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Figure 2. Schematic phase diagram of high Tc materials. The
antiferromagnet (AF) is rapidly destroyed by doped holes. The
d-wave superconductor is subject to strong phase fluctuations below
the dotted line, where the proliferation of vortices has been detected
by the Nernst effect. A pseudogap region extends up to high
temperatures in the underdoped region.

the Mott transition [16]. Amazingly it was discovered that
when the Mott insulator is destroyed, the system immediately
becomes a superconductor, before becoming a metal at even
higher pressure. Furthermore, the transition temperature
reaches 11.6 K, the highest known among the organics. There
is also strong evidence that these superconductors have d-wave
pairing symmetry [17].

I would argue that 11.6 K for an organic metal qualifies
it as an example of a high Tc superconductor! The reason
is that the electronic energy scale for organic solids is much
smaller than that for ordinary solids. For example, the hopping
matrix element t is about 0.05 eV compared with 0.4 eV for the
cuprates. Thus the ratio kBTc/t ≈ 1

40 is about the same for both
systems. To emphasize this point, in figure 3. I have put both
materials on the same phase diagram in the parameter space
U/t andx of the Hubbard model. Is the d-wave superconductor
that appears with doping connected with the one that appears
under pressure? We do not have the answer at present. My
point is that with so many ‘unconventional’ examples, our
mindset today should be different from that of 20 years ago, and
we should be more receptive to the idea that superconductivity
may be a highly competitive ground state in a pure repulsive
model such as the Hubbard model.

With that remark let us return to the cuprates and examine
the phase diagram in more detail. The region between the
disappearance of AF and the onset of superconductivity is
complicated by disorder effects, even though heroic efforts
to make pure samples of YBCO have yielded interesting new
information [18]. We shall not discuss this region further. The
regions of the phase diagram with doping to the left and right
of optimal is called underdoped and overdoped, respectively.
The metallic state above Tc in the underdoped region has been
under intense study and exhibits many unusual properties not
encountered before in any other metal. This is shown below
the dashed line in figure 2 and has been called the pseudogap
phase. It is not a well defined phase in that a definite finite
temperature phase boundary has never been found, so the
dashed line should be regarded as a cross-over. There is now

Figure 3. Location of high Tc cuprates and organic superconductors
in the Hubbard model phase diagram. At half-filling, the
antiferromagnetic insulator onsets when U/t exceeds a critical value
Uc/t , where the Mott transition occurs. High Tc superconductivity
occurs when holes are doped into the Mott insulator over a
concentration range between 6% and 25%. In certain organic
compounds, 12 K superconductivity lives on the boundary between
the Mott insulator and the metal. The ratio kBTc/t is about 1

40 for
both systems. Whether the two superconducting regions are
connected is not known and indicated by the question mark.

broad agreement that the high Tc problem is synonymous with
that of doping of a Mott insulator. It then makes sense to focus
on the underdoped region, where the battle line between Mott
insulator and superconductivity is drawn.

Since we are interested in the case where U is sufficiently
large compared with t for the Hubbard model to be in the Mott
insulator phase, it is useful to expand in t/U . The leading
order result is the t–J model

H = P

⎡

⎣
∑

⟨ij⟩,σ
tij c

†
iσ cjσ + J

∑

⟨ij⟩

(
Si · Sj − 1

4
ninj

)⎤

⎦ P. (2)

The second term is the AF Heisenberg exchange between
local spins Si = 1

2c†
iασαβciβ discussed earlier. The nontrivial

part of the t–J model resides in the projection operator
P which restricts the Hilbert space to exclude the doubly
occupied states. The strong Coulomb repulsion now becomes
a constraint of no double occupation. Compared with the
Hubbard model, the Hilbert space is reduced from four states
per site to three, namely, spin up, spin down or empty. The
parameters of the t–J model appropriate for the cuprates is
also well established. J ∼ 0.13 eV–1500 K, t/J ∼ 3 and t ′/t

is negative, of order −0.2, and is believed to vary somewhat
from compound to compound [19].

Equations (1) and (2) are deceptively simple looking
Hamiltonians which have defied accurate numerical or analytic
solution. Nevertheless, the belief among many workers in
the field is that they contain the rich physics of the high
Tc phase diagram. The situation is not unlike quantum
chromodynamics (QCD), where the Lagrangian is known, but
precise understanding of confinement and the mass spectrum
has just begun to emerge from quantum Monte Carlo after
decades of hard work. To make matters worse, the high Tc

problem at finite doping is analogous to the QCD problem with

3

Rep. Prog. Phys. 71 (2008) 012501 P A Lee

finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x ≪ 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
2a

, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only by x carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x ≪ 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that

(e)

Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states

4



Rep. Prog. Phys. 71 (2008) 012501 P A Lee

0.3

300

200

100

0

T
em

pe
ra

tu
re

 (K
) ‘Normal’

Dopant Concentration x

Metal

0.0 0.1 0.2

Nernst

AF

Pseudogap

SC

Figure 2. Schematic phase diagram of high Tc materials. The
antiferromagnet (AF) is rapidly destroyed by doped holes. The
d-wave superconductor is subject to strong phase fluctuations below
the dotted line, where the proliferation of vortices has been detected
by the Nernst effect. A pseudogap region extends up to high
temperatures in the underdoped region.

the Mott transition [16]. Amazingly it was discovered that
when the Mott insulator is destroyed, the system immediately
becomes a superconductor, before becoming a metal at even
higher pressure. Furthermore, the transition temperature
reaches 11.6 K, the highest known among the organics. There
is also strong evidence that these superconductors have d-wave
pairing symmetry [17].

I would argue that 11.6 K for an organic metal qualifies
it as an example of a high Tc superconductor! The reason
is that the electronic energy scale for organic solids is much
smaller than that for ordinary solids. For example, the hopping
matrix element t is about 0.05 eV compared with 0.4 eV for the
cuprates. Thus the ratio kBTc/t ≈ 1

40 is about the same for both
systems. To emphasize this point, in figure 3. I have put both
materials on the same phase diagram in the parameter space
U/t andx of the Hubbard model. Is the d-wave superconductor
that appears with doping connected with the one that appears
under pressure? We do not have the answer at present. My
point is that with so many ‘unconventional’ examples, our
mindset today should be different from that of 20 years ago, and
we should be more receptive to the idea that superconductivity
may be a highly competitive ground state in a pure repulsive
model such as the Hubbard model.
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disappearance of AF and the onset of superconductivity is
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Figure 3. Location of high Tc cuprates and organic superconductors
in the Hubbard model phase diagram. At half-filling, the
antiferromagnetic insulator onsets when U/t exceeds a critical value
Uc/t , where the Mott transition occurs. High Tc superconductivity
occurs when holes are doped into the Mott insulator over a
concentration range between 6% and 25%. In certain organic
compounds, 12 K superconductivity lives on the boundary between
the Mott insulator and the metal. The ratio kBTc/t is about 1

40 for
both systems. Whether the two superconducting regions are
connected is not known and indicated by the question mark.

broad agreement that the high Tc problem is synonymous with
that of doping of a Mott insulator. It then makes sense to focus
on the underdoped region, where the battle line between Mott
insulator and superconductivity is drawn.

Since we are interested in the case where U is sufficiently
large compared with t for the Hubbard model to be in the Mott
insulator phase, it is useful to expand in t/U . The leading
order result is the t–J model
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The second term is the AF Heisenberg exchange between
local spins Si = 1
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iασαβciβ discussed earlier. The nontrivial

part of the t–J model resides in the projection operator
P which restricts the Hilbert space to exclude the doubly
occupied states. The strong Coulomb repulsion now becomes
a constraint of no double occupation. Compared with the
Hubbard model, the Hilbert space is reduced from four states
per site to three, namely, spin up, spin down or empty. The
parameters of the t–J model appropriate for the cuprates is
also well established. J ∼ 0.13 eV–1500 K, t/J ∼ 3 and t ′/t

is negative, of order −0.2, and is believed to vary somewhat
from compound to compound [19].

Equations (1) and (2) are deceptively simple looking
Hamiltonians which have defied accurate numerical or analytic
solution. Nevertheless, the belief among many workers in
the field is that they contain the rich physics of the high
Tc phase diagram. The situation is not unlike quantum
chromodynamics (QCD), where the Lagrangian is known, but
precise understanding of confinement and the mass spectrum
has just begun to emerge from quantum Monte Carlo after
decades of hard work. To make matters worse, the high Tc
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is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x ≪ 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
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) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only by x carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x ≪ 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that
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Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x ≪ 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
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) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
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, ± π
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) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only by x carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x ≪ 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that
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quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1
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so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states

4

Rep. Prog. Phys. 71 (2008) 012501 P A Lee

finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x ≪ 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
(± π

2a
, ± π

2a
) [25]. With finite doping the Fermi surfaces are

ellipses centred at (± π
2a

, ± π
2a

) as shown in figure 4(a). Note
that the unit cell is doubled because of AF ordering and the
BZ is reduced to the diamond in figure 4(a). Applying the
Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ

where ARBZ = 1
2ABZ. Therefore we conclude that the area

of each ellipse (hole pocket) is x
4 ABZ. Physically it makes

sense that transport properties are determined only by x carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x ≪ 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that

(e)

Figure 4. (a) Fermi pockets in a doped AF. The dashed lines
indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
second nearest-neighbour hopping. (c) Schematic picture of the
Fermi arcs. The excitations are gapless when path A crosses the arc
but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
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will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
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few assumptions, not much beyond the statement that well
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weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.
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Figure 2. Schematic phase diagram of high Tc materials. The
antiferromagnet (AF) is rapidly destroyed by doped holes. The
d-wave superconductor is subject to strong phase fluctuations below
the dotted line, where the proliferation of vortices has been detected
by the Nernst effect. A pseudogap region extends up to high
temperatures in the underdoped region.

the Mott transition [16]. Amazingly it was discovered that
when the Mott insulator is destroyed, the system immediately
becomes a superconductor, before becoming a metal at even
higher pressure. Furthermore, the transition temperature
reaches 11.6 K, the highest known among the organics. There
is also strong evidence that these superconductors have d-wave
pairing symmetry [17].

I would argue that 11.6 K for an organic metal qualifies
it as an example of a high Tc superconductor! The reason
is that the electronic energy scale for organic solids is much
smaller than that for ordinary solids. For example, the hopping
matrix element t is about 0.05 eV compared with 0.4 eV for the
cuprates. Thus the ratio kBTc/t ≈ 1

40 is about the same for both
systems. To emphasize this point, in figure 3. I have put both
materials on the same phase diagram in the parameter space
U/t andx of the Hubbard model. Is the d-wave superconductor
that appears with doping connected with the one that appears
under pressure? We do not have the answer at present. My
point is that with so many ‘unconventional’ examples, our
mindset today should be different from that of 20 years ago, and
we should be more receptive to the idea that superconductivity
may be a highly competitive ground state in a pure repulsive
model such as the Hubbard model.

With that remark let us return to the cuprates and examine
the phase diagram in more detail. The region between the
disappearance of AF and the onset of superconductivity is
complicated by disorder effects, even though heroic efforts
to make pure samples of YBCO have yielded interesting new
information [18]. We shall not discuss this region further. The
regions of the phase diagram with doping to the left and right
of optimal is called underdoped and overdoped, respectively.
The metallic state above Tc in the underdoped region has been
under intense study and exhibits many unusual properties not
encountered before in any other metal. This is shown below
the dashed line in figure 2 and has been called the pseudogap
phase. It is not a well defined phase in that a definite finite
temperature phase boundary has never been found, so the
dashed line should be regarded as a cross-over. There is now

Figure 3. Location of high Tc cuprates and organic superconductors
in the Hubbard model phase diagram. At half-filling, the
antiferromagnetic insulator onsets when U/t exceeds a critical value
Uc/t , where the Mott transition occurs. High Tc superconductivity
occurs when holes are doped into the Mott insulator over a
concentration range between 6% and 25%. In certain organic
compounds, 12 K superconductivity lives on the boundary between
the Mott insulator and the metal. The ratio kBTc/t is about 1

40 for
both systems. Whether the two superconducting regions are
connected is not known and indicated by the question mark.

broad agreement that the high Tc problem is synonymous with
that of doping of a Mott insulator. It then makes sense to focus
on the underdoped region, where the battle line between Mott
insulator and superconductivity is drawn.

Since we are interested in the case where U is sufficiently
large compared with t for the Hubbard model to be in the Mott
insulator phase, it is useful to expand in t/U . The leading
order result is the t–J model

H = P

⎡

⎣
∑

⟨ij⟩,σ
tij c

†
iσ cjσ + J

∑

⟨ij⟩

(
Si · Sj − 1

4
ninj

)⎤

⎦ P. (2)

The second term is the AF Heisenberg exchange between
local spins Si = 1

2c†
iασαβciβ discussed earlier. The nontrivial

part of the t–J model resides in the projection operator
P which restricts the Hilbert space to exclude the doubly
occupied states. The strong Coulomb repulsion now becomes
a constraint of no double occupation. Compared with the
Hubbard model, the Hilbert space is reduced from four states
per site to three, namely, spin up, spin down or empty. The
parameters of the t–J model appropriate for the cuprates is
also well established. J ∼ 0.13 eV–1500 K, t/J ∼ 3 and t ′/t

is negative, of order −0.2, and is believed to vary somewhat
from compound to compound [19].

Equations (1) and (2) are deceptively simple looking
Hamiltonians which have defied accurate numerical or analytic
solution. Nevertheless, the belief among many workers in
the field is that they contain the rich physics of the high
Tc phase diagram. The situation is not unlike quantum
chromodynamics (QCD), where the Lagrangian is known, but
precise understanding of confinement and the mass spectrum
has just begun to emerge from quantum Monte Carlo after
decades of hard work. To make matters worse, the high Tc

problem at finite doping is analogous to the QCD problem with
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finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc

problem has a lot more experimental constraint and input. As
a result we know a lot about the high Tc phenomenology which
severely limits the theoretical options.

2. Simple physical picture and the pseudogap
phenomenology

Let us start with some simple common sense arguments to gain
some insight into the nature of the problem of a doped Mott
insulator. Consider a single hole hoping in an AF background
as shown in figure 1. After one hop we find a spin surrounded
by ferromagnetic neighbours, costing an energy of 3

2J from the
three ferromagnetic bonds if the spins are treated as classical
S = 1

2 . There is a competition between the exchange energy
J and the desire of the hole to hop in order to gain the kinetic
energy t per hole. For large enough doping the kinetic energy
wins and we expect a metallic state with some short range
AF correlation. By comparing xt and J , we expect this to onset
at x ∼ J/t ∼ 1

3 , in good agreement with the experimental
finding. This state should be a Fermi liquid state. There is a
powerful theorem in Landau–Fermi liquid theory, commonly
called the Luttinger theorem [21], which states that the area of
the Fermi surface is the same as that of free fermions, i.e. it
is determined by the total density of electrons in the unit cell.
In our case the area is 1

2 (1 − x)ABZ where ABZ = (2π/a)2

is the area of the Brillouin zone (BZ). This is exactly what is
found experimentally. In figure 4(d) we show an example of
the measured Fermi surface. The precise shape can be fitted
with a hopping model with further neighbour hopping.

The opposite limit of a few holes (x ≪ 1) hopping
in an AF background is less trivial, but by now reasonably
well understood. The competition with the AF exchange
causes the effective hopping matrix element to be renormalized
downward from t to J [22–24]. The quasiparticle nevertheless
manages to form coherent bands. The bands have minima at
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Luttinger theorem to the doubled unit cell, the total area of
the Fermi surface in the reduced BZ is now (1 − x)ARBZ
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sense that transport properties are determined only by x carriers
occupying small Fermi pockets. The theory of a few holes in
AF background is quite well developed, and recently papers
applying the effective field theory approach borrowed from the
particle physics literature are particularly notable [26, 27].

We have good understanding of x ≪ 1 and x ! 1
3 .

What happens in between? Here we run into a dilemma.
We know that AF order is destroyed for x ! 0.03, beyond
which points we have no indication of unit cell doubling. If
Fermi liquid theory were to hold, what would happen to the
Luttinger theorem? Recall that the nice physical picture of
small hole pockets rely on the unit cell doubling. Once that
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indicate the reduced Brillouin zone due to the unit cell doubling of
the AF. (b) Fermi surface of a tight binding model with first and
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but are gapped everywhere along path B. (d) Experimental data
showing the Fermi surface in overdoped Tl-2201 (x = 0.25).
Colours indicate the intensity of low energy excitations. Data from
Platé et al [33]. (e) Experimental data showing the Fermi arc in one
quadrant of (c) in underdoped Na2−xCaxCu2O2Cl2 (x = 0.1). Data
from Shen et al [34].

is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states

4

NaCOCl (x=0.1)

Rep. Prog. Phys. 71 (2008) 012501 P A Lee

finite quark density [20], where accurate numerical solution
is so far not possible due to the fermion sign problem. On
the other hand, unlike the quark-gluon problem the high Tc
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is absent, the Luttinger theorem forces us to have a ‘large’
Fermi surface, i.e. one with area proportional to 1 − x. In
that case it will be difficult to see how transport properties
will continue to look as if it is given by x holes. We note
that while the original derivation of the Luttinger theorem was
perturbative in the interaction strength, the modern derivation
by Oshikawa [28, 29] is a topological one and relies on very
few assumptions, not much beyond the statement that well
defined quasiparticles exist. In principle, the Fermi liquid can
develop a heavy mass ≈ 1

x
so that the conductivity spectral

weight n/m∗ ≈ x, but experimentally there is no evidence
of such heavy mass formation. Parenthetically we point out
that the three dimensional example of doped Mott insulator
La2−xSrxTiO3 appears to take the heavy mass route [30].

It turns out that Nature solves this problem in an extremely
clever and unexpected way. As far as the ground state is
concerned, the question is moot because it appears that once
AF is destroyed the system becomes superconducting and the
Luttinger theorem cannot be applied. What about the normal
state above the superconducting Tc? The extensive work
using angle resolved photoemission spectroscopy (ARPES)
has shown that the gapless excitations lie on an arc [31, 32].
Anywhere apart from the arc, the excitations are gapped.

This situation is sufficiently strange that it requires a bit
more explanation in terms of the experimental observation.
ARPES measures the spectrum of occupied electron states
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We report NMR shift hK and TI data of Y taken from 77 to 300 K in YBa2Cu366+ for
0.35 & x & 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid pic-
ture is found to apply for the spin part K, of AIC. The spin contribution g, (x,T) to g is singled out, as
the T variation of BED scales linearly with the macroscopic susceptibility g . This implies that Cu(3d)
and G(2p) holes do not have independent degrees of freedom. Their hybridization, which has a o char-
acter, hardly varies with doping. These results put severe constraints on theoretical models of high-T,
cuprates.

PACS numbers: 74.70.Vy, 75.20.En, 76.60.Cq, 76.60.Es

The interplay between the magnetic properties of
Cu(3d) holes and the charge transport mediated by the
G(2p) holes is still a highly controversial question in
high-T; materials. While T~ nuclear-spin-lattice relaxa-
tion data on Y and Cu at the supcrconducting transi-
tion ' indicate that both hole systems are involved in the
superconducting pairing, some authors suggest that the
~rsistence of 20 antiferromagnetjtc spin Auctuations
above T, indicates that the Cu(3d) spins could somehow
be decoupled from thc charge transport mediated by the
G(2p) holes. This could result for instance from weak
Cu(3d)-G(2p) x bonding at the Fermi level. Such
ideas have recently led Johnston to attempt a partition
of the macroscopic susceptibility g in high-T, materials
into a T-dependent part attributed to the lattice of Cu
spins and a Pauli term associated with charge carriers.
In order to gain local insight on these properties, NMR
measurements are highly desirable. Y nuclei are direct
probes of the susceptibility of the Cu02 planes. We
report here. an extensive experimental study of both the
NMR shift Kg and the nuclear r'elaxation rate Ti of
Y, which allows for the erst time a direct comparison

of the static and dynamic susceptibilities in these materi-
als from thc metallic to the semiconducting state. These
results provide evidence that both K, and (T|T) ' are T
dependent in thc metallic state as soon as x departs from
unity. A Korringa relation between T~ T and K, is estab-
lished and indicates that a Fermi-liquid picture holds.
Our data suggest that this behavior might extend as well
into the semiconducting state. Further, K„which probes
the T dependence of g on the oxygen sites, ' is found to
scale with g, which is dominated by g on the copper
sites. ' Therefore the T variation of g should in no
case be attributed solely to the Cu + spins and Cu(3d)
and O(2p) holes do not have independent degrees of
freedom.
NMR data have taken on the same powdered ceramic

samples as in Ref. 7, which had been deoxygenated at
low T (—500'C) and immediately sealed in Pyrex vials
in a He atmosphere. Our initial x 1 sample (now la-
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FIG. 1. The shift hE of the Y line, referenced to YC13
plotted vs T, from 77 to 300 K. The lines are guides to the eye.

beled x- I —e) had been left about two weeks in air be-
fore being sealed and has probably lost some oxygen.
Samples kept now for more than one year in such vials
did not show any change in their properties. The posi-
tions ~ of the NMR line relative to a YC13 reference,
determined as in Ref. 7, are summarized in Fig. 1 for
samples with x &0.35 which arc not antifcrromagnetic
above 100 K. It can bc seen that AE is nearly T in-
dependent above T; only for x 1, in good agreement
with Cu NMR data, ' while a large-T variation of hE
is detected already for x 1 —e. Except for x =1, earlier
data reported above 150 K" agree with thc present re-
sults.
Let us recall here that the shift tensor AK(x) =a(x)
+K, (x) involves a chemical-shift contribution o(x) due
to ftBed electronic shells and a spin contribution K, (x)
due to the susceptibility on the G(2p) holes. Data on
oriented powders, to be reported elsewhere, ' confirm
that e is T independent, as might be expected from the
negligible T variation of the lattice parameters, and that
K, (x) is purely isotropic, as obtained indirectly from
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Quantum oscillations and the Fermi surface in an
underdoped high-Tc superconductor
Nicolas Doiron-Leyraud1, Cyril Proust2, David LeBoeuf1, Julien Levallois2, Jean-Baptiste Bonnemaison1,
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Despite twenty years of research, the phase diagram of high-
transition-temperature superconductors remains enigmatic1,2. A
central issue is the origin of the differences in the physical prop-
erties of these copper oxides doped to opposite sides of the super-
conducting region. In the overdoped regime, the material behaves
as a reasonably conventional metal, with a large Fermi surface3,4.
The underdoped regime, however, is highly anomalous and
appears to have no coherent Fermi surface, but only disconnected
‘Fermi arcs’5,6. The fundamental question, then, is whether under-
doped copper oxides have a Fermi surface, and if so, whether
it is topologically different from that seen in the overdoped
regime. Here we report the observation of quantum oscillations
in the electrical resistance of the oxygen-ordered copper oxide
YBa2Cu3O6.5, establishing the existence of a well-defined Fermi
surface in the ground state of underdoped copper oxides, once
superconductivity is suppressed by a magnetic field. The low oscil-
lation frequency reveals a Fermi surface made of small pockets, in
contrast to the large cylinder characteristic of the overdoped
regime. Two possible interpretations are discussed: either a small
pocket is part of the band structure specific to YBa2Cu3O6.5 or
small pockets arise from a topological change at a critical point
in the phase diagram. Our understanding of high-transition-
temperature (high-Tc) superconductors will depend critically on
which of these two interpretations proves to be correct.

