beta}$$

Degeneracy of wave vectors 0, (q,q), (q,0), (0,q) and SC at the hot spots

b)

Generalizes the 8 hot spots model close to AF QCP

Metlitski, Sachdev et al (2011) Efetov, Meier, CP (2013)

AF decreases as a function of doping $x \simeq (J_0 - J)^{\alpha}$

Order by disorder: SU(2) fluctuations lift the degeneracy

Large nematic response

40 a) 20 рх and
Response along the
crystal axes

Loop currents
OK with symmetries

Order by disorder: SU(2) fluctuations lift the degeneracy

Qx 40 a) 20 рх

Large nematic response

and

Response along the

crystal axes

Loop currents
OK with symmetries

Order by disorder: SU(2) fluctuations lift the degeneracy

Large nematic response and Response along the

crystal axes

Loop currentsOK with symmetries

Order by disorder: SU(2) fluctuations lift the degeneracy

Large nematic response

and
Response along the
crystal axes

Loop currentsOK with symmetries

Experiments

ARPES

INS in Hg1201

Anomalous transport

Raman: Alg resonance

Anomalous transport

Raman: A19 resonance

INS in Hg1201

Anomalous transport

Raman: Alg resonance

ARPES

$$\rho \sim T/\log T$$

$$\Sigma \sim i\epsilon_n/\log|\epsilon_n|$$

INS in Hg1201

Anomalous transport

Raman: Alg resonance

ARPES

INS in H91201

Anomalous transport

Raman: A1g resonance

Conclusions

- Charge orders are a key players in cuprate physics: natural competitor of superconductivity.
- Quasi- degeneracy between charge and SC levels is treated within SU(2) rotations and non linear σ -model
 - Local structures, or skyrmions, are a signature of the model
 - Experiments looked at : ARPES, transport (strange metal phase), Raman spectroscopies, Hall effect (evolution of carriers # with doping)...

Conclusions

- Charge orders are a key players in cuprate physics: natural competitor of superconductivity.
- Quasi- degeneracy between charge and SC levels is treated within SU(2) rotations and non linear σ -model
 - Local structures, or skyrmions, are a signature of the model

• Experiments looked at : ARPES, transport (strange metal phase), Raman spectroscopies, Hall effect (evolution of carriers # with doping)...

Hall resistivity

$$\sigma_{xx} = -\frac{2\pi e^2}{VN} \sum_{k} v_x(k)^2 \int d\omega \frac{\partial f(\omega)}{\partial \omega} A(k, \omega)^2$$

$$R_H = \frac{\sigma_{xy}}{(\sigma_{xx})^2}, n_H = \frac{V}{eR_H}$$

$$\sigma_{xy} = -\frac{4\pi^2 e^3}{3VN} \sum_{k} v_x(k) \left(v_x(k) \frac{\partial v_y(k)}{\partial k_y} - \frac{v_y(k) \left(\partial v_y(k) \right)}{\partial k_x} \right) \int d\omega \frac{\partial f(\omega)}{\partial \omega} A(k, \omega)^3$$

$$G(k, \omega) = \frac{1}{\omega - \xi_k - B \frac{M(k)^2}{\omega + \xi_k}}$$

Badoux et al 2016

AF correlations -> Fermi Arcs -> p

AF correlations -> Fermi Arcs -> p

AF correlations -> Fermi Arcs -> p

AF correlations -> Fermi Arcs -> p

 $\rho \sim T/\log T$ $\Sigma \sim i\epsilon_n/\log|\epsilon_n|$