The electrical resistance of two samples of ortho-II ordered
YBa2Cu3O6.5 was measured in a magnetic field of up to 62 T applied
normal to the CuO2 planes (Bjjc). (Sample characteristics and details
of the measurements are given in the Methods section.) With a Tc of
57.5 K, these samples have a hole doping per planar copper atom of
p 5 0.10, that is, they are well into the underdoped region of the
phase diagram (see Fig. 1a). Angle-resolved photoemission spec-
troscopy (ARPES) data for underdoped Na2 2 xCaxCu2O2Cl2 (Na-
CCOC) at precisely the same doping (reproduced in Fig. 1b from
ref. 6) shows most of the spectral intensity to be concentrated in a
small region near the nodal position (p/2, p/2), suggesting a Fermi
surface broken up into disconnected arcs, while ARPES studies on
overdoped Tl2Ba2CuO61d (Tl-2201) at p 5 0.25 reveal a large, con-
tinuous cylinder (reproduced in Fig. 1c from ref. 4).

The Hall resistance Rxy as a function of magnetic field is displayed
in Fig. 2 for sample A, and in Supplementary Fig. 1 for sample B, where
oscillations are clearly seen above the resistive superconducting trans-
ition. Note that a vortex liquid phase is believed to extend well above
the irreversibility field, beyond our highest field of 62 T, which may
explain why Rxy is negative at these low temperatures, as opposed to
positive at temperatures above Tc. Nevertheless, quantum oscillations
are known to exhibit the very same diagnostic characteristics of

frequency and mass in the vortex state as in the field-induced normal
state above the upper critical field Hc2(0) (for example, ref. 7). They are
caused by the passage of quantized Landau levels across the Fermi level
as the applied magnetic field is varied, and as such they are considered
the most robust and direct signature of a coherent Fermi surface. The
inset of Fig. 2 shows the 2 K isotherm and a smooth background curve.
We extract the oscillatory component, plotted in Fig. 3a as a function

1Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Canada J1K 2R1. 2Laboratoire National des Champs Magnétiques Pulsés (LNCMP), UMR CNRS-UPS-
INSA 5147, Toulouse 31400, France. 3Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada V6T 1Z4. 4Canadian Institute for Advanced Research,
Toronto, Canada M5G 1Z8.
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Figure 1 | Phase diagram of high-temperature superconductors.
a, Schematic doping dependence of the antiferromagnetic (TN) and
superconducting (Tc) transition temperatures and the pseudogap crossover
temperature T* in YBCO. The vertical lines at p 5 0.1 and p 5 0.25 mark the
positions of copper oxide materials discussed in the text: ortho-II ordered
YBa2Cu3O6.5 and Na-CCOC, located well into the underdoped region, and
Tl-2201, well into the overdoped region, respectively. b, c, Distribution of
ARPES spectral intensity in one quadrant of the Brillouin zone, measured
(b), on Na-CCOC at p 5 0.1, and (c), on Tl-2201 at p 5 0.25 (reproduced
from ref. 6 and ref. 4, with permissions from K. M. Shen and A. Damascelli,
respectively). These respectively reveal a truncated Fermi surface made of
‘Fermi arcs’ at p 5 0.10, and a large, roughly cylindrical and continuous
Fermi surface at p 5 0.25. The red ellipse in b encloses an area Ak that
corresponds to the frequency F of quantum oscillations measured in YBCO.
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g9Y N~ Evidence for a Fermi-LiquM Behavior in YSaqcu3O6+
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We report NMR shift hK and TI data of Y taken from 77 to 300 K in YBa2Cu366+ for
0.35 & x & 1, from the insulating to the metallic state. A Korringa law and therefore a Fermi-liquid pic-
ture is found to apply for the spin part K, of AIC. The spin contribution g, (x,T) to g is singled out, as
the T variation of BED scales linearly with the macroscopic susceptibility g . This implies that Cu(3d)
and G(2p) holes do not have independent degrees of freedom. Their hybridization, which has a o char-
acter, hardly varies with doping. These results put severe constraints on theoretical models of high-T,
cuprates.

PACS numbers: 74.70.Vy, 75.20.En, 76.60.Cq, 76.60.Es

The interplay between the magnetic properties of
Cu(3d) holes and the charge transport mediated by the
G(2p) holes is still a highly controversial question in
high-T; materials. While T~ nuclear-spin-lattice relaxa-
tion data on Y and Cu at the supcrconducting transi-
tion ' indicate that both hole systems are involved in the
superconducting pairing, some authors suggest that the
~rsistence of 20 antiferromagnetjtc spin Auctuations
above T, indicates that the Cu(3d) spins could somehow
be decoupled from thc charge transport mediated by the
G(2p) holes. This could result for instance from weak
Cu(3d)-G(2p) x bonding at the Fermi level. Such
ideas have recently led Johnston to attempt a partition
of the macroscopic susceptibility g in high-T, materials
into a T-dependent part attributed to the lattice of Cu
spins and a Pauli term associated with charge carriers.
In order to gain local insight on these properties, NMR
measurements are highly desirable. Y nuclei are direct
probes of the susceptibility of the Cu02 planes. We
report here. an extensive experimental study of both the
NMR shift Kg and the nuclear r'elaxation rate Ti of
Y, which allows for the erst time a direct comparison

of the static and dynamic susceptibilities in these materi-
als from thc metallic to the semiconducting state. These
results provide evidence that both K, and (T|T) ' are T
dependent in thc metallic state as soon as x departs from
unity. A Korringa relation between T~ T and K, is estab-
lished and indicates that a Fermi-liquid picture holds.
Our data suggest that this behavior might extend as well
into the semiconducting state. Further, K„which probes
the T dependence of g on the oxygen sites, ' is found to
scale with g, which is dominated by g on the copper
sites. ' Therefore the T variation of g should in no
case be attributed solely to the Cu + spins and Cu(3d)
and O(2p) holes do not have independent degrees of
freedom.
NMR data have taken on the same powdered ceramic

samples as in Ref. 7, which had been deoxygenated at
low T (—500'C) and immediately sealed in Pyrex vials
in a He atmosphere. Our initial x 1 sample (now la-
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FIG. 1. The shift hE of the Y line, referenced to YC13
plotted vs T, from 77 to 300 K. The lines are guides to the eye.

beled x- I —e) had been left about two weeks in air be-
fore being sealed and has probably lost some oxygen.
Samples kept now for more than one year in such vials
did not show any change in their properties. The posi-
tions ~ of the NMR line relative to a YC13 reference,
determined as in Ref. 7, are summarized in Fig. 1 for
samples with x &0.35 which arc not antifcrromagnetic
above 100 K. It can bc seen that AE is nearly T in-
dependent above T; only for x 1, in good agreement
with Cu NMR data, ' while a large-T variation of hE
is detected already for x 1 —e. Except for x =1, earlier
data reported above 150 K" agree with thc present re-
sults.
Let us recall here that the shift tensor AK(x) =a(x)
+K, (x) involves a chemical-shift contribution o(x) due
to ftBed electronic shells and a spin contribution K, (x)
due to the susceptibility on the G(2p) holes. Data on
oriented powders, to be reported elsewhere, ' confirm
that e is T independent, as might be expected from the
negligible T variation of the lattice parameters, and that
K, (x) is purely isotropic, as obtained indirectly from
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Despite twenty years of research, the phase diagram of high-
transition-temperature superconductors remains enigmatic1,2. A
central issue is the origin of the differences in the physical prop-
erties of these copper oxides doped to opposite sides of the super-
conducting region. In the overdoped regime, the material behaves
as a reasonably conventional metal, with a large Fermi surface3,4.
The underdoped regime, however, is highly anomalous and
appears to have no coherent Fermi surface, but only disconnected
‘Fermi arcs’5,6. The fundamental question, then, is whether under-
doped copper oxides have a Fermi surface, and if so, whether
it is topologically different from that seen in the overdoped
regime. Here we report the observation of quantum oscillations
in the electrical resistance of the oxygen-ordered copper oxide
YBa2Cu3O6.5, establishing the existence of a well-defined Fermi
surface in the ground state of underdoped copper oxides, once
superconductivity is suppressed by a magnetic field. The low oscil-
lation frequency reveals a Fermi surface made of small pockets, in
contrast to the large cylinder characteristic of the overdoped
regime. Two possible interpretations are discussed: either a small
pocket is part of the band structure specific to YBa2Cu3O6.5 or
small pockets arise from a topological change at a critical point
in the phase diagram. Our understanding of high-transition-
temperature (high-Tc) superconductors will depend critically on
which of these two interpretations proves to be correct.

The electrical resistance of two samples of ortho-II ordered
YBa2Cu3O6.5 was measured in a magnetic field of up to 62 T applied
normal to the CuO2 planes (Bjjc). (Sample characteristics and details
of the measurements are given in the Methods section.) With a Tc of
57.5 K, these samples have a hole doping per planar copper atom of
p 5 0.10, that is, they are well into the underdoped region of the
phase diagram (see Fig. 1a). Angle-resolved photoemission spec-
troscopy (ARPES) data for underdoped Na2 2 xCaxCu2O2Cl2 (Na-
CCOC) at precisely the same doping (reproduced in Fig. 1b from
ref. 6) shows most of the spectral intensity to be concentrated in a
small region near the nodal position (p/2, p/2), suggesting a Fermi
surface broken up into disconnected arcs, while ARPES studies on
overdoped Tl2Ba2CuO61d (Tl-2201) at p 5 0.25 reveal a large, con-
tinuous cylinder (reproduced in Fig. 1c from ref. 4).

The Hall resistance Rxy as a function of magnetic field is displayed
in Fig. 2 for sample A, and in Supplementary Fig. 1 for sample B, where
oscillations are clearly seen above the resistive superconducting trans-
ition. Note that a vortex liquid phase is believed to extend well above
the irreversibility field, beyond our highest field of 62 T, which may
explain why Rxy is negative at these low temperatures, as opposed to
positive at temperatures above Tc. Nevertheless, quantum oscillations
are known to exhibit the very same diagnostic characteristics of

frequency and mass in the vortex state as in the field-induced normal
state above the upper critical field Hc2(0) (for example, ref. 7). They are
caused by the passage of quantized Landau levels across the Fermi level
as the applied magnetic field is varied, and as such they are considered
the most robust and direct signature of a coherent Fermi surface. The
inset of Fig. 2 shows the 2 K isotherm and a smooth background curve.
We extract the oscillatory component, plotted in Fig. 3a as a function

1Département de physique and RQMP, Université de Sherbrooke, Sherbrooke, Canada J1K 2R1. 2Laboratoire National des Champs Magnétiques Pulsés (LNCMP), UMR CNRS-UPS-
INSA 5147, Toulouse 31400, France. 3Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada V6T 1Z4. 4Canadian Institute for Advanced Research,
Toronto, Canada M5G 1Z8.
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Figure 1 | Phase diagram of high-temperature superconductors.
a, Schematic doping dependence of the antiferromagnetic (TN) and
superconducting (Tc) transition temperatures and the pseudogap crossover
temperature T* in YBCO. The vertical lines at p 5 0.1 and p 5 0.25 mark the
positions of copper oxide materials discussed in the text: ortho-II ordered
YBa2Cu3O6.5 and Na-CCOC, located well into the underdoped region, and
Tl-2201, well into the overdoped region, respectively. b, c, Distribution of
ARPES spectral intensity in one quadrant of the Brillouin zone, measured
(b), on Na-CCOC at p 5 0.1, and (c), on Tl-2201 at p 5 0.25 (reproduced
from ref. 6 and ref. 4, with permissions from K. M. Shen and A. Damascelli,
respectively). These respectively reveal a truncated Fermi surface made of
‘Fermi arcs’ at p 5 0.10, and a large, roughly cylindrical and continuous
Fermi surface at p 5 0.25. The red ellipse in b encloses an area Ak that
corresponds to the frequency F of quantum oscillations measured in YBCO.
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model that proposed that the circulating super-
currents weaken the superconducting order pa-
rameter and allow the local appearance of a
coexisting spin density wave (SDW) and HTSC
phase (23) surrounding the core. In a more
recent model, which is an extension of (5) and
(22), the effective mass associated with spin
fluctuations results in an AF localization length
that might be substantially greater than the core
radius (30). An associated appearance of charge
density wave order was also predicted (31)
whose effects on the HTSC quasi-particles
should be detectable in the regions surrounding
the vortex core (23).

To test these ideas, we apply our recently
developed techniques of low-energy quasi-par-
ticle imaging at HTSC vortices (21). We choose
to study Bi-2212, because YBCO and LSCO
have proven nonideal for spectroscopic studies
because their cleaved surfaces often exhibit
nonsuperconducting spectra. Our “as-grown”
Bi-2212 crystals are generated by the floating
zone method, are slightly overdoped with Tc !
89 K, and contain 0.5% of Ni impurity atoms.
They are cleaved (at the BiO plane) in cryogen-
ic ultrahigh vacuum below 30 K and immedi-
ately inserted into the STM head. Figure 1A
shows a topographic image of the 560 Å square
area where all the STM measurements reported
here were carried out. The atomic resolution
and the supermodulation (with wavelength
"26 Å oriented at 45° to the Cu-O bond direc-
tions) are evident throughout.

To study effects of the magnetic field B on
the superconducting electronic structure, we
first acquire zero-field maps of the differential
tunneling conductance (G ! dI/dV) measured
at all locations (x, y) in the field of view (FOV)
of Fig. 1A. Because LDOS(E ! eV) # G(V ),
where V is the sample bias voltage, this results
in a two-dimensional map of the local density
of states LDOS(E, x, y, B ! 0). We acquire
these LDOS maps at energies ranging from –12
meV to $12 meV in 1-meV increments. The B
field is then ramped to its target value, and, after
any drift has stabilized, we remeasure the topo-
graph with the same resolution. The FOV
where the high-field LDOS measurements are
to be made is then matched to that in Fig. 1A
within 1 Å ("0.25a0) by comparing character-
istic topographic/spectroscopic features. Final-
ly, we acquire the high-field LDOS maps,
LDOS(E, x, y, B), at the same series of energies
as the zero-field case.

To focus preferentially on B field effects,
we define a type of two-dimensional map:

S E1

E2(x, y, B) ! !
E1

E2

%LDOS&E, x, y, B'

! LDOS&E, x, y, 0'(dE (1)

which represents the integral of all additional
spectral density induced by the B field be-
tween the energies E1 and E2 at each location

(x, y). We use this technique of combined
electronic background subtraction and energy
integration to enhance the signal-to-noise ra-
tio of the vortex-induced states. In Bi-2212,
these states are broadly distributed in energy
around )7 meV (21), so S )1

)12(x, y, B) effec-
tively maps the additional spectral strength
under their peaks.

Figure 1B is an image of S1
12(x, y, 5)

measured in the FOV of Fig. 1A. The loca-
tions of seven vortices are evident as the
darker regions of dimension "100 Å. Each
vortex displays a spatial structure in the inte-
grated LDOS consisting of a checkerboard
pattern oriented along Cu-O bonds. We have
observed spatial structure with the same pe-
riodicity and orientation, in the vortex-in-
duced LDOS on multiple samples and at
fields ranging from 2 to 7 T. In all 35 vortices
studied in detail, this spatial and energetic
structure exists, but the checkerboard is more
clearly resolved by the positive-bias peak.

We show the power spectrum from the
two-dimensional Fourier transform of
S1

12(x, y, 5),PS[S1
12(x, y, 5)]!{FT%S1

12&x, y, 5)]}2,
in Fig. 2A and a labeled schematic of these
results in Fig. 2B. In these k-space images,
the atomic periodicity is detected at the points
labeled by A, which by definition are at
(0,)1) and ()1,0). The harmonics of the
supermodulation are identified by the sym-
bols B1 and B2. These features (A, B1, and
B2) are observed in the Fourier transforms of
all LDOS maps, independent of magnetic
field, and they remain as a small background
signal in PS[S1

12(x, y, 5)] because the zero-
field and high-field LDOS images can only
be matched to within 1 Å before subtraction.
Most importantly, PS[S1

12(x, y, 5)] reveals
new peaks at the four k-space points, which
correspond to the spatial structure of the vor-
tex-induced quasi-particle states. We label
their locations C. No similar peaks in the
spectral weight exist at these points in the
two-dimensional Fourier transform of these
zero-field LDOS maps.

To quantify these results, we fit a Lorent-
zian to PS[S1

12(x, y, 5)] at each of the four
points labeled C in Fig. 2B. We find that they
occur at k-space radius 0.062 Å*1 with width
+ ! 0.011 ) 0.002 Å*1. Figure 2C shows
the value of PS[S1

12(x, y, 5)] measured along
the dashed line in Fig. 2B. The central peak
associated with long-wavelength structure,
the peak associated with the atoms, and the
peak due to the vortex-induced quasi-particle
states are all evident. The vortex-induced
states identified by this means occur at ()1/4,
0) and (0, )1/4) to within the accuracy of the
measurement. Equivalently, the checkerboard
pattern evident in the LDOS has spatial peri-
odicity 4a0 oriented along the Cu-O bonds.
Furthermore, the width + of the Lorentzian
yields a spatial correlation length for these
LDOS oscillations of L ! (1/,+) - 30 ) 5

Å (or L - 7.8 ) 1.3a0). This is substantially
greater than the measured (21) core radius. It
is also evident in Figs. 1B and 2A that the
LDOS oscillations have stronger spectral
weight in one Cu-O direction than in the

Fig. 1. Topographic and spectroscopic images of
the same area of a Bi-2212 surface. (A) A topo-
graphic image of the 560 Å field of view (FOV ) in
which the vortex studies were carried out. The
supermodulation can be seen clearly along with
some effects of electronic inhomogeneity. The
Cu–O–Cu bonds are oriented at 45° to the su-
permodulation. Atomic resolution is evident
throughout, and the inset shows a 140 Å square
FOV at .2 magnification to make this easier to
see. The mean Bi-Bi distance apparent here is
a0 ! 3.83 Å and is identical to the mean Cu-Cu
distance in the CuO plane "5 Å below. (B) A map
of S1

12(x, y, 5) showing the additional LDOS in-
duced by the seven vortices. Each vortex is ap-
parent as a checkerboard at 45° to the page
orientation. Not all are identical, most likely be-
cause of the effects of electronic inhomogeneity.
The units of S1

12(x, y, 5) are picoamps because it
represents /dI/dV!0V. In this energy range, the
maximum integrated LDOS at a vortex is "3
pA, as compared with the zero field integrated
LDOS of "1 pA. The latter is subtracted from
the former to give a maximum contrast of "2
pA. We also note that the integrated differen-
tial conductance between 0 and *200 meV is
200 pA because all measurements reported in
this paper were obtained at a junction resis-
tance of 1 gigaohm set at a bias voltage of
–200 mV.
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model that proposed that the circulating super-
currents weaken the superconducting order pa-
rameter and allow the local appearance of a
coexisting spin density wave (SDW) and HTSC
phase (23) surrounding the core. In a more
recent model, which is an extension of (5) and
(22), the effective mass associated with spin
fluctuations results in an AF localization length
that might be substantially greater than the core
radius (30). An associated appearance of charge
density wave order was also predicted (31)
whose effects on the HTSC quasi-particles
should be detectable in the regions surrounding
the vortex core (23).

To test these ideas, we apply our recently
developed techniques of low-energy quasi-par-
ticle imaging at HTSC vortices (21). We choose
to study Bi-2212, because YBCO and LSCO
have proven nonideal for spectroscopic studies
because their cleaved surfaces often exhibit
nonsuperconducting spectra. Our “as-grown”
Bi-2212 crystals are generated by the floating
zone method, are slightly overdoped with Tc !
89 K, and contain 0.5% of Ni impurity atoms.
They are cleaved (at the BiO plane) in cryogen-
ic ultrahigh vacuum below 30 K and immedi-
ately inserted into the STM head. Figure 1A
shows a topographic image of the 560 Å square
area where all the STM measurements reported
here were carried out. The atomic resolution
and the supermodulation (with wavelength
"26 Å oriented at 45° to the Cu-O bond direc-
tions) are evident throughout.

To study effects of the magnetic field B on
the superconducting electronic structure, we
first acquire zero-field maps of the differential
tunneling conductance (G ! dI/dV) measured
at all locations (x, y) in the field of view (FOV)
of Fig. 1A. Because LDOS(E ! eV) # G(V ),
where V is the sample bias voltage, this results
in a two-dimensional map of the local density
of states LDOS(E, x, y, B ! 0). We acquire
these LDOS maps at energies ranging from –12
meV to $12 meV in 1-meV increments. The B
field is then ramped to its target value, and, after
any drift has stabilized, we remeasure the topo-
graph with the same resolution. The FOV
where the high-field LDOS measurements are
to be made is then matched to that in Fig. 1A
within 1 Å ("0.25a0) by comparing character-
istic topographic/spectroscopic features. Final-
ly, we acquire the high-field LDOS maps,
LDOS(E, x, y, B), at the same series of energies
as the zero-field case.

To focus preferentially on B field effects,
we define a type of two-dimensional map:

S E1

E2(x, y, B) ! !
E1

E2

%LDOS&E, x, y, B'

! LDOS&E, x, y, 0'(dE (1)

which represents the integral of all additional
spectral density induced by the B field be-
tween the energies E1 and E2 at each location

(x, y). We use this technique of combined
electronic background subtraction and energy
integration to enhance the signal-to-noise ra-
tio of the vortex-induced states. In Bi-2212,
these states are broadly distributed in energy
around )7 meV (21), so S )1

)12(x, y, B) effec-
tively maps the additional spectral strength
under their peaks.

Figure 1B is an image of S1
12(x, y, 5)

measured in the FOV of Fig. 1A. The loca-
tions of seven vortices are evident as the
darker regions of dimension "100 Å. Each
vortex displays a spatial structure in the inte-
grated LDOS consisting of a checkerboard
pattern oriented along Cu-O bonds. We have
observed spatial structure with the same pe-
riodicity and orientation, in the vortex-in-
duced LDOS on multiple samples and at
fields ranging from 2 to 7 T. In all 35 vortices
studied in detail, this spatial and energetic
structure exists, but the checkerboard is more
clearly resolved by the positive-bias peak.

We show the power spectrum from the
two-dimensional Fourier transform of
S1

12(x, y, 5),PS[S1
12(x, y, 5)]!{FT%S1

12&x, y, 5)]}2,
in Fig. 2A and a labeled schematic of these
results in Fig. 2B. In these k-space images,
the atomic periodicity is detected at the points
labeled by A, which by definition are at
(0,)1) and ()1,0). The harmonics of the
supermodulation are identified by the sym-
bols B1 and B2. These features (A, B1, and
B2) are observed in the Fourier transforms of
all LDOS maps, independent of magnetic
field, and they remain as a small background
signal in PS[S1

12(x, y, 5)] because the zero-
field and high-field LDOS images can only
be matched to within 1 Å before subtraction.
Most importantly, PS[S1

12(x, y, 5)] reveals
new peaks at the four k-space points, which
correspond to the spatial structure of the vor-
tex-induced quasi-particle states. We label
their locations C. No similar peaks in the
spectral weight exist at these points in the
two-dimensional Fourier transform of these
zero-field LDOS maps.

To quantify these results, we fit a Lorent-
zian to PS[S1

12(x, y, 5)] at each of the four
points labeled C in Fig. 2B. We find that they
occur at k-space radius 0.062 Å*1 with width
+ ! 0.011 ) 0.002 Å*1. Figure 2C shows
the value of PS[S1

12(x, y, 5)] measured along
the dashed line in Fig. 2B. The central peak
associated with long-wavelength structure,
the peak associated with the atoms, and the
peak due to the vortex-induced quasi-particle
states are all evident. The vortex-induced
states identified by this means occur at ()1/4,
0) and (0, )1/4) to within the accuracy of the
measurement. Equivalently, the checkerboard
pattern evident in the LDOS has spatial peri-
odicity 4a0 oriented along the Cu-O bonds.
Furthermore, the width + of the Lorentzian
yields a spatial correlation length for these
LDOS oscillations of L ! (1/,+) - 30 ) 5

Å (or L - 7.8 ) 1.3a0). This is substantially
greater than the measured (21) core radius. It
is also evident in Figs. 1B and 2A that the
LDOS oscillations have stronger spectral
weight in one Cu-O direction than in the

Fig. 1. Topographic and spectroscopic images of
the same area of a Bi-2212 surface. (A) A topo-
graphic image of the 560 Å field of view (FOV ) in
which the vortex studies were carried out. The
supermodulation can be seen clearly along with
some effects of electronic inhomogeneity. The
Cu–O–Cu bonds are oriented at 45° to the su-
permodulation. Atomic resolution is evident
throughout, and the inset shows a 140 Å square
FOV at .2 magnification to make this easier to
see. The mean Bi-Bi distance apparent here is
a0 ! 3.83 Å and is identical to the mean Cu-Cu
distance in the CuO plane "5 Å below. (B) A map
of S1

12(x, y, 5) showing the additional LDOS in-
duced by the seven vortices. Each vortex is ap-
parent as a checkerboard at 45° to the page
orientation. Not all are identical, most likely be-
cause of the effects of electronic inhomogeneity.
The units of S1

12(x, y, 5) are picoamps because it
represents /dI/dV!0V. In this energy range, the
maximum integrated LDOS at a vortex is "3
pA, as compared with the zero field integrated
LDOS of "1 pA. The latter is subtracted from
the former to give a maximum contrast of "2
pA. We also note that the integrated differen-
tial conductance between 0 and *200 meV is
200 pA because all measurements reported in
this paper were obtained at a junction resis-
tance of 1 gigaohm set at a bias voltage of
–200 mV.
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It has recently become clear that cuprate superconductors have a universal tendency to form
charge-density-wave order. A fundamental question is the relation between this charge order and the
pseudogap phase. A key feature is that this tendency is strongest at a doping p ' 0.12, irrespective of
the modulation period. Here we show that pressure suppresses charge order in YBa2Cu3Oy, but does
not a↵ect the pseudogap phase. The latter is therefore not simply a precursor of the former. Looking
at high-pressure data, we find that when charge order is suppressed, the superconducting dome in
the phase diagram of YBa2Cu3Oy is transformed so that it no longer dips but instead now peaks at
p ' 0.12. The fact that in the absence of mutual competition the domes of superconductivity and
of charge order both peak at the same doping is strong evidence for the existence of a third phase
that competes with both orders at low doping, thereby shaping the phase diagram of cuprates.

PACS numbers: 74.72.Gh, 74.62.Fj, 74.25.Dw

The recent observation of charge density
modulations in YBa2Cu3Oy

(YBCO) [1–4],
La2�x

Sr
x

CuO4 (LSCO) [5], HgBa2CuO4+�

[6], and
Bi2Sr2CuO6+�

[7] shows that charge-density-wave
(CDW) order is a generic tendency of cuprates, not
specific to materials such as La2�x

Ba
x

CuO4 (LBCO),
where it has long been known to exist [8]. In Fig. 1,
the onset temperature of CDW modulations seen in
YBCO by X-ray di↵raction, TCDW, is plotted as a
function of doping [9, 10]. It forms a dome peaked
at p = 0.12, as does the onset temperature of CDW
order seen by NMR (above a threshold magnetic field),
TNMR [11]. The Fermi surface of YBCO undergoes a
reconstruction, attributed to CDW order, into small
electron [12] and hole [13] pockets at low temperature.
This process is detected as a downturn in the Hall
coe�cient RH(T ) towards negative values [14], which
starts at a temperature TFSR [15]. As seen in Fig. 1, the
onset of Fermi-surface reconstruction (FSR), at TFSR,
also peaks at p = 0.12. CDW and FSR also both peak
at p = 0.12 in La1.8�x

Eu0.2SrxCuO4 [16, 17].

The striking experimental fact is that the CDW phase
in cuprates is peaked at p = 0.12. The question is why?
Old explanations in terms of a commensurate match
of the CDW period with either the lattice or the hole
density are no longer viable. Indeed, while in LBCO
or LSCO-based materials the CDW incommensurability
tracks p and the period becomes nearly commensurate
with the lattice at p ' 0.12, neither of these facts are
true for YBCO [9, 10]. For some as yet unknown reason,
the conditions for CDW formation in cuprates are most
favourable at p = 0.12.

CDW order and superconductivity are competing
phases. X-ray intensity drops sharply below Tc [2, 3],
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FIG. 1: Temperature-doping phase diagram of YBCO, show-
ing the superconducting phase below Tc (black dots [18]) and
the onset of charge order seen by NMR, above a threshold
magnetic field, below TNMR (green squares [11]). Charge-
density modulations are detected by X-ray di↵raction below
TCDW (up triangles [9]; down triangles [10]). The Fermi sur-
face undergoes a reconstruction seen as a downturn in the
Hall coe�cient below TFSR (red circles [15]). T ? marks the
onset of the pseudogap phase (dashed line [19, 20]).

showing that superconductivity weakens CDW order in
YBCO. Conversely, CDW order weakens superconduc-
tivity. This shows up in the doping dependence of the
superconducting critical temperature Tc and field Hc2,
as a dip in the former (Fig. 1) [18] and a local minimum
in the latter [21], both centred at p = 0.12, where CDW
order is strongest. The dip in Tc was shown to scale with

Cyr-Choignière, preprint 2015



Suppression of charge order by pressure in the cuprate superconductor YBa2Cu3Oy :
Restoring the full superconducting dome

O. Cyr-Choinière,1 D. LeBoeuf,1, ⇤ S. Badoux,1 S. Dufour-Beauséjour,1 D. A. Bonn,2, 3
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where it has long been known to exist [8]. In Fig. 1,
the onset temperature of CDW modulations seen in
YBCO by X-ray di↵raction, TCDW, is plotted as a
function of doping [9, 10]. It forms a dome peaked
at p = 0.12, as does the onset temperature of CDW
order seen by NMR (above a threshold magnetic field),
TNMR [11]. The Fermi surface of YBCO undergoes a
reconstruction, attributed to CDW order, into small
electron [12] and hole [13] pockets at low temperature.
This process is detected as a downturn in the Hall
coe�cient RH(T ) towards negative values [14], which
starts at a temperature TFSR [15]. As seen in Fig. 1, the
onset of Fermi-surface reconstruction (FSR), at TFSR,
also peaks at p = 0.12. CDW and FSR also both peak
at p = 0.12 in La1.8�x

Eu0.2SrxCuO4 [16, 17].

The striking experimental fact is that the CDW phase
in cuprates is peaked at p = 0.12. The question is why?
Old explanations in terms of a commensurate match
of the CDW period with either the lattice or the hole
density are no longer viable. Indeed, while in LBCO
or LSCO-based materials the CDW incommensurability
tracks p and the period becomes nearly commensurate
with the lattice at p ' 0.12, neither of these facts are
true for YBCO [9, 10]. For some as yet unknown reason,
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FIG. 1: Temperature-doping phase diagram of YBCO, show-
ing the superconducting phase below Tc (black dots [18]) and
the onset of charge order seen by NMR, above a threshold
magnetic field, below TNMR (green squares [11]). Charge-
density modulations are detected by X-ray di↵raction below
TCDW (up triangles [9]; down triangles [10]). The Fermi sur-
face undergoes a reconstruction seen as a downturn in the
Hall coe�cient below TFSR (red circles [15]). T ? marks the
onset of the pseudogap phase (dashed line [19, 20]).

showing that superconductivity weakens CDW order in
YBCO. Conversely, CDW order weakens superconduc-
tivity. This shows up in the doping dependence of the
superconducting critical temperature Tc and field Hc2,
as a dip in the former (Fig. 1) [18] and a local minimum
in the latter [21], both centred at p = 0.12, where CDW
order is strongest. The dip in Tc was shown to scale with
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of inverse field, by subtracting the monotonic background (shown for
all temperatures in Supplementary Fig. 2). This shows that the oscilla-
tions are periodic in 1/B, as is expected of oscillations that arise
from Landau quantization. A Fourier transform yields the power
spectrum, displayed in Fig. 3b, which consists of a single frequency,
F 5 (530 6 20) T. In Fig. 3c, we plot the amplitude of the oscillations
as a function of temperature, from which we deduce a carrier mass
m* 5 (1.9 6 0.1)m0, where m0 is the bare electron mass. Within error
bars, both F and m* are the same in sample B, for which the current J is
parallel to the b axis (see Supplementary Fig. 1). Oscillations of the
same frequency are also observed in Rxx (in both samples), albeit with a
smaller amplitude. We note that while at 7.5 K the oscillations are still
perceptible, they are absent at 11 K, as expected from thermally
damped quantum oscillations (see Supplementary Fig. 5).

While quantum oscillations in YBa2Cu3O61y (YBCO) have been
the subject of a number of earlier studies8–10, the data reported so far
do not exhibit clear oscillations as a function of 1/B and, as such, have
not been accepted as convincing evidence for a Fermi surface11.
Furthermore, we note that all previous work was done on oriented
powder samples as opposed to the high-quality single crystals used in
the present study.

Quantum oscillations are a direct measure of the Fermi surface
area via the Onsager relation: F 5 (W0/2p2)Ak, where W0 5 (2.07 3
10215) T m2 is the flux quantum, and Ak is the cross-sectional area of
the Fermi surface normal to the applied field. A frequency of 530 T
implies a Fermi surface pocket that encloses a k-space area (in the a–b
plane) of Ak 5 5.1 nm22, that is, 1.9% of the Brillouin zone (of area
4p2/ab). This is only 3% of the area of the Fermi surface cylinder
measured in Tl-2201 (see Fig. 1c), whose radius is kF < 7 nm21. In the
remainder, we examine two scenarios to explain the dramatic differ-
ence between the small Fermi surface revealed by the low frequency of
quantum oscillations reported here for YBa2Cu3O6.5 and the large
cylindrical surface observed in overdoped Tl-2201. The first scenario
assumes that the particular band structure of YBa2Cu3O6.5 is differ-
ent and supports a small Fermi surface sheet. In the second, the
electronic structure of overdoped copper oxides undergoes a trans-
formation as the doping p is reduced below a value pc associated with
a critical point.

Band structure calculations for stoichiometric YBCO (y 5 1.0),

which is slightly overdoped (with p 5 0.2), show a Fermi surface
consisting of four sheets12,13, as reproduced in Fig. 4a: two large
cylinders derived from the CuO2 bi-layer, one open surface coming
from the CuO chains, and a small cylinder associated with both chain
and plane states. The latter sheet, for example, could account for the
low frequency reported here. ARPES studies on YBCO near optimal

doping14,15 appear to be in broad agreement with this electronic
structure. However, recent band structure calculations16 performed
specifically for YBa2Cu3O6.5, which take into account the unit cell
doubling caused by the ortho-II order, give a Fermi surface where the
small cylinder is absent, as shown in Fig. 4b. This leaves no obvious
candidate Fermi surface sheet for the small orbit reported here.

The fact that the same oscillations are observed for currents along a
and b suggests that they are not associated with open orbits in the
chain-derived Fermi surface sheet. In YBCO, the CuO chains along
the b axis are an additional channel of conduction, responsible for an
anisotropy in the zero-field resistivity r(T) of the normal state (above
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Figure 2 | Hall resistance of YBa2Cu3O6.5. Rxy as a function of magnetic
field B, for sample A, at different temperatures between 1.5 and 4.2 K. The
field is applied normal to the CuO2 planes (B | | c) and the current is along the
a axis of the orthorhombic crystal structure (J | | a). The inset shows a zoom
on the data at T 5 2 K, with a fitted monotonic background (dashed line).
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b, Power spectrum (Fourier transform) of the oscillatory part for the T 5 2 K
isotherm, revealing a single frequency at F 5 (530 6 20) T, which
corresponds to a k-space area Ak 5 5.1 nm22, from the Onsager relation
F 5 (W0/2p2)Ak . Note that the uncertainty of 4% on F is not given by the
width of the peak (a consequence of the small number of oscillations), but by
the accuracy with which the position of successive maxima in a can be
determined. c, Temperature dependence of the oscillation amplitude A,
plotted as ln(A/T) versus T. The fit is to the standard Lifshitz–Kosevich
formula, whereby A/T 5 [sinh(am*T/B)]21, which yields a cyclotron mass
m* 5 (1.9 6 0.1)m0, where m0 is the free electron mass.

Y

ba

Y

X XΓΓ

Figure 4 | Fermi surface of YBCO from band structure calculations.
a, Fermi surface of YBa2Cu3O7 in the kz 5 0 plane (from ref. 13, with
permission from O. K. Andersen), showing the four bands discussed in the
main text. b, Fermi surface of ortho-II ordered YBa2Cu3O6.5 in the kz 5 0
plane (from ref. 16, with permission from T. M. Rice). In both a and b the
grey shading indicates one quadrant of the first Brillouin zone.

LETTERS NATURE | Vol 447 | 31 May 2007

566
Nature   ©2007 Publishing Group

Doiron-Leyraud et al. (2007) 
Sebastian et al. (2011)



Suppression of charge order by pressure in the cuprate superconductor YBa2Cu3Oy :
Restoring the full superconducting dome

O. Cyr-Choinière,1 D. LeBoeuf,1, ⇤ S. Badoux,1 S. Dufour-Beauséjour,1 D. A. Bonn,2, 3
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where it has long been known to exist [8]. In Fig. 1,
the onset temperature of CDW modulations seen in
YBCO by X-ray di↵raction, TCDW, is plotted as a
function of doping [9, 10]. It forms a dome peaked
at p = 0.12, as does the onset temperature of CDW
order seen by NMR (above a threshold magnetic field),
TNMR [11]. The Fermi surface of YBCO undergoes a
reconstruction, attributed to CDW order, into small
electron [12] and hole [13] pockets at low temperature.
This process is detected as a downturn in the Hall
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in cuprates is peaked at p = 0.12. The question is why?
Old explanations in terms of a commensurate match
of the CDW period with either the lattice or the hole
density are no longer viable. Indeed, while in LBCO
or LSCO-based materials the CDW incommensurability
tracks p and the period becomes nearly commensurate
with the lattice at p ' 0.12, neither of these facts are
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favourable at p = 0.12.
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FIG. 1: Temperature-doping phase diagram of YBCO, show-
ing the superconducting phase below Tc (black dots [18]) and
the onset of charge order seen by NMR, above a threshold
magnetic field, below TNMR (green squares [11]). Charge-
density modulations are detected by X-ray di↵raction below
TCDW (up triangles [9]; down triangles [10]). The Fermi sur-
face undergoes a reconstruction seen as a downturn in the
Hall coe�cient below TFSR (red circles [15]). T ? marks the
onset of the pseudogap phase (dashed line [19, 20]).

showing that superconductivity weakens CDW order in
YBCO. Conversely, CDW order weakens superconduc-
tivity. This shows up in the doping dependence of the
superconducting critical temperature Tc and field Hc2,
as a dip in the former (Fig. 1) [18] and a local minimum
in the latter [21], both centred at p = 0.12, where CDW
order is strongest. The dip in Tc was shown to scale with

Cyr-Choignière, preprint 2015

of inverse field, by subtracting the monotonic background (shown for
all temperatures in Supplementary Fig. 2). This shows that the oscilla-
tions are periodic in 1/B, as is expected of oscillations that arise
from Landau quantization. A Fourier transform yields the power
spectrum, displayed in Fig. 3b, which consists of a single frequency,
F 5 (530 6 20) T. In Fig. 3c, we plot the amplitude of the oscillations
as a function of temperature, from which we deduce a carrier mass
m* 5 (1.9 6 0.1)m0, where m0 is the bare electron mass. Within error
bars, both F and m* are the same in sample B, for which the current J is
parallel to the b axis (see Supplementary Fig. 1). Oscillations of the
same frequency are also observed in Rxx (in both samples), albeit with a
smaller amplitude. We note that while at 7.5 K the oscillations are still
perceptible, they are absent at 11 K, as expected from thermally
damped quantum oscillations (see Supplementary Fig. 5).

While quantum oscillations in YBa2Cu3O61y (YBCO) have been
the subject of a number of earlier studies8–10, the data reported so far
do not exhibit clear oscillations as a function of 1/B and, as such, have
not been accepted as convincing evidence for a Fermi surface11.
Furthermore, we note that all previous work was done on oriented
powder samples as opposed to the high-quality single crystals used in
the present study.

Quantum oscillations are a direct measure of the Fermi surface
area via the Onsager relation: F 5 (W0/2p2)Ak, where W0 5 (2.07 3
10215) T m2 is the flux quantum, and Ak is the cross-sectional area of
the Fermi surface normal to the applied field. A frequency of 530 T
implies a Fermi surface pocket that encloses a k-space area (in the a–b
plane) of Ak 5 5.1 nm22, that is, 1.9% of the Brillouin zone (of area
4p2/ab). This is only 3% of the area of the Fermi surface cylinder
measured in Tl-2201 (see Fig. 1c), whose radius is kF < 7 nm21. In the
remainder, we examine two scenarios to explain the dramatic differ-
ence between the small Fermi surface revealed by the low frequency of
quantum oscillations reported here for YBa2Cu3O6.5 and the large
cylindrical surface observed in overdoped Tl-2201. The first scenario
assumes that the particular band structure of YBa2Cu3O6.5 is differ-
ent and supports a small Fermi surface sheet. In the second, the
electronic structure of overdoped copper oxides undergoes a trans-
formation as the doping p is reduced below a value pc associated with
a critical point.

Band structure calculations for stoichiometric YBCO (y 5 1.0),

which is slightly overdoped (with p 5 0.2), show a Fermi surface
consisting of four sheets12,13, as reproduced in Fig. 4a: two large
cylinders derived from the CuO2 bi-layer, one open surface coming
from the CuO chains, and a small cylinder associated with both chain
and plane states. The latter sheet, for example, could account for the
low frequency reported here. ARPES studies on YBCO near optimal

doping14,15 appear to be in broad agreement with this electronic
structure. However, recent band structure calculations16 performed
specifically for YBa2Cu3O6.5, which take into account the unit cell
doubling caused by the ortho-II order, give a Fermi surface where the
small cylinder is absent, as shown in Fig. 4b. This leaves no obvious
candidate Fermi surface sheet for the small orbit reported here.

The fact that the same oscillations are observed for currents along a
and b suggests that they are not associated with open orbits in the
chain-derived Fermi surface sheet. In YBCO, the CuO chains along
the b axis are an additional channel of conduction, responsible for an
anisotropy in the zero-field resistivity r(T) of the normal state (above
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Figure 2 | Hall resistance of YBa2Cu3O6.5. Rxy as a function of magnetic
field B, for sample A, at different temperatures between 1.5 and 4.2 K. The
field is applied normal to the CuO2 planes (B | | c) and the current is along the
a axis of the orthorhombic crystal structure (J | | a). The inset shows a zoom
on the data at T 5 2 K, with a fitted monotonic background (dashed line).
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Figure 3 | Quantum oscillations in YBCO. a, Oscillatory part of the Hall
resistance, obtained by subtracting the monotonic background (shown in
the inset of Fig. 2 for T 5 2 K), as a function of inverse magnetic field, 1/B.
The background at each temperature is given in Supplementary Fig. 2.
b, Power spectrum (Fourier transform) of the oscillatory part for the T 5 2 K
isotherm, revealing a single frequency at F 5 (530 6 20) T, which
corresponds to a k-space area Ak 5 5.1 nm22, from the Onsager relation
F 5 (W0/2p2)Ak . Note that the uncertainty of 4% on F is not given by the
width of the peak (a consequence of the small number of oscillations), but by
the accuracy with which the position of successive maxima in a can be
determined. c, Temperature dependence of the oscillation amplitude A,
plotted as ln(A/T) versus T. The fit is to the standard Lifshitz–Kosevich
formula, whereby A/T 5 [sinh(am*T/B)]21, which yields a cyclotron mass
m* 5 (1.9 6 0.1)m0, where m0 is the free electron mass.

Y

ba

Y

X XΓΓ

Figure 4 | Fermi surface of YBCO from band structure calculations.
a, Fermi surface of YBa2Cu3O7 in the kz 5 0 plane (from ref. 13, with
permission from O. K. Andersen), showing the four bands discussed in the
main text. b, Fermi surface of ortho-II ordered YBa2Cu3O6.5 in the kz 5 0
plane (from ref. 16, with permission from T. M. Rice). In both a and b the
grey shading indicates one quadrant of the first Brillouin zone.
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Figure 1 Anatomy of the checkerboard in optimally doped Bi-2201. a, STM
topography of a 785-Å region of optimally doped (Tc = 35 K) Bi-2201 measured at
T= 6 K. The magnified inset (110 Å) (and red dots on 9 atoms) show the clear
atomic lattice in this high-resolution data. b, Spatially averaged differential
conductance spectra measured in the area shown in a exhibit two distinct gaps: a
superconducting gap�SC ⇠ 15meV and pseudogap�PG ⇠ 75meV.
c, Conductance maps, here taken with bias voltage 10meV on the same region as a,
show a checkerboard structure in the LDOS with a wavelength much larger than the
atomic lattice. The inset is magnified as in a, with the same 9 atoms highlighted in
red. Four checkerboard maxima are also highlighted (yellow) for clarity. d, Fourier
transform of the map shown in c. The checkerboard wave vectors (circled) appear
as four spots along the same direction as the atomic lattice (outlined with a square).
The dashed line shows the locations of the line cuts in e. e, Line cuts extracted from
Fourier-transform LDOS maps with different bias voltages. The left vertical line
marks the position of the checkerboard wave vector, 2⇡/6.2a0 for all energies, and
the right vertical line indicates the atomic lattice wave vector 2⇡/a0. All data in this
letter was acquired with feedback setpoint parameters IS = 400 pA and
VS = �100mV or VS = �200mV.

(Fig. 1b) has a clear inner gap with peaks near 15 meV, probably
associated with the superconducting gap, and a pseudogap with
size roughly 75 meV (ref. 20). A diVerential conductance map of the
region taken at a bias of 10 meV (Fig. 1c) shows a checkerboard-like
electronic lattice, strikingly similar to those observed in other
cuprates3–6. The checkerboard is observed to beyond 50 meV at
both positive and negative sample bias, although the pattern
appears most strongly at low, positive bias. It appears in maps
taken with feedback setpoint voltages ranging from 10 to 300 mV,
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Figure 2 Doping dependence of the checkerboard. a–c, 400 Å conductance maps
of optimally doped, Tc = 35 K (a), underdoped, Tc = 32 K (b), and underdoped,
Tc = 25 K (c), Bi-2201. All maps were taken with 10mV sample bias at T= 6 K. The
checkerboard structures shown in b,c have denser packing than in a, indicating a
shorter wavelength in underdoped samples. d, Line cuts along the atomic lattice
direction of the Fourier-transform LDOS maps of the three samples. The cuts peak at
the checkerboard wave vectors, corresponding to wavelengths of 6.2a0, 5.1a0 and
4.5a0, respectively.

with feedback currents from 50 to 800 pA, and in topographic scans
at 10 mV bias.

The wavelength of this checkerboard is determined from the
Fourier transform of the image, as shown in Fig. 1d, where the
checkerboard appears as four peaks (one is circled). Its wave
vector corresponds to a wavelength d ⇠ 6.2a0 ±0.2a0, much larger
than that of any such structure previously reported. Figure 1e
shows a line cut along the atomic lattice (⇡,0) direction of the
Fourier-transform LDOS maps taken at diVerent bias voltages. The
consistent position of the checkerboard wave vector observed at
diVerent energies, marked by the left dashed line, indicates that the
checkerboard is a non-dispersive, static ordering.

We find similar checkerboard structures in underdoped
Bi-2201 samples with Tc = 32 K (Fig. 2b) and Tc = 25 K
(Fig. 2c). Surprisingly, Fourier transforms reveal that checkerboard
periodicities in these underdoped samples are reduced to
5.1a0 ± 0.2a0 and 4.5a0 ± 0.2a0 respectively, significantly shorter
than in the optimally doped sample. This can be seen directly from
the denser packing of the underdoped checkerboard (Fig. 2b,c)
compared with that in the optimally doped one (Fig. 2a). Figure 2d
summarizes this doping dependence in line cuts of the Fourier
transforms along the atomic lattice (⇡,0) direction. The increase
of the checkerboard wave vector with decreasing hole density
is pronounced.

In contrast to doping, temperature has no measurable eVect on
the checkerboard wave vector. The LDOS map of the underdoped
Tc = 32 K sample measured at 35 K (Fig. 3a) is qualitatively the
same as that measured at 6 K (Fig. 2a). Figure 3b shows line cuts
of the Fourier transforms of maps measured at a wide range of
temperatures, demonstrating that the peak location is unaVected
by temperature and in particular Tc.
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Figure 1 Anatomy of the checkerboard in optimally doped Bi-2201. a, STM
topography of a 785-Å region of optimally doped (Tc = 35 K) Bi-2201 measured at
T= 6 K. The magnified inset (110 Å) (and red dots on 9 atoms) show the clear
atomic lattice in this high-resolution data. b, Spatially averaged differential
conductance spectra measured in the area shown in a exhibit two distinct gaps: a
superconducting gap�SC ⇠ 15meV and pseudogap�PG ⇠ 75meV.
c, Conductance maps, here taken with bias voltage 10meV on the same region as a,
show a checkerboard structure in the LDOS with a wavelength much larger than the
atomic lattice. The inset is magnified as in a, with the same 9 atoms highlighted in
red. Four checkerboard maxima are also highlighted (yellow) for clarity. d, Fourier
transform of the map shown in c. The checkerboard wave vectors (circled) appear
as four spots along the same direction as the atomic lattice (outlined with a square).
The dashed line shows the locations of the line cuts in e. e, Line cuts extracted from
Fourier-transform LDOS maps with different bias voltages. The left vertical line
marks the position of the checkerboard wave vector, 2⇡/6.2a0 for all energies, and
the right vertical line indicates the atomic lattice wave vector 2⇡/a0. All data in this
letter was acquired with feedback setpoint parameters IS = 400 pA and
VS = �100mV or VS = �200mV.

(Fig. 1b) has a clear inner gap with peaks near 15 meV, probably
associated with the superconducting gap, and a pseudogap with
size roughly 75 meV (ref. 20). A diVerential conductance map of the
region taken at a bias of 10 meV (Fig. 1c) shows a checkerboard-like
electronic lattice, strikingly similar to those observed in other
cuprates3–6. The checkerboard is observed to beyond 50 meV at
both positive and negative sample bias, although the pattern
appears most strongly at low, positive bias. It appears in maps
taken with feedback setpoint voltages ranging from 10 to 300 mV,
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Figure 2 Doping dependence of the checkerboard. a–c, 400 Å conductance maps
of optimally doped, Tc = 35 K (a), underdoped, Tc = 32 K (b), and underdoped,
Tc = 25 K (c), Bi-2201. All maps were taken with 10mV sample bias at T= 6 K. The
checkerboard structures shown in b,c have denser packing than in a, indicating a
shorter wavelength in underdoped samples. d, Line cuts along the atomic lattice
direction of the Fourier-transform LDOS maps of the three samples. The cuts peak at
the checkerboard wave vectors, corresponding to wavelengths of 6.2a0, 5.1a0 and
4.5a0, respectively.

with feedback currents from 50 to 800 pA, and in topographic scans
at 10 mV bias.

The wavelength of this checkerboard is determined from the
Fourier transform of the image, as shown in Fig. 1d, where the
checkerboard appears as four peaks (one is circled). Its wave
vector corresponds to a wavelength d ⇠ 6.2a0 ±0.2a0, much larger
than that of any such structure previously reported. Figure 1e
shows a line cut along the atomic lattice (⇡,0) direction of the
Fourier-transform LDOS maps taken at diVerent bias voltages. The
consistent position of the checkerboard wave vector observed at
diVerent energies, marked by the left dashed line, indicates that the
checkerboard is a non-dispersive, static ordering.

We find similar checkerboard structures in underdoped
Bi-2201 samples with Tc = 32 K (Fig. 2b) and Tc = 25 K
(Fig. 2c). Surprisingly, Fourier transforms reveal that checkerboard
periodicities in these underdoped samples are reduced to
5.1a0 ± 0.2a0 and 4.5a0 ± 0.2a0 respectively, significantly shorter
than in the optimally doped sample. This can be seen directly from
the denser packing of the underdoped checkerboard (Fig. 2b,c)
compared with that in the optimally doped one (Fig. 2a). Figure 2d
summarizes this doping dependence in line cuts of the Fourier
transforms along the atomic lattice (⇡,0) direction. The increase
of the checkerboard wave vector with decreasing hole density
is pronounced.

In contrast to doping, temperature has no measurable eVect on
the checkerboard wave vector. The LDOS map of the underdoped
Tc = 32 K sample measured at 35 K (Fig. 3a) is qualitatively the
same as that measured at 6 K (Fig. 2a). Figure 3b shows line cuts
of the Fourier transforms of maps measured at a wide range of
temperatures, demonstrating that the peak location is unaVected
by temperature and in particular Tc.
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Suppression of charge order by pressure in the cuprate superconductor YBa2Cu3Oy :
Restoring the full superconducting dome
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It has recently become clear that cuprate superconductors have a universal tendency to form
charge-density-wave order. A fundamental question is the relation between this charge order and the
pseudogap phase. A key feature is that this tendency is strongest at a doping p ' 0.12, irrespective of
the modulation period. Here we show that pressure suppresses charge order in YBa2Cu3Oy, but does
not a↵ect the pseudogap phase. The latter is therefore not simply a precursor of the former. Looking
at high-pressure data, we find that when charge order is suppressed, the superconducting dome in
the phase diagram of YBa2Cu3Oy is transformed so that it no longer dips but instead now peaks at
p ' 0.12. The fact that in the absence of mutual competition the domes of superconductivity and
of charge order both peak at the same doping is strong evidence for the existence of a third phase
that competes with both orders at low doping, thereby shaping the phase diagram of cuprates.

PACS numbers: 74.72.Gh, 74.62.Fj, 74.25.Dw

The recent observation of charge density
modulations in YBa2Cu3Oy

(YBCO) [1–4],
La2�x

Sr
x

CuO4 (LSCO) [5], HgBa2CuO4+�

[6], and
Bi2Sr2CuO6+�

[7] shows that charge-density-wave
(CDW) order is a generic tendency of cuprates, not
specific to materials such as La2�x

Ba
x

CuO4 (LBCO),
where it has long been known to exist [8]. In Fig. 1,
the onset temperature of CDW modulations seen in
YBCO by X-ray di↵raction, TCDW, is plotted as a
function of doping [9, 10]. It forms a dome peaked
at p = 0.12, as does the onset temperature of CDW
order seen by NMR (above a threshold magnetic field),
TNMR [11]. The Fermi surface of YBCO undergoes a
reconstruction, attributed to CDW order, into small
electron [12] and hole [13] pockets at low temperature.
This process is detected as a downturn in the Hall
coe�cient RH(T ) towards negative values [14], which
starts at a temperature TFSR [15]. As seen in Fig. 1, the
onset of Fermi-surface reconstruction (FSR), at TFSR,
also peaks at p = 0.12. CDW and FSR also both peak
at p = 0.12 in La1.8�x

Eu0.2SrxCuO4 [16, 17].

The striking experimental fact is that the CDW phase
in cuprates is peaked at p = 0.12. The question is why?
Old explanations in terms of a commensurate match
of the CDW period with either the lattice or the hole
density are no longer viable. Indeed, while in LBCO
or LSCO-based materials the CDW incommensurability
tracks p and the period becomes nearly commensurate
with the lattice at p ' 0.12, neither of these facts are
true for YBCO [9, 10]. For some as yet unknown reason,
the conditions for CDW formation in cuprates are most
favourable at p = 0.12.

CDW order and superconductivity are competing
phases. X-ray intensity drops sharply below Tc [2, 3],
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FIG. 1: Temperature-doping phase diagram of YBCO, show-
ing the superconducting phase below Tc (black dots [18]) and
the onset of charge order seen by NMR, above a threshold
magnetic field, below TNMR (green squares [11]). Charge-
density modulations are detected by X-ray di↵raction below
TCDW (up triangles [9]; down triangles [10]). The Fermi sur-
face undergoes a reconstruction seen as a downturn in the
Hall coe�cient below TFSR (red circles [15]). T ? marks the
onset of the pseudogap phase (dashed line [19, 20]).

showing that superconductivity weakens CDW order in
YBCO. Conversely, CDW order weakens superconduc-
tivity. This shows up in the doping dependence of the
superconducting critical temperature Tc and field Hc2,
as a dip in the former (Fig. 1) [18] and a local minimum
in the latter [21], both centred at p = 0.12, where CDW
order is strongest. The dip in Tc was shown to scale with

Cyr-Choignière, preprint 2015

of inverse field, by subtracting the monotonic background (shown for
all temperatures in Supplementary Fig. 2). This shows that the oscilla-
tions are periodic in 1/B, as is expected of oscillations that arise
from Landau quantization. A Fourier transform yields the power
spectrum, displayed in Fig. 3b, which consists of a single frequency,
F 5 (530 6 20) T. In Fig. 3c, we plot the amplitude of the oscillations
as a function of temperature, from which we deduce a carrier mass
m* 5 (1.9 6 0.1)m0, where m0 is the bare electron mass. Within error
bars, both F and m* are the same in sample B, for which the current J is
parallel to the b axis (see Supplementary Fig. 1). Oscillations of the
same frequency are also observed in Rxx (in both samples), albeit with a
smaller amplitude. We note that while at 7.5 K the oscillations are still
perceptible, they are absent at 11 K, as expected from thermally
damped quantum oscillations (see Supplementary Fig. 5).

While quantum oscillations in YBa2Cu3O61y (YBCO) have been
the subject of a number of earlier studies8–10, the data reported so far
do not exhibit clear oscillations as a function of 1/B and, as such, have
not been accepted as convincing evidence for a Fermi surface11.
Furthermore, we note that all previous work was done on oriented
powder samples as opposed to the high-quality single crystals used in
the present study.

Quantum oscillations are a direct measure of the Fermi surface
area via the Onsager relation: F 5 (W0/2p2)Ak, where W0 5 (2.07 3
10215) T m2 is the flux quantum, and Ak is the cross-sectional area of
the Fermi surface normal to the applied field. A frequency of 530 T
implies a Fermi surface pocket that encloses a k-space area (in the a–b
plane) of Ak 5 5.1 nm22, that is, 1.9% of the Brillouin zone (of area
4p2/ab). This is only 3% of the area of the Fermi surface cylinder
measured in Tl-2201 (see Fig. 1c), whose radius is kF < 7 nm21. In the
remainder, we examine two scenarios to explain the dramatic differ-
ence between the small Fermi surface revealed by the low frequency of
quantum oscillations reported here for YBa2Cu3O6.5 and the large
cylindrical surface observed in overdoped Tl-2201. The first scenario
assumes that the particular band structure of YBa2Cu3O6.5 is differ-
ent and supports a small Fermi surface sheet. In the second, the
electronic structure of overdoped copper oxides undergoes a trans-
formation as the doping p is reduced below a value pc associated with
a critical point.

Band structure calculations for stoichiometric YBCO (y 5 1.0),

which is slightly overdoped (with p 5 0.2), show a Fermi surface
consisting of four sheets12,13, as reproduced in Fig. 4a: two large
cylinders derived from the CuO2 bi-layer, one open surface coming
from the CuO chains, and a small cylinder associated with both chain
and plane states. The latter sheet, for example, could account for the
low frequency reported here. ARPES studies on YBCO near optimal

doping14,15 appear to be in broad agreement with this electronic
structure. However, recent band structure calculations16 performed
specifically for YBa2Cu3O6.5, which take into account the unit cell
doubling caused by the ortho-II order, give a Fermi surface where the
small cylinder is absent, as shown in Fig. 4b. This leaves no obvious
candidate Fermi surface sheet for the small orbit reported here.

The fact that the same oscillations are observed for currents along a
and b suggests that they are not associated with open orbits in the
chain-derived Fermi surface sheet. In YBCO, the CuO chains along
the b axis are an additional channel of conduction, responsible for an
anisotropy in the zero-field resistivity r(T) of the normal state (above
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Figure 2 | Hall resistance of YBa2Cu3O6.5. Rxy as a function of magnetic
field B, for sample A, at different temperatures between 1.5 and 4.2 K. The
field is applied normal to the CuO2 planes (B | | c) and the current is along the
a axis of the orthorhombic crystal structure (J | | a). The inset shows a zoom
on the data at T 5 2 K, with a fitted monotonic background (dashed line).
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Figure 3 | Quantum oscillations in YBCO. a, Oscillatory part of the Hall
resistance, obtained by subtracting the monotonic background (shown in
the inset of Fig. 2 for T 5 2 K), as a function of inverse magnetic field, 1/B.
The background at each temperature is given in Supplementary Fig. 2.
b, Power spectrum (Fourier transform) of the oscillatory part for the T 5 2 K
isotherm, revealing a single frequency at F 5 (530 6 20) T, which
corresponds to a k-space area Ak 5 5.1 nm22, from the Onsager relation
F 5 (W0/2p2)Ak . Note that the uncertainty of 4% on F is not given by the
width of the peak (a consequence of the small number of oscillations), but by
the accuracy with which the position of successive maxima in a can be
determined. c, Temperature dependence of the oscillation amplitude A,
plotted as ln(A/T) versus T. The fit is to the standard Lifshitz–Kosevich
formula, whereby A/T 5 [sinh(am*T/B)]21, which yields a cyclotron mass
m* 5 (1.9 6 0.1)m0, where m0 is the free electron mass.
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Figure 4 | Fermi surface of YBCO from band structure calculations.
a, Fermi surface of YBa2Cu3O7 in the kz 5 0 plane (from ref. 13, with
permission from O. K. Andersen), showing the four bands discussed in the
main text. b, Fermi surface of ortho-II ordered YBa2Cu3O6.5 in the kz 5 0
plane (from ref. 16, with permission from T. M. Rice). In both a and b the
grey shading indicates one quadrant of the first Brillouin zone.
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Figure 1 Anatomy of the checkerboard in optimally doped Bi-2201. a, STM
topography of a 785-Å region of optimally doped (Tc = 35 K) Bi-2201 measured at
T= 6 K. The magnified inset (110 Å) (and red dots on 9 atoms) show the clear
atomic lattice in this high-resolution data. b, Spatially averaged differential
conductance spectra measured in the area shown in a exhibit two distinct gaps: a
superconducting gap�SC ⇠ 15meV and pseudogap�PG ⇠ 75meV.
c, Conductance maps, here taken with bias voltage 10meV on the same region as a,
show a checkerboard structure in the LDOS with a wavelength much larger than the
atomic lattice. The inset is magnified as in a, with the same 9 atoms highlighted in
red. Four checkerboard maxima are also highlighted (yellow) for clarity. d, Fourier
transform of the map shown in c. The checkerboard wave vectors (circled) appear
as four spots along the same direction as the atomic lattice (outlined with a square).
The dashed line shows the locations of the line cuts in e. e, Line cuts extracted from
Fourier-transform LDOS maps with different bias voltages. The left vertical line
marks the position of the checkerboard wave vector, 2⇡/6.2a0 for all energies, and
the right vertical line indicates the atomic lattice wave vector 2⇡/a0. All data in this
letter was acquired with feedback setpoint parameters IS = 400 pA and
VS = �100mV or VS = �200mV.

(Fig. 1b) has a clear inner gap with peaks near 15 meV, probably
associated with the superconducting gap, and a pseudogap with
size roughly 75 meV (ref. 20). A diVerential conductance map of the
region taken at a bias of 10 meV (Fig. 1c) shows a checkerboard-like
electronic lattice, strikingly similar to those observed in other
cuprates3–6. The checkerboard is observed to beyond 50 meV at
both positive and negative sample bias, although the pattern
appears most strongly at low, positive bias. It appears in maps
taken with feedback setpoint voltages ranging from 10 to 300 mV,
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Figure 2 Doping dependence of the checkerboard. a–c, 400 Å conductance maps
of optimally doped, Tc = 35 K (a), underdoped, Tc = 32 K (b), and underdoped,
Tc = 25 K (c), Bi-2201. All maps were taken with 10mV sample bias at T= 6 K. The
checkerboard structures shown in b,c have denser packing than in a, indicating a
shorter wavelength in underdoped samples. d, Line cuts along the atomic lattice
direction of the Fourier-transform LDOS maps of the three samples. The cuts peak at
the checkerboard wave vectors, corresponding to wavelengths of 6.2a0, 5.1a0 and
4.5a0, respectively.

with feedback currents from 50 to 800 pA, and in topographic scans
at 10 mV bias.

The wavelength of this checkerboard is determined from the
Fourier transform of the image, as shown in Fig. 1d, where the
checkerboard appears as four peaks (one is circled). Its wave
vector corresponds to a wavelength d ⇠ 6.2a0 ±0.2a0, much larger
than that of any such structure previously reported. Figure 1e
shows a line cut along the atomic lattice (⇡,0) direction of the
Fourier-transform LDOS maps taken at diVerent bias voltages. The
consistent position of the checkerboard wave vector observed at
diVerent energies, marked by the left dashed line, indicates that the
checkerboard is a non-dispersive, static ordering.

We find similar checkerboard structures in underdoped
Bi-2201 samples with Tc = 32 K (Fig. 2b) and Tc = 25 K
(Fig. 2c). Surprisingly, Fourier transforms reveal that checkerboard
periodicities in these underdoped samples are reduced to
5.1a0 ± 0.2a0 and 4.5a0 ± 0.2a0 respectively, significantly shorter
than in the optimally doped sample. This can be seen directly from
the denser packing of the underdoped checkerboard (Fig. 2b,c)
compared with that in the optimally doped one (Fig. 2a). Figure 2d
summarizes this doping dependence in line cuts of the Fourier
transforms along the atomic lattice (⇡,0) direction. The increase
of the checkerboard wave vector with decreasing hole density
is pronounced.

In contrast to doping, temperature has no measurable eVect on
the checkerboard wave vector. The LDOS map of the underdoped
Tc = 32 K sample measured at 35 K (Fig. 3a) is qualitatively the
same as that measured at 6 K (Fig. 2a). Figure 3b shows line cuts
of the Fourier transforms of maps measured at a wide range of
temperatures, demonstrating that the peak location is unaVected
by temperature and in particular Tc.
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Figure 1 Anatomy of the checkerboard in optimally doped Bi-2201. a, STM
topography of a 785-Å region of optimally doped (Tc = 35 K) Bi-2201 measured at
T= 6 K. The magnified inset (110 Å) (and red dots on 9 atoms) show the clear
atomic lattice in this high-resolution data. b, Spatially averaged differential
conductance spectra measured in the area shown in a exhibit two distinct gaps: a
superconducting gap�SC ⇠ 15meV and pseudogap�PG ⇠ 75meV.
c, Conductance maps, here taken with bias voltage 10meV on the same region as a,
show a checkerboard structure in the LDOS with a wavelength much larger than the
atomic lattice. The inset is magnified as in a, with the same 9 atoms highlighted in
red. Four checkerboard maxima are also highlighted (yellow) for clarity. d, Fourier
transform of the map shown in c. The checkerboard wave vectors (circled) appear
as four spots along the same direction as the atomic lattice (outlined with a square).
The dashed line shows the locations of the line cuts in e. e, Line cuts extracted from
Fourier-transform LDOS maps with different bias voltages. The left vertical line
marks the position of the checkerboard wave vector, 2⇡/6.2a0 for all energies, and
the right vertical line indicates the atomic lattice wave vector 2⇡/a0. All data in this
letter was acquired with feedback setpoint parameters IS = 400 pA and
VS = �100mV or VS = �200mV.

(Fig. 1b) has a clear inner gap with peaks near 15 meV, probably
associated with the superconducting gap, and a pseudogap with
size roughly 75 meV (ref. 20). A diVerential conductance map of the
region taken at a bias of 10 meV (Fig. 1c) shows a checkerboard-like
electronic lattice, strikingly similar to those observed in other
cuprates3–6. The checkerboard is observed to beyond 50 meV at
both positive and negative sample bias, although the pattern
appears most strongly at low, positive bias. It appears in maps
taken with feedback setpoint voltages ranging from 10 to 300 mV,
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Figure 2 Doping dependence of the checkerboard. a–c, 400 Å conductance maps
of optimally doped, Tc = 35 K (a), underdoped, Tc = 32 K (b), and underdoped,
Tc = 25 K (c), Bi-2201. All maps were taken with 10mV sample bias at T= 6 K. The
checkerboard structures shown in b,c have denser packing than in a, indicating a
shorter wavelength in underdoped samples. d, Line cuts along the atomic lattice
direction of the Fourier-transform LDOS maps of the three samples. The cuts peak at
the checkerboard wave vectors, corresponding to wavelengths of 6.2a0, 5.1a0 and
4.5a0, respectively.

with feedback currents from 50 to 800 pA, and in topographic scans
at 10 mV bias.

The wavelength of this checkerboard is determined from the
Fourier transform of the image, as shown in Fig. 1d, where the
checkerboard appears as four peaks (one is circled). Its wave
vector corresponds to a wavelength d ⇠ 6.2a0 ±0.2a0, much larger
than that of any such structure previously reported. Figure 1e
shows a line cut along the atomic lattice (⇡,0) direction of the
Fourier-transform LDOS maps taken at diVerent bias voltages. The
consistent position of the checkerboard wave vector observed at
diVerent energies, marked by the left dashed line, indicates that the
checkerboard is a non-dispersive, static ordering.

We find similar checkerboard structures in underdoped
Bi-2201 samples with Tc = 32 K (Fig. 2b) and Tc = 25 K
(Fig. 2c). Surprisingly, Fourier transforms reveal that checkerboard
periodicities in these underdoped samples are reduced to
5.1a0 ± 0.2a0 and 4.5a0 ± 0.2a0 respectively, significantly shorter
than in the optimally doped sample. This can be seen directly from
the denser packing of the underdoped checkerboard (Fig. 2b,c)
compared with that in the optimally doped one (Fig. 2a). Figure 2d
summarizes this doping dependence in line cuts of the Fourier
transforms along the atomic lattice (⇡,0) direction. The increase
of the checkerboard wave vector with decreasing hole density
is pronounced.

In contrast to doping, temperature has no measurable eVect on
the checkerboard wave vector. The LDOS map of the underdoped
Tc = 32 K sample measured at 35 K (Fig. 3a) is qualitatively the
same as that measured at 6 K (Fig. 2a). Figure 3b shows line cuts
of the Fourier transforms of maps measured at a wide range of
temperatures, demonstrating that the peak location is unaVected
by temperature and in particular Tc.
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displacements of the bilayer oxygens, similar to those
proposed for the soft phonon in YBa2Cu3O7 [20]. There
are small differences between the values of the modulation
periods for the a and b directions for all three compounds
(Table I) and in the patterns of atomic displacements,
showing that the influence of the chains on the planes is
also noticeable in o-VIII and o-III. If the two distortions

develop independently, one would expect a different TCDW

for modulations along each direction, with the postulated
two-q state forming at lower temperatures. To date, we
have no evidence for this, although observations in o-II
most clearly indicate a difference between the CDW order
in the a and b directions. The in-plane electronic anisot-
ropy in YBCO arises from the chains; thus, they must
ultimately be responsible for this difference between the
a and b directions. An obvious mechanism is through the
chain Fermi surface [21] with spanning vectors along b!,
which might encourage CDW formation. We note that
STM observations on the chain surface of optimally
doped YBCO [22] show such behavior, with a !2 " 0:3.
Furthermore, the alternating filled and empty chains create
an additional potential which would fold the Fermi surface
along a! and thereby change the band structure [21].
An important issue in the cuprates is the relationship of

the spin and charge correlations [1,2,9,10], where the
underlying antiferromagnetism (AFM) and charge density
have modulations characterised by wave vectors !spin and
!charge, respectively. In a simple stripe picture of inter-
twined spin and charge correlations [10], these yield spin
and charge peaks at positions "AFM # !spin and "lattice #
!charge, where !charge ¼ 2!spin. This simple relationship
appears to describe observations in La2%xBaxCuO4 (see
Fig. 4) and La1:6%xNd0:4SrxCuO4 [9,10]. In YBCO, the
low-frequency spin fluctuations are anisotropic [23,24],
with the strongest response for ! along a!. Indeed, lightly
doped YBa2Cu3Oy shows magnetic order [25] with !
along a!. Thus, in YBCO (see Fig. 4), not only are !spin

and !charge in different directions, but they show different
trends, and j!chargej ! 2j!spinj. These differences suggest
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FIG. 2 (color online). (a),(b) h and k scans, taken on o-II,
through (j n% !1 j , 0, 6.5) and (0, jn% !2 j, 6.5) with n ¼ 0, 2
and T " Tc. The k scans (filled red circles), showing lattice
modulation peaks at (0, !2, 6.5) and (0, 2% !2, 6.5), are the
same as those displayed in Figs. 1(a) and 1(b). Equivalent
measurements in the (h, 0, ‘) plane (open black circles) reveal
no evidence for a lattice modulation at !1 " !2. Notice that the
lattice modulation peaks are 2 orders of magnitude weaker than
the reflections from the ortho-II structure.

FIG. 3 (color online). Out-of-plane momentum ‘, field, and
temperature dependences of the CDW modulation peaks found
in YBCO o-II (red symbols), o-VIII (blue symbols), and o-III
(black symbols). All intensities have been background sub-
tracted and normalized to IðTcÞ in a zero field. (a) ‘ dependence
of the peak height of k scans through (0, nþ !2, ‘), with n ¼ 0
for o-II and o-VIII and with n ¼ 2 for o-III. All compounds
show a broad peak centered at ‘" 6:5 and a c-axis correlation
length #c comparable to that previously reported [2] in o-VIII at
T ¼ 2 K for ‘ ¼ 0:5. (b) Measurement in a separate cryostat of
the effect on CDW intensity in o-II of a magnetic field applied
with a component 11.5 T along the c axis of the crystal.
(c) Temperature dependence of peak intensities, measured at
the wave vectors indicated. The filled symbols are data taken in
a magnetic field.
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FIG. 4 (color online). (a) Spin and charge incommensurability
versus doping for YBCO and La2%xBaxCuO4 (LBCO). The spin
incommensurability of both YBCO [25] and La2%xBaxCuO4 [9]
increases with doping. In LBCO, the spin and charge incom-
mensurability are simply related: !c ) 2!s. In YBCO, the spin
and charge incommensurability have opposite trends with dop-
ing. (b) The charge incommensurability in YBCO, plotted on an
expanded scale. (c) In YBCO o-II, the dominant wave vectors of
the spin (!spin) and charge (!charge) modulations are along differ-

ent directions: the a and b axes, respectively.
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Analysis of the energy and polarization dependence of
the integrated scattering intensities (Fig. 3) demonstrates
that the H ¼ 0:30 and K ¼ 0:30 peaks are due to modu-
lations in the CuO2 planes, whereas the H ¼ 0:33 peaks
are due to ortho-III ordering in the chain layer. To model
the scattering intensity of the H ¼ 0:33 peak, we followed
the procedure in Ref. [19] which illustrated that the

scattering intensity and polarization dependence of the
oxygen order superstructure in ortho-II ordered YBCO
(full-empty-full-empty chains) could be calculated by ac-
counting for the impact of the oxygen dopants on the Cu1 d
states in the full and empty chains. This was done by
experimentally determining the energy dependence of
the atomic scattering tensor, Fi, for Cu in full, FCu1fð!Þ,
and empty, FCu1eð!Þ, chains using polarization dependent
x-ray absorption measurements in YBCO prepared with
either an entirely full (YBa2Cu3O7) or an entirely empty
(YBa2Cu3O6) chain layer. Here we use the same analysis
for the H ¼ 0:33 peak with FCu1fð!Þ and FCu1eð!Þ from
Ref. [19] and Isc;o$IIIðH ¼ 0:33; ~!Þ ¼ jfCu1fð!; ~!Þ þ fO $
fCu1eð!; ~!Þj2. As shown in Fig. 3(a), this analysis repro-
duces the energy and polarization dependence of the H ¼
0:33 peak, providing confirmation that this peak is domi-
nated by the oxygen order in the chain layer.
In contrast, both the polarization and energy dependence

of the H ¼ 0:30 and K ¼ 0:30 peaks are consistent with a
spatial modulation of the Cu 3dx2$y2 states in the CuO2

planes. First, one must note that the incident " and #
polarizations couple to different components of the scat-
tering tensor. For # polarization, the photon polarization is
entirely along the bðaÞ axis for the HðKÞ ¼ 0:30 peak
and is therefore sensitive to the bbðaaÞ components of
the scattering tensor. However, for " polarized light,
the polarization has components along both the a and
c axes that depend on the scattering geometry. For modu-
lations of Cu 3dx2$y2 states, faa;Cu2 ’ fbb;Cu2 & fcc;Cu2
and Iscð""0Þ=Iscð##0Þ ¼ ½sinð$Þ sinð%Þ!faa(2, where $
and % are the angles of the incident and scattered light
relative to the sample surface [see Fig. 1(b)] [30]. For the
values of $ and % in our measurement, one would expect
the ratio of Iscð""0Þ=Iscð##0Þ ¼ 0:46 for a modulation of
Cu 3dx2$y2 states. As shown in Fig. 3(b), the K ¼ 0:30
peak is in good agreement with this ratio.
A final intriguing aspect of the energy dependence of the

scattering intensity is that the line shape can be described
by a simple phenomenological model for the scattering
intensity based on a spatial modulation of the energy of the
Cu 2p to 3dx2$y2 transition. The energy of this transition is

determined by the energy of the 3dx2$y2 states, as well as

the core hole energy and the interaction energy of the core
hole with the d electrons, all of which may be spatially
modulated. This energy shift model was recently shown to
account for the energy dependence of the scattering inten-
sity of the [1=4 0 L] charge stripe ordering peak in
La1:475Nd0:4Sr0:125CuO4, unlike models based on lattice
displacements or charge density modulations [17].
Although in YBCO we do not know the structure factor
that accounts for the [0.30 0 L] and [0 0.30L] peaks, we can
naively invoke the same energy shift model and assume that
Isc½0:30 0L(ð!Þ / Isc½0 0:30L(ð!Þ / jfCu2að@!þ !EÞ $
fCu2bð@!$ !EÞj2, where Cu2a and Cu2b represent two
sites in the CuO2 planes with fð!Þ that is identical apart

FIG. 3 (color online). (a) The measured energy dependence of
the [0.33 0 1.4] oxygen ordering peak with # and " polarized
incident light along with the calculated spectra for ortho-III
oxygen ordering of the chain layer. (b) The energy dependence
of the [0 0.30 1.44] peak measured with # and " polarized light.
(c) The energy dependence of the [0.30 0 1.44] peak with "
polarized light compared to the energy shift model calculation.
The energy shift calculation captures the correct peak position
and energy width of the scattering intensity. (d) The energy shift
model calculation compared to the [0 0.30 1.44] peak with #
polarized light.

FIG. 2 (color online). The [H 0 L] [(a) and (b)] and [0 K L]
[(c) and (d)] normalized scattering intensity, Isc=I0, in arbitrary
units. The scattering intensity was measured with # [(a) and (c)]
and " [(b) and (d)] incident photon polarization at T ¼ 60 K.
r.l.u., reciprocal lattice units.
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Fig. 1: Cuprate temperature-doping phase diagram. Long-range antiferromagnetic order (solid 

green line) gives way to superconductivity (solid blue line) near 𝑝𝑝 = 0.05. Orange diamonds 

designate dopings where quantum oscillations have been observed previously[52, 53], and 

stars denote the new dopings presented in this paper. Short-range antiferromagnetic order 

(green diamonds) terminates at a quantum critical point at 𝑝𝑝 = 0.08 [46, 54]; beyond 

𝑝𝑝 = 0.08, short-range charge order onsets above 𝑇𝑇𝑐𝑐 (solid black diamonds [15, 27]). The 

charge order, the onset of the pseudogap (as defined by neutron spin-flip scattering (open red 

circles)[12], the polar Kerr effect (open red diamonds[13]), and the change in the slope of 

resistivity with temperature (open red triangles[55])) terminate near 𝑝𝑝 = 0.18, suggesting the 

possibility of a quantum critical point at this doping. Two thermodynamic quantities show 

enhancement near the critical dopings: the jump in the specific heat at 𝑇𝑇𝑐𝑐(Δ𝛾𝛾, maroon 

diamonds [40, 41]), and the upper critical field (𝐻𝐻𝑐𝑐2, purple points [39]). 

Ramshaw, 2015
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stars denote the new dopings presented in this paper. Short-range antiferromagnetic order 

(green diamonds) terminates at a quantum critical point at 𝑝𝑝 = 0.08 [46, 54]; beyond 

𝑝𝑝 = 0.08, short-range charge order onsets above 𝑇𝑇𝑐𝑐 (solid black diamonds [15, 27]). The 

charge order, the onset of the pseudogap (as defined by neutron spin-flip scattering (open red 

circles)[12], the polar Kerr effect (open red diamonds[13]), and the change in the slope of 

resistivity with temperature (open red triangles[55])) terminate near 𝑝𝑝 = 0.18, suggesting the 

possibility of a quantum critical point at this doping. Two thermodynamic quantities show 

enhancement near the critical dopings: the jump in the specific heat at 𝑇𝑇𝑐𝑐(Δ𝛾𝛾, maroon 

diamonds [40, 41]), and the upper critical field (𝐻𝐻𝑐𝑐2, purple points [39]). 
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The context : doping a Mott insulator 

with tpd and Ep−Ed! can be understood in terms of an
effective one-band model, and we shall follow this route.
The essential insight is that the doped hole resonates on
the four oxygen sites surrounding a Cu and the spin of
the doped hole combines with the spin on the Cu to
form a spin singlet. This is known as the Zhang-Rice
singlet "Zhang and Rice, 1988!. This state is split off by
an energy of order tpd

2 / "Ep−Ed! because the singlet gains
energy by virtual hopping. On the other hand, the
Zhang-Rice singlet can hop from site to site. Since the
hopping is a two-step process, the effective hopping in-
tegral t is also of order tpd

2 / "Ep−Ed!. Since t is the same
parametrically as the binding energy of the singlet, the
justification of this point of view relies on a large nu-
merical factor for the binding energy, which is obtained
by studying small clusters.

By focusing on the low-lying singlet, the hole-doped
three-band model simplifies to a one-band tight-binding
model on the square lattice, with an effective nearest-
neighbor hopping integral t given earlier and with Ep
−Ed playing a role analogous to U. In the large Ep−Ed
limit this maps onto the t-J model,

H = P#− $
%ij&,!

tijci!
† ci! + J$

%ij&
"Si · Sj − 1

4ninj!'P . "2!

Here the ci!
† is the usual fermion creation operator on

site i, ni="!ci!
† c! is the number operator, and P is a

projection operator restricting the Hilbert space to ex-
clude double occupancy of any site. J is given by 4t2 /U
and we can see that it is the same functional form as that
of the three-band model described earlier. It is also pos-
sible to dope with electrons rather than holes. The typi-
cal electron-doped system is Nd2−xCexCuO4+# "NCCO!.
The added electron corresponds to the removal of a hole
from the copper site in the hole picture "Fig. 2!, i.e., the
Cu ion is in the d10 configuration. This vacancy can hop
with a teff and the mapping to the one-band model is
more direct than the hole-doped case. Note that in the
full three-band model, the object which is hopping is the
Zhang-Rice singlet for hole doping and the Cu d10 con-
figuration for electron doping. These have rather differ-
ent spatial structure and are physically quite distinct. For
example, the strength of their coupling to lattice distor-
tions may be quite different. When mapped to the one-
band model, the nearest-neighbor hopping t has the
same parametric dependence but could have a different
numerical constant. As we shall see, the value of t de-
rived from cluster calculations turns out to be surpris-
ingly similar for electron and hole doping. For a bipar-
tite lattice, the t-J model with nearest-neighbor t has
particle-hole symmetry because the sign of t can be ab-
sorbed by changing the sign of the orbital on one sub-
lattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron-doped
side, the antiferromagnetic insulator survives up to a
much higher doping concentration "up to x(0.2! and
the superconducting transition temperature is quite low
"about 30 K!. Many of the properties of the supercon-
ductor resemble that of the overdoped region of the

hole-doped side and pseudogap phenomenon, which is
prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability
of the antiferromagnet has covered up any anomalous
regime that might exist otherwise. Precisely why is not
clear at the moment. One possibility is that polaron ef-
fects may be stronger on the electron-doped side, lead-
ing to carrier localization over a broader range of dop-
ing. There has been some success in modeling the
contrast in the single-hole spectrum by introducing
further-neighbor coupling into the one-band model,
which breaks the particle-hole symmetry "Shih et al.,
2004!. This will be discussed further below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half-filling. Fur-
thermore, the one-band t-J model captures the essence
of the low-energy electronic excitations of the cuprates.
Particle-hole asymmetry may be accounted for by in-
cluding further-neighbor hopping t!. This point of view
has been tested extensively by Hybertson et al. "1990!
who used ab initio local-density-functional theory to
generate input parameters for the three-band Hubbard
model and then solved the spectra exactly on finite clus-
ters. The results were compared with the low-energy
spectra of the one-band Hubbard model and the t-t!-J
model. They found an excellent overlap of the low-lying
wave functions for both the one-band Hubbard and the
t-t!-J model and were able to extract effective param-
eters. They found J to be 128±5 meV, in excellent
agreement with experimental values. Furthermore, they
found t(0.41 and 0.44 eV for electron and hole doping,
respectively. The near particle-hole symmetry in t is sur-
prising because the underlying electronic states are very
different in the two cases, as already discussed. Based on
their results, the commonly used parameter J / t for the
t-J model is 1 /3. They also found a significant next-
nearest-neighbor t! term, again almost the same for elec-
tron and hole doping.

More recently, Andersen et al. "1996! pointed out that
in addition to the three-band model an additional Cu 4s
orbital has a strong influence on further-neighbor hop-
ping t! and t", where t! is the hopping across the diagonal
and t" is hopping to the next-nearest neighbor along a
straight line. Recently Pavarini et al. "2001! emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of t! / t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal Tc
and t! / t. As we shall discuss in Secs. VI.D and VII, t!
may play an important role in determining Tc and in
explaining the difference between electron and hole
doping. However, in view of the fact that on-site repul-
sion is the largest energy scale in the problem, it would
make sense to begin our modeling of the cuprates with
the t-J model and ask to what extent the phase diagram
can be accounted for. As we shall see, even this is not a
simple task and will constitute the major thrust of this
review.
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work by C. P. Slichter and early transport measurements
by N. P. Ong among others. Discussions of stripe physics
were recently given by Carlson et al. !2003" and Kivelson
et al. !2003". A discussion of spin-liquid states is given by
Sachdev !2003", with an emphasis on dimer order and by
Wen !2004", with an emphasis on quantum order. For an
account of experiments and early RVB theory, see the
book by Anderson !1997".

II. BASIC ELECTRONIC STRUCTURE OF THE CUPRATES

It is generally agreed that the physics of high-Tc su-
perconductivity is that of the copper-oxygen layer, as
shown in Fig. 2. In the parent compound such as
La2CuO4, the formal valence of Cu is 2+, which means
that its electronic state is in the d9 configuration. The
copper is surrounded by six oxygens in an octahedral
environment !the apical oxygen lying above and below
Cu are not shown in Fig. 2". The distortion from a per-
fect octahedron due to the shift of the apical oxygens
splits the eg orbitals so that the highest partially occu-
pied d orbital is x2−y2. The lobes of this orbital point
directly to the p orbital of the neighboring oxygen, form-
ing a strong covalent bond with a large hopping integral
tpd. As we shall see, the strength of this covalent bonding
is responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called three-band
model, where in each unit cell we have the Cu dx2−y2

orbital and two oxygen p orbitals !Emery, 1987; Varma
et al., 1987". The Cu orbital is singly occupied while the p
orbitals are doubly occupied, but these are admixed by

tpd. In addition, admixtures between the oxygen orbitals
may be included. These tight-binding parameters may
be obtained by fits to band-structure calculations !Mat-
theiss, 1987; Yu et al., 1987". However, the largest energy
in the problem is the correlation energy for doubly oc-
cupying the copper orbital. To describe these correlation
energies, it is more convenient to refer to the hole pic-
ture. The Cu d9 configuration is represented by energy
level Ed occupied by a single hole with S= 1

2 . The oxygen
p orbital is empty of holes and lies at energy Ep, which is
higher than Ed. The energy to doubly occupy Ed !lead-
ing to a d8 configuration" is Ud, which is very large and
can be considered infinity. The lowest-energy excitation
is the charge-transfer excitation in which the hole hops
from d to p with amplitude −tpd. If Ep−Ed is sufficiently
large compared with tpd, the hole will form a local mo-
ment on Cu. This is referred to as a charge-transfer in-
sulator in the scheme of Zaanen et al. !1985". Essentially,
Ep−Ed plays the role of the Hubbard U in the one-band
model of the Mott insulator. Experimentally an energy
gap of 2.0 eV is observed and interpreted as the charge-
transfer excitation !see Kastner et al., 1998".

Just as in the one-band Mott-Hubbard insulator in
which virtual hopping to doubly occupied states leads to
an exchange interaction JS1 ·S2, where J=4t2 /U, in the
charge-transfer insulator the local moments on nearest-
neighbor Cu prefer antiferromagnetic alignment be-
cause both spins can virtually hop to the Ep orbital. Ig-
noring the Up for doubly occupying the p orbital with
holes, the exchange integral is given by

J =
tpd
4

!Ep − Ed"3 . !1"

The relatively small size of the charge-transfer gap
means that we are not deep in the insulating phase and
the exchange term is expected to be large. Indeed ex-
perimentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations !Sulewsky et al., 1990", the ex-
change energy is found to be J=0.13 eV. This is one of
the largest exchange energies known. !It is even larger in
the ladder compounds which involve the same Cu-O
bonding." This value of J is confirmed by fitting the spin-
wave energy to theory, in which an additional ring ex-
change term is found !Coldea et al., 2001".

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a pro-
cess called doping. For example, in La2−xSrxCuO4, x
holes per Cu are added to the layer. As seen in Fig. 2,
due to the large Ud the hole will reside on the oxygen p
orbital. The hole can hop via tpd, and due to transla-
tional symmetry the holes are mobile and form a metal,
unless localization due to disorder or some other phase
transition intervenes. The full description of hole hop-
ping in the three-band model is complicated, and a num-
ber of theories consider this essential to the understand-
ing of high-Tc superconductivity !Emery, 1987; Varma et
al., 1987". On the other hand, there is strong evidence
that the low-energy physics !on a scale small compared

FIG. 2. !Color online" Electronic structure of the cuprates. !a"
Two-dimensional copper-oxygen layer !left" simplified to the
one-band model !right". !b" The copper d and oxygen p orbit-
als in the hole picture. A single hole with S=1/2 occupies the
copper d orbital in the insulator.
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The context : doping a Mott insulator 

with tpd and Ep−Ed! can be understood in terms of an
effective one-band model, and we shall follow this route.
The essential insight is that the doped hole resonates on
the four oxygen sites surrounding a Cu and the spin of
the doped hole combines with the spin on the Cu to
form a spin singlet. This is known as the Zhang-Rice
singlet "Zhang and Rice, 1988!. This state is split off by
an energy of order tpd

2 / "Ep−Ed! because the singlet gains
energy by virtual hopping. On the other hand, the
Zhang-Rice singlet can hop from site to site. Since the
hopping is a two-step process, the effective hopping in-
tegral t is also of order tpd

2 / "Ep−Ed!. Since t is the same
parametrically as the binding energy of the singlet, the
justification of this point of view relies on a large nu-
merical factor for the binding energy, which is obtained
by studying small clusters.

By focusing on the low-lying singlet, the hole-doped
three-band model simplifies to a one-band tight-binding
model on the square lattice, with an effective nearest-
neighbor hopping integral t given earlier and with Ep
−Ed playing a role analogous to U. In the large Ep−Ed
limit this maps onto the t-J model,

H = P#− $
%ij&,!

tijci!
† ci! + J$

%ij&
"Si · Sj − 1

4ninj!'P . "2!

Here the ci!
† is the usual fermion creation operator on

site i, ni="!ci!
† c! is the number operator, and P is a

projection operator restricting the Hilbert space to ex-
clude double occupancy of any site. J is given by 4t2 /U
and we can see that it is the same functional form as that
of the three-band model described earlier. It is also pos-
sible to dope with electrons rather than holes. The typi-
cal electron-doped system is Nd2−xCexCuO4+# "NCCO!.
The added electron corresponds to the removal of a hole
from the copper site in the hole picture "Fig. 2!, i.e., the
Cu ion is in the d10 configuration. This vacancy can hop
with a teff and the mapping to the one-band model is
more direct than the hole-doped case. Note that in the
full three-band model, the object which is hopping is the
Zhang-Rice singlet for hole doping and the Cu d10 con-
figuration for electron doping. These have rather differ-
ent spatial structure and are physically quite distinct. For
example, the strength of their coupling to lattice distor-
tions may be quite different. When mapped to the one-
band model, the nearest-neighbor hopping t has the
same parametric dependence but could have a different
numerical constant. As we shall see, the value of t de-
rived from cluster calculations turns out to be surpris-
ingly similar for electron and hole doping. For a bipar-
tite lattice, the t-J model with nearest-neighbor t has
particle-hole symmetry because the sign of t can be ab-
sorbed by changing the sign of the orbital on one sub-
lattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron-doped
side, the antiferromagnetic insulator survives up to a
much higher doping concentration "up to x(0.2! and
the superconducting transition temperature is quite low
"about 30 K!. Many of the properties of the supercon-
ductor resemble that of the overdoped region of the

hole-doped side and pseudogap phenomenon, which is
prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability
of the antiferromagnet has covered up any anomalous
regime that might exist otherwise. Precisely why is not
clear at the moment. One possibility is that polaron ef-
fects may be stronger on the electron-doped side, lead-
ing to carrier localization over a broader range of dop-
ing. There has been some success in modeling the
contrast in the single-hole spectrum by introducing
further-neighbor coupling into the one-band model,
which breaks the particle-hole symmetry "Shih et al.,
2004!. This will be discussed further below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half-filling. Fur-
thermore, the one-band t-J model captures the essence
of the low-energy electronic excitations of the cuprates.
Particle-hole asymmetry may be accounted for by in-
cluding further-neighbor hopping t!. This point of view
has been tested extensively by Hybertson et al. "1990!
who used ab initio local-density-functional theory to
generate input parameters for the three-band Hubbard
model and then solved the spectra exactly on finite clus-
ters. The results were compared with the low-energy
spectra of the one-band Hubbard model and the t-t!-J
model. They found an excellent overlap of the low-lying
wave functions for both the one-band Hubbard and the
t-t!-J model and were able to extract effective param-
eters. They found J to be 128±5 meV, in excellent
agreement with experimental values. Furthermore, they
found t(0.41 and 0.44 eV for electron and hole doping,
respectively. The near particle-hole symmetry in t is sur-
prising because the underlying electronic states are very
different in the two cases, as already discussed. Based on
their results, the commonly used parameter J / t for the
t-J model is 1 /3. They also found a significant next-
nearest-neighbor t! term, again almost the same for elec-
tron and hole doping.

More recently, Andersen et al. "1996! pointed out that
in addition to the three-band model an additional Cu 4s
orbital has a strong influence on further-neighbor hop-
ping t! and t", where t! is the hopping across the diagonal
and t" is hopping to the next-nearest neighbor along a
straight line. Recently Pavarini et al. "2001! emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of t! / t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal Tc
and t! / t. As we shall discuss in Secs. VI.D and VII, t!
may play an important role in determining Tc and in
explaining the difference between electron and hole
doping. However, in view of the fact that on-site repul-
sion is the largest energy scale in the problem, it would
make sense to begin our modeling of the cuprates with
the t-J model and ask to what extent the phase diagram
can be accounted for. As we shall see, even this is not a
simple task and will constitute the major thrust of this
review.
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work by C. P. Slichter and early transport measurements
by N. P. Ong among others. Discussions of stripe physics
were recently given by Carlson et al. !2003" and Kivelson
et al. !2003". A discussion of spin-liquid states is given by
Sachdev !2003", with an emphasis on dimer order and by
Wen !2004", with an emphasis on quantum order. For an
account of experiments and early RVB theory, see the
book by Anderson !1997".

II. BASIC ELECTRONIC STRUCTURE OF THE CUPRATES

It is generally agreed that the physics of high-Tc su-
perconductivity is that of the copper-oxygen layer, as
shown in Fig. 2. In the parent compound such as
La2CuO4, the formal valence of Cu is 2+, which means
that its electronic state is in the d9 configuration. The
copper is surrounded by six oxygens in an octahedral
environment !the apical oxygen lying above and below
Cu are not shown in Fig. 2". The distortion from a per-
fect octahedron due to the shift of the apical oxygens
splits the eg orbitals so that the highest partially occu-
pied d orbital is x2−y2. The lobes of this orbital point
directly to the p orbital of the neighboring oxygen, form-
ing a strong covalent bond with a large hopping integral
tpd. As we shall see, the strength of this covalent bonding
is responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called three-band
model, where in each unit cell we have the Cu dx2−y2

orbital and two oxygen p orbitals !Emery, 1987; Varma
et al., 1987". The Cu orbital is singly occupied while the p
orbitals are doubly occupied, but these are admixed by

tpd. In addition, admixtures between the oxygen orbitals
may be included. These tight-binding parameters may
be obtained by fits to band-structure calculations !Mat-
theiss, 1987; Yu et al., 1987". However, the largest energy
in the problem is the correlation energy for doubly oc-
cupying the copper orbital. To describe these correlation
energies, it is more convenient to refer to the hole pic-
ture. The Cu d9 configuration is represented by energy
level Ed occupied by a single hole with S= 1

2 . The oxygen
p orbital is empty of holes and lies at energy Ep, which is
higher than Ed. The energy to doubly occupy Ed !lead-
ing to a d8 configuration" is Ud, which is very large and
can be considered infinity. The lowest-energy excitation
is the charge-transfer excitation in which the hole hops
from d to p with amplitude −tpd. If Ep−Ed is sufficiently
large compared with tpd, the hole will form a local mo-
ment on Cu. This is referred to as a charge-transfer in-
sulator in the scheme of Zaanen et al. !1985". Essentially,
Ep−Ed plays the role of the Hubbard U in the one-band
model of the Mott insulator. Experimentally an energy
gap of 2.0 eV is observed and interpreted as the charge-
transfer excitation !see Kastner et al., 1998".

Just as in the one-band Mott-Hubbard insulator in
which virtual hopping to doubly occupied states leads to
an exchange interaction JS1 ·S2, where J=4t2 /U, in the
charge-transfer insulator the local moments on nearest-
neighbor Cu prefer antiferromagnetic alignment be-
cause both spins can virtually hop to the Ep orbital. Ig-
noring the Up for doubly occupying the p orbital with
holes, the exchange integral is given by

J =
tpd
4

!Ep − Ed"3 . !1"

The relatively small size of the charge-transfer gap
means that we are not deep in the insulating phase and
the exchange term is expected to be large. Indeed ex-
perimentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations !Sulewsky et al., 1990", the ex-
change energy is found to be J=0.13 eV. This is one of
the largest exchange energies known. !It is even larger in
the ladder compounds which involve the same Cu-O
bonding." This value of J is confirmed by fitting the spin-
wave energy to theory, in which an additional ring ex-
change term is found !Coldea et al., 2001".

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a pro-
cess called doping. For example, in La2−xSrxCuO4, x
holes per Cu are added to the layer. As seen in Fig. 2,
due to the large Ud the hole will reside on the oxygen p
orbital. The hole can hop via tpd, and due to transla-
tional symmetry the holes are mobile and form a metal,
unless localization due to disorder or some other phase
transition intervenes. The full description of hole hop-
ping in the three-band model is complicated, and a num-
ber of theories consider this essential to the understand-
ing of high-Tc superconductivity !Emery, 1987; Varma et
al., 1987". On the other hand, there is strong evidence
that the low-energy physics !on a scale small compared

FIG. 2. !Color online" Electronic structure of the cuprates. !a"
Two-dimensional copper-oxygen layer !left" simplified to the
one-band model !right". !b" The copper d and oxygen p orbit-
als in the hole picture. A single hole with S=1/2 occupies the
copper d orbital in the insulator.
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Figure 3. Phase diagram of the cuprates (x is the hole doping). AF is the antiferromagnetic
insulator. The dotted line is a crossover line between the normal metal phase and the pseudogap
phase.

takes up a small sliver (figure 3) of the phase diagram (in the electron doped case, though, the
magnetism exists over a much larger doping range). So, in that sense, Anderson’s intuition
was quite good.

For dopings beyond a few per cent, the system either enters a messy disordered phase
exhibiting spin glass behaviour (as in LSCO) before superconducting order sets in, or
immediately goes to the superconducting phase (as in YBCO). The superconducting transition
monotonically rises with doping, reaching a maximum at about 16% doping, after which Tc

declines to zero. The net effect is to form a superconducting ‘dome’ that extends from about
5% to 25% doping.

At first sight, the superconducting phase is not so different from that of classical
superconductors. We know that it exhibits a zero resistance state with a Meissner effect.
Experiments show that the superconducting objects have charge 2e, and thus pairs are formed.
What is unusual, though, is the small coherence length. For typical superconductors, the
coherence length is quite large, usually several hundred Å or more. This is in contrast
to magnets, which have coherence lengths that are quite small. Therefore, for most
superconductors we know, mean field theory works extremely well, as opposed to magnets
where it almost always fails. But cuprates exhibit small coherence lengths, of the order
of 20 Å in the plane, and a paltry 2 Å between planes. The latter is so small that the
cuprates are essentially composed of Josephson coupled planes, as has been experimentally
verified by a number of groups [35]. Such coupling is necessary, of course, since long range
superconducting order cannot occur in two dimensions (except in the Kosterlitz–Thouless
phase, whose existence in the cuprates is still debated [36]).

Another unusual finding is the symmetry of the order parameter (figure 4). For many years,
it was felt that the order parameter probably had s-wave symmetry. There was no evidence
from thermodynamic measurements for nodes in the gap as in heavy fermion superconductors,
except for an early report of a non-exponential temperature dependence of the Knight shift
[37]. Also, the cuprates were viewed as quite disordered (doping being achieved by chemical
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The context : doping a Mott insulator 

with tpd and Ep−Ed! can be understood in terms of an
effective one-band model, and we shall follow this route.
The essential insight is that the doped hole resonates on
the four oxygen sites surrounding a Cu and the spin of
the doped hole combines with the spin on the Cu to
form a spin singlet. This is known as the Zhang-Rice
singlet "Zhang and Rice, 1988!. This state is split off by
an energy of order tpd

2 / "Ep−Ed! because the singlet gains
energy by virtual hopping. On the other hand, the
Zhang-Rice singlet can hop from site to site. Since the
hopping is a two-step process, the effective hopping in-
tegral t is also of order tpd

2 / "Ep−Ed!. Since t is the same
parametrically as the binding energy of the singlet, the
justification of this point of view relies on a large nu-
merical factor for the binding energy, which is obtained
by studying small clusters.

By focusing on the low-lying singlet, the hole-doped
three-band model simplifies to a one-band tight-binding
model on the square lattice, with an effective nearest-
neighbor hopping integral t given earlier and with Ep
−Ed playing a role analogous to U. In the large Ep−Ed
limit this maps onto the t-J model,

H = P#− $
%ij&,!

tijci!
† ci! + J$

%ij&
"Si · Sj − 1

4ninj!'P . "2!

Here the ci!
† is the usual fermion creation operator on

site i, ni="!ci!
† c! is the number operator, and P is a

projection operator restricting the Hilbert space to ex-
clude double occupancy of any site. J is given by 4t2 /U
and we can see that it is the same functional form as that
of the three-band model described earlier. It is also pos-
sible to dope with electrons rather than holes. The typi-
cal electron-doped system is Nd2−xCexCuO4+# "NCCO!.
The added electron corresponds to the removal of a hole
from the copper site in the hole picture "Fig. 2!, i.e., the
Cu ion is in the d10 configuration. This vacancy can hop
with a teff and the mapping to the one-band model is
more direct than the hole-doped case. Note that in the
full three-band model, the object which is hopping is the
Zhang-Rice singlet for hole doping and the Cu d10 con-
figuration for electron doping. These have rather differ-
ent spatial structure and are physically quite distinct. For
example, the strength of their coupling to lattice distor-
tions may be quite different. When mapped to the one-
band model, the nearest-neighbor hopping t has the
same parametric dependence but could have a different
numerical constant. As we shall see, the value of t de-
rived from cluster calculations turns out to be surpris-
ingly similar for electron and hole doping. For a bipar-
tite lattice, the t-J model with nearest-neighbor t has
particle-hole symmetry because the sign of t can be ab-
sorbed by changing the sign of the orbital on one sub-
lattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron-doped
side, the antiferromagnetic insulator survives up to a
much higher doping concentration "up to x(0.2! and
the superconducting transition temperature is quite low
"about 30 K!. Many of the properties of the supercon-
ductor resemble that of the overdoped region of the

hole-doped side and pseudogap phenomenon, which is
prominent in the underdoped region, is not observed
with electron doping. It is as though the greater stability
of the antiferromagnet has covered up any anomalous
regime that might exist otherwise. Precisely why is not
clear at the moment. One possibility is that polaron ef-
fects may be stronger on the electron-doped side, lead-
ing to carrier localization over a broader range of dop-
ing. There has been some success in modeling the
contrast in the single-hole spectrum by introducing
further-neighbor coupling into the one-band model,
which breaks the particle-hole symmetry "Shih et al.,
2004!. This will be discussed further below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half-filling. Fur-
thermore, the one-band t-J model captures the essence
of the low-energy electronic excitations of the cuprates.
Particle-hole asymmetry may be accounted for by in-
cluding further-neighbor hopping t!. This point of view
has been tested extensively by Hybertson et al. "1990!
who used ab initio local-density-functional theory to
generate input parameters for the three-band Hubbard
model and then solved the spectra exactly on finite clus-
ters. The results were compared with the low-energy
spectra of the one-band Hubbard model and the t-t!-J
model. They found an excellent overlap of the low-lying
wave functions for both the one-band Hubbard and the
t-t!-J model and were able to extract effective param-
eters. They found J to be 128±5 meV, in excellent
agreement with experimental values. Furthermore, they
found t(0.41 and 0.44 eV for electron and hole doping,
respectively. The near particle-hole symmetry in t is sur-
prising because the underlying electronic states are very
different in the two cases, as already discussed. Based on
their results, the commonly used parameter J / t for the
t-J model is 1 /3. They also found a significant next-
nearest-neighbor t! term, again almost the same for elec-
tron and hole doping.

More recently, Andersen et al. "1996! pointed out that
in addition to the three-band model an additional Cu 4s
orbital has a strong influence on further-neighbor hop-
ping t! and t", where t! is the hopping across the diagonal
and t" is hopping to the next-nearest neighbor along a
straight line. Recently Pavarini et al. "2001! emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of t! / t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal Tc
and t! / t. As we shall discuss in Secs. VI.D and VII, t!
may play an important role in determining Tc and in
explaining the difference between electron and hole
doping. However, in view of the fact that on-site repul-
sion is the largest energy scale in the problem, it would
make sense to begin our modeling of the cuprates with
the t-J model and ask to what extent the phase diagram
can be accounted for. As we shall see, even this is not a
simple task and will constitute the major thrust of this
review.
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work by C. P. Slichter and early transport measurements
by N. P. Ong among others. Discussions of stripe physics
were recently given by Carlson et al. !2003" and Kivelson
et al. !2003". A discussion of spin-liquid states is given by
Sachdev !2003", with an emphasis on dimer order and by
Wen !2004", with an emphasis on quantum order. For an
account of experiments and early RVB theory, see the
book by Anderson !1997".

II. BASIC ELECTRONIC STRUCTURE OF THE CUPRATES

It is generally agreed that the physics of high-Tc su-
perconductivity is that of the copper-oxygen layer, as
shown in Fig. 2. In the parent compound such as
La2CuO4, the formal valence of Cu is 2+, which means
that its electronic state is in the d9 configuration. The
copper is surrounded by six oxygens in an octahedral
environment !the apical oxygen lying above and below
Cu are not shown in Fig. 2". The distortion from a per-
fect octahedron due to the shift of the apical oxygens
splits the eg orbitals so that the highest partially occu-
pied d orbital is x2−y2. The lobes of this orbital point
directly to the p orbital of the neighboring oxygen, form-
ing a strong covalent bond with a large hopping integral
tpd. As we shall see, the strength of this covalent bonding
is responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called three-band
model, where in each unit cell we have the Cu dx2−y2

orbital and two oxygen p orbitals !Emery, 1987; Varma
et al., 1987". The Cu orbital is singly occupied while the p
orbitals are doubly occupied, but these are admixed by

tpd. In addition, admixtures between the oxygen orbitals
may be included. These tight-binding parameters may
be obtained by fits to band-structure calculations !Mat-
theiss, 1987; Yu et al., 1987". However, the largest energy
in the problem is the correlation energy for doubly oc-
cupying the copper orbital. To describe these correlation
energies, it is more convenient to refer to the hole pic-
ture. The Cu d9 configuration is represented by energy
level Ed occupied by a single hole with S= 1

2 . The oxygen
p orbital is empty of holes and lies at energy Ep, which is
higher than Ed. The energy to doubly occupy Ed !lead-
ing to a d8 configuration" is Ud, which is very large and
can be considered infinity. The lowest-energy excitation
is the charge-transfer excitation in which the hole hops
from d to p with amplitude −tpd. If Ep−Ed is sufficiently
large compared with tpd, the hole will form a local mo-
ment on Cu. This is referred to as a charge-transfer in-
sulator in the scheme of Zaanen et al. !1985". Essentially,
Ep−Ed plays the role of the Hubbard U in the one-band
model of the Mott insulator. Experimentally an energy
gap of 2.0 eV is observed and interpreted as the charge-
transfer excitation !see Kastner et al., 1998".

Just as in the one-band Mott-Hubbard insulator in
which virtual hopping to doubly occupied states leads to
an exchange interaction JS1 ·S2, where J=4t2 /U, in the
charge-transfer insulator the local moments on nearest-
neighbor Cu prefer antiferromagnetic alignment be-
cause both spins can virtually hop to the Ep orbital. Ig-
noring the Up for doubly occupying the p orbital with
holes, the exchange integral is given by

J =
tpd
4

!Ep − Ed"3 . !1"

The relatively small size of the charge-transfer gap
means that we are not deep in the insulating phase and
the exchange term is expected to be large. Indeed ex-
perimentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations !Sulewsky et al., 1990", the ex-
change energy is found to be J=0.13 eV. This is one of
the largest exchange energies known. !It is even larger in
the ladder compounds which involve the same Cu-O
bonding." This value of J is confirmed by fitting the spin-
wave energy to theory, in which an additional ring ex-
change term is found !Coldea et al., 2001".

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a pro-
cess called doping. For example, in La2−xSrxCuO4, x
holes per Cu are added to the layer. As seen in Fig. 2,
due to the large Ud the hole will reside on the oxygen p
orbital. The hole can hop via tpd, and due to transla-
tional symmetry the holes are mobile and form a metal,
unless localization due to disorder or some other phase
transition intervenes. The full description of hole hop-
ping in the three-band model is complicated, and a num-
ber of theories consider this essential to the understand-
ing of high-Tc superconductivity !Emery, 1987; Varma et
al., 1987". On the other hand, there is strong evidence
that the low-energy physics !on a scale small compared

FIG. 2. !Color online" Electronic structure of the cuprates. !a"
Two-dimensional copper-oxygen layer !left" simplified to the
one-band model !right". !b" The copper d and oxygen p orbit-
als in the hole picture. A single hole with S=1/2 occupies the
copper d orbital in the insulator.
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Figure 3. Phase diagram of the cuprates (x is the hole doping). AF is the antiferromagnetic
insulator. The dotted line is a crossover line between the normal metal phase and the pseudogap
phase.

takes up a small sliver (figure 3) of the phase diagram (in the electron doped case, though, the
magnetism exists over a much larger doping range). So, in that sense, Anderson’s intuition
was quite good.

For dopings beyond a few per cent, the system either enters a messy disordered phase
exhibiting spin glass behaviour (as in LSCO) before superconducting order sets in, or
immediately goes to the superconducting phase (as in YBCO). The superconducting transition
monotonically rises with doping, reaching a maximum at about 16% doping, after which Tc

declines to zero. The net effect is to form a superconducting ‘dome’ that extends from about
5% to 25% doping.

At first sight, the superconducting phase is not so different from that of classical
superconductors. We know that it exhibits a zero resistance state with a Meissner effect.
Experiments show that the superconducting objects have charge 2e, and thus pairs are formed.
What is unusual, though, is the small coherence length. For typical superconductors, the
coherence length is quite large, usually several hundred Å or more. This is in contrast
to magnets, which have coherence lengths that are quite small. Therefore, for most
superconductors we know, mean field theory works extremely well, as opposed to magnets
where it almost always fails. But cuprates exhibit small coherence lengths, of the order
of 20 Å in the plane, and a paltry 2 Å between planes. The latter is so small that the
cuprates are essentially composed of Josephson coupled planes, as has been experimentally
verified by a number of groups [35]. Such coupling is necessary, of course, since long range
superconducting order cannot occur in two dimensions (except in the Kosterlitz–Thouless
phase, whose existence in the cuprates is still debated [36]).

Another unusual finding is the symmetry of the order parameter (figure 4). For many years,
it was felt that the order parameter probably had s-wave symmetry. There was no evidence
from thermodynamic measurements for nodes in the gap as in heavy fermion superconductors,
except for an early report of a non-exponential temperature dependence of the Knight shift
[37]. Also, the cuprates were viewed as quite disordered (doping being achieved by chemical
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FIG. 1. Symmetrized data for (a) a Tc=82K over-
doped sample and (b) a Tc=83K underdoped sample at the
(π, 0) − (π, π) Fermi crossing at five temperatures, compared
to the model fits described in the text.
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FIG. 2. ∆ (open circles), Γ1 (solid circles), and Γ0 (solid
squares) versus T at the (π, 0) − (π,π) Fermi crossing for (a)
a Tc=82K overdoped sample and (b) a Tc=83K underdoped
sample. The dashed line marks Tc. The error bars for ∆ are
based on a 10% increase in the RMS error of the fits.
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FIG. 3. (a) Symmetrized data for a Tc=77K underdoped
sample for three temperatures at (open circles) kF point 1 in
the zone inset, and at (open triangles) kF point 2, compared
to the model fits. (b) ∆(T ) for these two k points (filled and
open circles), with Tc marked by the dashed line.
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Nernst e↵ect in metals and superconductors: a review of concepts and experiments 10

Figure 3. The magnitude of the low temperature Nernst coe�cient divided by
temperature in a variety of metals plotted vs. the ratio of mobility to Fermi energy.
The figure first appeared in a previous review article[7]. Six blue data points represent
those reported since its publication in 2009. The list two semimetals (graphite and
WTe2), three doped semiconductors (Bi2Se3 (at a carrier density of 1017cm�3) ,SrTiO3

(at a carrier density of 5.5⇥ 1017cm�3) and Pb1�x

Sn
x

Se) and the high-T
c

cuprate,
YBCO, at a single doping level of p=0.11, where small Fermi surface pockets have
been resolved by experiment.

Now, In the light of this equation, as well as Eq.22 and Eq.9, one can see that the

picture sketched in the previous section is equivalent to the following expression for the

Nernst coe�cient in a metal[7]:

⌫ =
N

B
⇠

⇡2

3

kB
e

kBT

✏F
µ (29)

In other words, the Nernst coe�cient of a given material hosting an electron fluid is

set by two properties of the fluid: its Fermi energy, ✏F , and its mobility, µ. The higher

this ratio, the larger is the expected Nernst response at low temperature. Note that

Eq. 28 is valid in both two and three dimensions, because the dimension-related length

scale in ↵xy and �xx cancel out.

The large Nernst coe�cient found in numerous heavy-fermion metals observed in

the beginning of the twenty-first century was unexpected at first. However, given the low

Fermi energy of these systems, several orders of magnitude lower than in high-density

13
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FIG. 20: The phase diagram of LSCO showing the Nernst
region between Tc and Tonset (numbers on the contour curves
indicate the value of the Nernst coefficient ν in µV/KT). The
curve of Tonset vs. x has end-points at x = 0.03 and x = 0.26,
and peaks conspicuously near 0.10. The dashed line is T ∗

estimated from heat capacity measurements.

reflects the shrinking with increasing field of the length
scale over which phase stiffness holds. This loss occurs
in the field interval between Hm and the Hridge curve
(dashed line in Fig. 13). In Bi-based cuprates this loss is
quite gradual, whereas in OP/OV YBCO and LSCO it
is abrupt (Figs. 3 and 14, respectively). Further, above
Hm, the dissipation climbs much more rapidly than pre-
scribed by the Bardeen-Stephen law. This rapid increase
implies a very weak damping viscosity η and is known as
the fast-vortex problem (Sec. XI).

VIII. PHASE DIAGRAM, ONSET
TEMPERATURE AND MAGNITUDE

In the phase diagram of the cuprates, superconduc-
tivity occupies a dome-shaped region defined by the
curve of Tc vs. x. The pseudogap temperature T ∗ de-
creases monotonically from the scale 300-350 K to termi-
nate at the end-point xp (the Nernst experiments along
with many experiments indicate that xp ∼ 0.26, but
other groups [71] favor xp = 0.19). As reported previ-
ously [19, 23], in the phase diagram of LSCO, the onset
temperature of the Nernst signal Tonset falls between T ∗

and Tc. As x increases from 0.03, Tonset rises steeply to
a maximum value of 130 K at 0.10 and then falls more
gradually to a value near zero at ∼0.27 (Fig. 20).

We turn next to Tonset in bilayer Bi 2212. In Fig. 21,
we display the variation of Tonset in the 5 crystals inves-
tigated to date. The hole density x is estimated from the
empirical formula Tc(x) = Tc,max[1 − 82.6(x − 0.16)2],
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FIG. 21: The phase diagram of Bi 2212 showing the Nernst
region between Tonset and Tc (based on Nernst measurements
on 5 crystals). As in LSCO (Fig. 20), the Nernst region does
not extend to the pseudogap temperature T ∗ on the OP and
OV side. In the UD regime, Tonset shows a decreasing trend
as x decreases below 0.15.

with Tc,max = 91 K [72]. The curve of Tonset shares
key features with that found in LSCO. As in LSCO, the
superconducting dome in Bi 2212 is nested inside the
curve of Tonset vs. x which lies under the curve of T ∗.
Whereas T ∗ appears to continue to increase as x falls be-
low 0.10, Tonset deviates downwards in qualitative sim-
ilarity with LSCO. The interval between Tonset and Tc

becomes systematically narrower towards the OV side,
but it remains quite broad on the UD side. Interestingly,
the maximum value of Tonset (∼130 K) is close to the
maximum in LSCO, despite the large difference in maxi-
mum Tc in the 2 families. The maximum value in YBCO
is ∼ 130 K as well. However, in the Hg-based cuprates,
evidence from torque magnetometry suggests that Tonset

lies higher [73].
In the phase diagrams in Figs. 20 and 21, the nest-

ing of the Tc dome within the curve of Tonset under-
scores once more the continuity of the region in which
the vortex-Nernst signal is observed with the region un-
der the superconducting dome. The high-temperature
eN associated with vortices is observed only inside the
superconducting dome. Once we move outside (either on
the UD or OV side), eN becomes very small. In LSCO
with x = 0.03 and 0.26, the tilted hill profile character-
istic of vortex flow is completely absent. Instead, the
observed eN is small and H-linear to fields as high as 33
T, which is characteristic of the qp current.

On the UD side, the rapid vanishing of the vortex-
Nernst signal for samples with x = 0.03, 0.05 and 0.07 was
already analyzed in detail in Ref. [19]. Because the vortex
signal is rapidly decreasing relative to the qp signal, it is

Benhia 2011 Ong 2005

Fluctuations of phase, 
amplitude, and others…







Condensate



Condensate

Phase  
fluctuations



Condensate

Phase  
fluctuations

Amplitude  
Fluctuations



14

« Schyzofrenic »  SU(2) flucutations



14

Emergent  SU(2) flucutations



QDW

SC

✓

SU(2)-rotations

  Emergent symmetries in the under-doped regime 

Sachdev et al (2013) 
Efetov, Meier, CP (2013)

Degenerescence of 
levels:

accidental ?
symmetry related ?

At some energy scale in the phase 
diagrams  SC and Charge sectors are 

related by and SU(2) symmetry



SU(2) symmetry related to the SU(2) 
symmetry of the  superexchange  hamiltonian
and gauge SU(2) symmetry

Sachdev et al (2013) 
 Kotliar and Liu (1988) 
Lee, Wen, Nagaosa, RMP (2006) 

tonian of SU!2" slave-boson theory !Affleck et al., 1988;
Dagotto et al., 1988":

Hmean = #
$ij%

−
3
8

Jij&!!jifi"
† fj" − #ijfi"

† fj$
† %"$" + H.c.

− '!ij'2 − '#ij'2( + #
i

)a0
3!fi"

† fi" − 1"

+ &!a0
1 + ia0

2"fi"fi$%"$ + H.c.(* . !109"

So the mean-field Ansatz that describes a SU!2" slave-
boson mean-field state is really given by !ij, #ij, and a0.
We note that !ij, #ij, and a0 are invariant under spin
rotation. Thus the mean-field ground state of Hmean is a
spin singlet. Such a state describes a spin-liquid state.

The SU!2" mean-field Hamiltonian !109" is invariant
under a local SU!2" gauge transformation. To see such
an invariance explicitly, we need to rewrite Eq. !109" in
terms of &:

Hmean = #
$ij%

3
8

Jij+1
2

Tr!Uij
† Uij" + !&i

†Uij&j + H.c.",
+ #

i
a0

l &i
†'l&i, !110"

where

Uij = -− !ij
* #ij

#ij
* !ij

. = Uji
† . !111"

Note that det!U"(0, so that Ujk is not a member of
SU!2", but iUjk is a member up to a normalization con-
stant. From Eq. !110" we now can see that the mean-
field Hamiltonian is invariant under a local SU!2" trans-
formation Wi:

&i → Wi&i,

Uij → WiUijWj
†. !112"

We note that in contrast to )i↑ and )i↓ introduced in
Eq. !44", the doublet &i does not carry a spin index. Thus
the redundancy in the )i* representation is avoided,
which accounts for a factor of 2 difference in front of the
bilinear &i term in Eq. !110" versus Eq. !45". However,
the spin-rotation symmetry is not explicit in our formal-
ism and it is hard to tell if Eq. !110" describes a spin-
rotation-invariant state or not. In fact, for a general Uij
satisfying Uij=Uji

† , Eq. !110" may not describe a spin-
rotation-invariant state. But if Uij has a form

Uij = !ij
+'+, + = 0, 1, 2, 3,

!ij
0 = imaginary, !ij

l = real, l = 1, 2, 3, !113"

then Eq. !110" will describe a spin-rotation-invariant
state. This is because the above Uij has the form of Eq.
!111". In this case Eq. !110" can be rewritten as Eq. !109",
where the spin-rotation invariance is explicit. In Eq.
!113", '0 is the identity matrix.

Now the mean-field Ansatz can be more compactly
represented by „Uij ,a0!i"…. Again the mean-field Ansatz

„Uij ,a0!i"… can be viewed as a many-to-one label of
physical spin states. The physical spin state labeled by
„Uij ,a!i"… is given by

',spin
!Uij,a0!i""% = P',mean

!Uij,a0!i""% ,

where ',mean
„Uij,a0!i"…% is the ground state of the mean-field

Hamiltonian !110" and P is the projection that projects
into the subspace with even numbers of & fermions per
site. From the relation between the f fermion and the &
fermion, we note that the state with zero & fermions
corresponds to the spin-down state and the state with
two & fermions corresponds to the spin-up state. Since
the states with even numbers of & fermions per site are
SU!2" singlet on every site, we find that two mean-field
Ansätze „Uij ,a0!i"… and „Ũij , ã!i"… related by a local
SU!2" gauge transformation,

Ũij = WiUijWj
†, ã0!i" · ! = Wia0!i" · !Wi

†,

label the same physical spin state

P',mean
!Uij,a0!i""% = P',mean

!Ũij,ã0!i""% ,

This relation represents the physical meaning of the
SU!2" gauge structure.

Just as with U!1" slave-boson theory, the fluctuations
of the mean-field Ansatz correspond to collective excita-
tions. In particular, the “phase” fluctuations of Uij rep-
resent the potential gapless excitations. However, unlike
the U!1" slave-boson theory, the phase of Uij is de-
scribed by a two-by-two Hermitian matrix aij

l 'l,
l=1,2 ,3, on each link. If „Ūij , ā!i"… is the Ansatz that
describes the mean-field ground state, then the potential
gapless fluctuations are described by

Uij = Ūijeiaij
l 'l

, a0!i" = ā0!i" + -a0 !i" .

Since „Uij ,a0!i"… is a many-to-one labeling, the fluctua-
tions „aij ,-a0!i"… correspond to SU!2" gauge fluctuations
rather than usual bosonic collective modes such as pho-
non modes and spin waves.

D. A few mean-field Ansätze for symmetric spin liquids

After a general discussion of the SU!2" slave-boson
theory, let us discuss a few mean-field Ansätze that have
spin rotation, translation Tx,y, and parity Px,y,xy symme-
tries. We call such a spin state a symmetric spin liquid.
Here Tx and Ty are translations in the x and y directions,
and Px, Py, and Pxy are parity transformations !x ,y"
→ !−x ,y", !x ,y"→ !x ,−y", and !x ,y"→ !y ,x", respectively.
We note that Px,y,xy parity symmetries imply 90° rota-
tional symmetry.

We concentrate on three simple mean-field Ansätze
that describe symmetric spin liquids:

!i" .-flux liquid !.fL" state5 !Affleck and Marston,
1988",

5This state was called the .-flux !.F" state in the literature.
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makes the fluctuations of aij behave as gauge bosons,
which are very different from the sound mode and the
spin-wave mode.4

If we believe that gauge bosons and fermions do ap-
pear as low-energy excitations in the deconfined phase,
then a natural question will be what do those excitations
look like? The slave-boson construction !105" allows us
to construct an explicit physical spin wave function that
corresponds to a gauge fluctuation aij,

!spin
!aij" = #0f$%

i
fi"i

$!mean
!#̄ije

iaij"& .

We would like to mention that the gauge fluctuations
affect the average

P123 = ##12#23#31& = ##̄12#̄23#̄31&ei!a12+a23+a31".

Thus the U!1" gauge fluctuations aij, or more precisely
the flux of U!1" gauge fluctuations a12+a23+a31, corre-
spond to the fluctuations of the spin chirality S1 · !S2
$S3"= !P123−P132" /4i, as pointed out in the last section.

Similarly, the slave-boson construction also allows us
to construct a physical spin wave function that corre-
sponds to a pair of fermion excitations. We start with the
mean-field ground state with a pair of particle-hole ex-
citations. After the projection !105", we obtain the physi-
cal spin wave functions that contain a pair of fermions:

!spin
ferm!i1,%1;i2,%2" = #0$'%

i
fi"i(fi1%1

† fi2%2
$!mean

!#̄ij" & .

We see that the gauge fluctuation aij and fermion exci-
tation do have a physical “shape” given by the spin wave
functions !spin

!aij" and !spin
ferm, although the shape is too com-

plicated to picture.
Certainly, two types of excitations, gauge fluctuations

and fermion excitations, interact with each other. The
form of the interaction is determined by the fact that
fermions carry the unit charge of the U!1" gauge field.
The low-energy effective theory is given by Eq. !38" with
&ij=0 and bi=0.

B. What determines the gauge group?

We have mentioned that collective fluctuations
around a slave-boson mean-field ground state are de-
scribed by a U!1" gauge field. Here we would like to ask
why the gauge group is U!1"? The reason is that the
fermion Hamiltonian and the mean-field Hamiltonian
are invariant under the local U!1" transformation,

fi → ei'ifi, #ij → e−i'i#ijei'j.

The reason that the fermion Hamiltonian is invariant is
that the fermion Hamiltonian is a function of the spin
operator Si and the spin operator Si=

1
2 fi

†!fi is invariant
under the local U!1" transformation. So the gauge group
is simply the group formed of all the transformations

between fi↑ and fi↓ that leave the physical spin operator
invariant.

C. From U!1" to SU!2"

This deeper understanding of gauge transformation
allows us to realize that U!1" is only part of the gauge
group. The full gauge group is actually SU!2". To under-
stand this let us introduce

(1i = fi↓, (2i = fi↓
† .

We find

Si
+ = fi

†)+fi =
1
2

!(1i
† (2i

† − (2i
† (1i

† " ,

Si
z =

1
2

fi
†)zfi =

1
2

!(1i
† (1i + (2i

† (2i − 1" .

Now it is clear that Si and any Hamiltonian expressed in
terms of Si are invariant under the local SU!2" gauge
transformation:

'(1i

*2i
( → Wi'(1i

(2i
(, Wi ! SU!2" .

The local SU!2" invariance of the spin Hamiltonian im-
plies that the mean-field Hamiltonian not only should
have U!1" gauge invariance, it should also have SU!2"
gauge invariance.

To write down the mean-field theory with explicit
SU!2" gauge invariance, we start with the mean-field An-
satz that includes the pairing correlation:

#ij+", = 2#fi"
† fj,&, #ij = #ji

* ,

&ij-", = 2#fi"fj,&, &ij = &ji. !108"

After replacing fermion bilinears with #ij and &ij in Eq.
!35", we obtain the following mean-field Hamiltonian
with pairing:

Hmean = )
#ij&

−
3
8

Jij*!#jifi"
† fj" − &ijfi"

† fj,
† -","

+ H.c. − $#ij$2 − $&ij$2+ .

However, the above mean-field Hamiltonian is incom-
plete. We know that the physical Hilbert space is formed
by states with one f fermion per site. Such states corre-
spond to states with even numbers of ( fermion per site.
The states with even numbers of ( fermions per site are
SU!2" singlet, one every site. The operators (i

†"(i that
generate local SU!2" transformations vanish within the
physical Hilbert space, where "= !.1 ,.2 ,.3" are the Pauli
matrices. In the mean-field theory, we replace the con-
straint (i

†"(i=0 by its average

#(i
†"(i& = 0.

The averaged constraint can be enforced by including
the Lagrange multiplier )ia0

l !i"(i
†.l(i in the mean-field

Hamiltonian. This way we obtain the mean-field Hamil-
4In the continuum limit, the gauge bosons are vector

bosons—bosons described by vector fields.
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taining the form of the Hamiltonian and changing only
the commutation relations.

The Gutzwiller projection implemented through the
modified commutation relations between n1 and n5 is
formally similar to projection onto the lowest Landau
level in the physics of the quantum Hall effect. For elec-
trons moving in a 2D plane, the canonical description
involves two coordinates, X and Y, and two momenta,
PX and PY. However, if the motion of the electron is
fully confined in the lowest Landau level, the projected
coordinate operators become noncommuting and are
given by !X ,Y"= il0

2, where l0 is the magnetic length. In
the context of the projected SO#5$ Hamiltonian, the
original rotors at a given site can be viewed as particles
moving on a four-dimensional sphere S4, as defined by
Eq. #35$, embedded in a five-dimensional Euclidean
space. The angular momentum term #1/2!$Lab

2 describes
the kinetic motion of the particle on the sphere. The
chemical potential acts as a fictitious magnetic field in
the #n1 ,n5$ plane. In the Gutzwiller-Hubbard limit,
where "c#"s, a large chemical-potential term is re-
quired to reach the limit "̃c%"s. The particle motion in
the #n1 ,n5$ plane becomes quantized in this limit, as in
the case of the quantum Hall effect, and the noncommu-
tativity of the coordinates #n1 ,n5$ given by Eq. #53$
arises as a result of the projection. The projection does
not affect the symmetry of the sphere on which the par-
ticle is moving; however, it restricts the sense of the ki-
netic motion to be chiral, i.e., only along one direction in
the #n1 ,n5$ plane #see Fig. 6$. In this sense, the particle is
moving on a chiral SO#5$-symmetric sphere. The non-
commutativity of the #n1 ,n5$ coordinates is equivalent to
the effective Lagrangian !see Eq. #40$ of Sec. III.B" con-
taining only the first-order time derivative. In fact, from
Eq. #40$, we see that in this case the canonical momenta
associated with the coordinates n1 and n5 are given by

p1 =
$L
$ṅ1

= !%n5, p5 =
$L
$ṅ5

= − !%n1. #54$

Applying the standard Heisenberg commutation rela-
tion for the conjugate pairs #n1 ,p1$ or #n5 ,p5$ gives ex-
actly the quantization condition #53$. Note that in Eq.
#54$ !% plays the role of Planck’s constant in quantum
mechanics. We see that the projected SO#5$ Hamil-
tonian #50$ subjected to the quantization condition #53$
is fully equivalent to the effective Lagrangian #40$ dis-
cussed in the last section.

Despite its apparent simplicity, the projected SO#5$
lattice model can describe many complex phases, most
of which are seen in the high-Tc cuprates. These differ-
ent phases can be described in terms of different limits
of a single variational wave function of the following
product form:

&&' = (
x

)cos '#x$ + sin '#x$!m(#x$t(
†#x$ + "#x$th

†#x$"*

)&*' , #55$

where the variational parameters m(#x$ should be real,

while "#x$ is generally complex. The normalization of
the wave function, +& &&'=1, requires the variational
parameters to satisfy

,
(

&m(#x$&2 + &"#x$&2 = 1. #56$

We can therefore parametrize them as &m(#x$&2
=cos2 +#x$ and &"#x$&2=sin2 +#x$, which is similar to the
SO#5$ constraint introduced in Eq. #35$. The expectation
values of the order parameters and the symmetry gen-
erators in this variational state are given by

+&&n(#x$&&' =
1
-2

sin 2'#x$Re!m(#x$" ,

+&&n1#x$&&' =
1
2

sin 2'#x$Re!"#x$" ,

+&&n5#x$&&' =
1
2

sin 2'#x$Im!"#x$" , #57$

and

+&&Q#x$&&' = +&&th
†#x$th#x$&&' = sin2 '#x$&"#x$&2,

+&&S(&&' = − +&&i,(-.t-
†#x$t.#x$&&'

= − i,(-.sin2 'm-
*#x$m.#x$ ,

FIG. 6. The chiral SO#5$ sphere. This sphere has an
SO#5$-symmetric shape but allows only one sense of the rota-
tion in the SC plane #n1 ,n5$. Small oscillations around the
equator, or the / triplet resonance, are unaffected by the chiral
projection. However, small oscillations around the north pole,
or the / doublet mode, are strongly affected: only one of the
two such modes is retained after the projection.
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SO(5)-group

parameter, as we can see from Eq. !39". Therefore r1 can
be tuned by the chemical potential, and Eq. !62" defines
the critical value of the chemical potential !c at which
the phase transition between AF and SC occurs. At this
point, the chemical potential is held fixed, but the SC
order parameter and the charge density can change con-
tinuously according to Eq. !63". Since the free energy is
independent of the density at this point, the energy,
which differs from the grand canonical free energy by a
chemical-potential term !", can depend only linearly on
the density. The linear dependence of the energy on
doping is a very special, limiting case. Generally, the
energy-versus-doping curve would either have a nega-
tive curvature, classified as type 1, or a positive curva-
ture, classified as type 2 #see Fig. 9!a"$. The special lim-
iting case of “type 1.5” with zero curvature is only
realized at the SO!5"-symmetric point. The linear de-
pendence of the ground-state energy of a uniform
AF/SC mixed state on the density is a crucial test of the
SO!5" symmetry, which can be performed numerically,
as we shall see in Secs. V.B and V.C. The constancy of
the chemical potential and the constancy of the length of
the SO!5" superspin vector !63" as a function of density
can be tested experimentally as well, as we shall discuss
in Sec. V.B.

The constancy of the chemical potential as a function
of the density in a uniform system is a very special situ-
ation which only follows from the enhanced symmetry at
the phase-transition point. In a system with phase sepa-
ration, the chemical potential is also independent of the
total density, but the local density is nonuniform. The
two phases are generally separated by a domain wall.
The SO!5"-symmetric case can be obtained from the
phase separation case in the limit where the width of the
domain wall goes to infinity and a uniform state is ob-
tained. This situation can be studied analytically by solv-
ing Eq. !60". Defining the parameters that characterize
the deviation from the symmetric point as w=u12
−%u1u2 and g= !r1 /%u1−r2 /%u2" /2, it is obvious that the

phase transition between the two forms of order is tuned
by g, while w determines the nature of the phase transi-
tion. The phase diagram in the !g ,w" plane is shown in
Fig. 9!c". For w#0, the two ordered phases are sepa-
rated by a first-order line. This type of transition is clas-
sified as type 1. On the other hand, when w$0, the two
ordered phases are separated by two second-order
phase-transition lines with an intermediate mixed phase
where two orders coexist, i.e., &%1'!0 and &%2'!0. This
type of transition is classified as type 2. The limiting
“type 1.5” behavior corresponds to the symmetric point
w=0. Approaching this point from w#0, the first-order
transition becomes weaker and weaker and the latent
heat associated with the first-order transition becomes
smaller and smaller. Therefore the symmetric point can
be viewed as the end point of a first-order transition. On
the other hand, approaching the symmetric point from
w$0, the width of the intermediate mixed phase be-
comes smaller and smaller, until the two second-order
transition lines merge into a single transition at w=0.
From the above discussion, we learn an important les-
son: the phase transition between two ordered phases
can be either a direct first-order transition or two
second-order transitions with an intermediate mixed
phase. Furthermore, the symmetric point realizes a lim-
iting behavior which separates these two scenarios.
Balents, Fisher, and Nayak !1998" and Lee and Kivelson
!2003" pointed out that the type-1 and type-2 transitions
of a Mott insulator induced by varying the chemical
potential are analogous to the two types of
superconductor-to-normal-state transitions induced by a
magnetic field. The magnetic field induces a direct first-
order transition from the SC state to the normal state in
type-1 superconductors, while it induces two second-
order transitions with an intermediate mixed state in the
type-2 superconductors. Indeed, the limiting “type-1.5”
behavior separating the type-1 and the type-2 supercon-
ductors also has a special symmetry, in which
Bogomol’nyi’s bound for the vortex is satisfied as an

FIG. 9. The three types of phase state in the SO!5" model: The energy !a" and the free energy !b" can depend on the density of
a uniform AF/SC mixed state with a negative curvature when u12#%u1u2 !classified as type 1" or a positive curvature when
u12$%u1u2 !classified as type 2". The SO!5"-symmetric limiting case of zero curvature, classified as type 1.5, is realized when
u12=%u1u2. !c" The type-1 phase transition from the AF to SC state is a direct first-order transition. There are two second-order
transitions from the AF to SC state in the type-2 case. SO!5" symmetry is realized at the intermediate case of type 1.5.
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Fine-tuning condition ?

equality. We note that recent work of Senthil et al. dis-
cussed an alternative scenario for a direct second-order
transition between two phases with different order pa-
rameters and without a higher symmetry at the transi-
tion point. This was achieved by having fractionalized
excitations at the quantum critical point !Senthil et al.,
2004".

Let us now turn to the finite-temperature phase tran-
sitions. In D=3, finite-temperature phase transitions as-
sociated with continuous symmetry breaking are pos-
sible. The order parameters !1 and !2 can therefore
each have their own phase-transition temperatures, Tc
and TN. The interesting question is how these two
second-order lines merge as one changes the parameter
g or, equivalently, the chemical potential ", which inter-
changes the relative stability of the two ordered phases.
There are two generic possibilities. The type-1 phase
diagram is shown in Fig. 10!a", where the two second-
order phase-transition lines intersect at a bicritical point,
Tbc, which is also the termination point of the first-order
transition line separating the two ordered phases. This
type of phase diagram is realized for u12##u1u2. The
first-order transition at "c separates the AF and SC
states with different densities; therefore the T-vs-$ phase
diagram shown in Fig. 10!b" contains a region of phase
separation extending over the doping range 0%$%$c.
The type-2 phase diagram is shown in Fig. 10!c", where
Tc and TN intersect at a tetracritical point, below which
a uniform AF/SC mixed phase separates the two pure
phases by two second-order transition lines. This type of
phase diagram is realized for u12%#u1u2.

In contrast to the conventional superconductors with
a long coherence length, the high-Tc cuprates have a
short coherence length and a large Ginzburg region.
Thus one has the possibility of observing nontrivial criti-
cal behaviors. An interesting point concerns the symme-
try at the multicritical point where TN and Tc !or, more
generally, T1 and T2" intersect. At the multicritical point
defined by r1=r2=0, the critical fluctuations of the order
parameters couple to each other and renormalize the
coefficients of the fourth-order terms u1, u2, and u12.
There are several possible fixed points. The symmetric

fixed point, also known as the Heisenberg fixed point, is
characterized by u1

*=u2
*=u12

* . The O!N1"&O!N2" sym-
metry is enhanced at this point to the higher O!N1
+N2" symmetry. Another fixed point, called the biconi-
cal tetracritical point in the literature, has nonvanishing
values of u1

*, u2
*, and u12

* at the fixed point, which deviates
from the O!N1+N2" symmetry. The third possible fixed
point is the decoupled fixed point, where u12

* =0 and the
two order parameters decouple from each other.

The relative stability of these three fixed points can be
studied analytically and numerically. The general picture
is that there are two critical values, Nc and Nc!. For N1
+N2%Nc, the symmetric bicritical point is stable, for
Nc%N1+N2%Nc!, the biconical point is stable, while for
N1+N2#Nc!, the decoupled point becomes stable.
Renormalization-group !RG" calculations based on the
4−' expansion !Kosterlitz et al., 1976" place the value of
Nc close to 4 and the value of Nc! close to 11. The RG
flow diagram is shown in Fig. 11 for the cases of N1=3
and N2=2. Initially, all RG trajectories flow towards the
symmetric fixed point. The manner in which the trajec-
tories diverge close to the symmetric point depends on
the values of the initial parameters. The trajectories flow
to the symmetric point when u12

2 =u1u2, they flow to the
biconical point when u12

2 %u1u2, and they flow outside of
the regime of weak-coupling RG analysis when
u12

2 #u1u2. In the case of competition between AF and
SC, N=N1+N2=5 is very close to Nc, leading to two
important consequences. First, the biconical point
breaks the SO!5" symmetry weakly. The value of the
interaction parameters at the biconical fixed point is
given by !u1

* ;u2
* ;u12

* "=2(2'!0.0905;0.0847;0.0536". Ex-
trapolating to '=1 gives the root-mean-square deviation
from the symmetric SO!5" point to about 26%, indicat-
ing weak SO!5" symmetry breaking. The second conse-
quence is that the critical exponent associated with the
flow away from the symmetric SO!5" point is extremely
slow. The first loop 4−' expansion gives the value of
1/13 for the exponent associated with the flow away
from the symmetric point. To get an estimate of the or-
der of magnitude, we take the initial value of the scaling

FIG. 10. The finite-temperature phase diagram in D=3 for the class-B1 transition shown in Fig. 13. !a" Direct first-order phase
transition between AF and SC, as a function of the chemical potential; !b" first-order AF-to-SC transition as a function of doping,
classified as the type-1 transition; !c" two second-order phase transitions with a uniform AF/SC mix phase in between, classified as
a type-2 transition. The AF and SC transition temperatures TN and Tc merge into either a bicritical Tbc or a tetracritical point Ttc.
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equality. We note that recent work of Senthil et al. dis-
cussed an alternative scenario for a direct second-order
transition between two phases with different order pa-
rameters and without a higher symmetry at the transi-
tion point. This was achieved by having fractionalized
excitations at the quantum critical point !Senthil et al.,
2004".

Let us now turn to the finite-temperature phase tran-
sitions. In D=3, finite-temperature phase transitions as-
sociated with continuous symmetry breaking are pos-
sible. The order parameters !1 and !2 can therefore
each have their own phase-transition temperatures, Tc
and TN. The interesting question is how these two
second-order lines merge as one changes the parameter
g or, equivalently, the chemical potential ", which inter-
changes the relative stability of the two ordered phases.
There are two generic possibilities. The type-1 phase
diagram is shown in Fig. 10!a", where the two second-
order phase-transition lines intersect at a bicritical point,
Tbc, which is also the termination point of the first-order
transition line separating the two ordered phases. This
type of phase diagram is realized for u12##u1u2. The
first-order transition at "c separates the AF and SC
states with different densities; therefore the T-vs-$ phase
diagram shown in Fig. 10!b" contains a region of phase
separation extending over the doping range 0%$%$c.
The type-2 phase diagram is shown in Fig. 10!c", where
Tc and TN intersect at a tetracritical point, below which
a uniform AF/SC mixed phase separates the two pure
phases by two second-order transition lines. This type of
phase diagram is realized for u12%#u1u2.

In contrast to the conventional superconductors with
a long coherence length, the high-Tc cuprates have a
short coherence length and a large Ginzburg region.
Thus one has the possibility of observing nontrivial criti-
cal behaviors. An interesting point concerns the symme-
try at the multicritical point where TN and Tc !or, more
generally, T1 and T2" intersect. At the multicritical point
defined by r1=r2=0, the critical fluctuations of the order
parameters couple to each other and renormalize the
coefficients of the fourth-order terms u1, u2, and u12.
There are several possible fixed points. The symmetric

fixed point, also known as the Heisenberg fixed point, is
characterized by u1

*=u2
*=u12

* . The O!N1"&O!N2" sym-
metry is enhanced at this point to the higher O!N1
+N2" symmetry. Another fixed point, called the biconi-
cal tetracritical point in the literature, has nonvanishing
values of u1

*, u2
*, and u12

* at the fixed point, which deviates
from the O!N1+N2" symmetry. The third possible fixed
point is the decoupled fixed point, where u12

* =0 and the
two order parameters decouple from each other.

The relative stability of these three fixed points can be
studied analytically and numerically. The general picture
is that there are two critical values, Nc and Nc!. For N1
+N2%Nc, the symmetric bicritical point is stable, for
Nc%N1+N2%Nc!, the biconical point is stable, while for
N1+N2#Nc!, the decoupled point becomes stable.
Renormalization-group !RG" calculations based on the
4−' expansion !Kosterlitz et al., 1976" place the value of
Nc close to 4 and the value of Nc! close to 11. The RG
flow diagram is shown in Fig. 11 for the cases of N1=3
and N2=2. Initially, all RG trajectories flow towards the
symmetric fixed point. The manner in which the trajec-
tories diverge close to the symmetric point depends on
the values of the initial parameters. The trajectories flow
to the symmetric point when u12

2 =u1u2, they flow to the
biconical point when u12

2 %u1u2, and they flow outside of
the regime of weak-coupling RG analysis when
u12

2 #u1u2. In the case of competition between AF and
SC, N=N1+N2=5 is very close to Nc, leading to two
important consequences. First, the biconical point
breaks the SO!5" symmetry weakly. The value of the
interaction parameters at the biconical fixed point is
given by !u1

* ;u2
* ;u12

* "=2(2'!0.0905;0.0847;0.0536". Ex-
trapolating to '=1 gives the root-mean-square deviation
from the symmetric SO!5" point to about 26%, indicat-
ing weak SO!5" symmetry breaking. The second conse-
quence is that the critical exponent associated with the
flow away from the symmetric SO!5" point is extremely
slow. The first loop 4−' expansion gives the value of
1/13 for the exponent associated with the flow away
from the symmetric point. To get an estimate of the or-
der of magnitude, we take the initial value of the scaling

FIG. 10. The finite-temperature phase diagram in D=3 for the class-B1 transition shown in Fig. 13. !a" Direct first-order phase
transition between AF and SC, as a function of the chemical potential; !b" first-order AF-to-SC transition as a function of doping,
classified as the type-1 transition; !c" two second-order phase transitions with a uniform AF/SC mix phase in between, classified as
a type-2 transition. The AF and SC transition temperatures TN and Tc merge into either a bicritical Tbc or a tetracritical point Ttc.
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equality. We note that recent work of Senthil et al. dis-
cussed an alternative scenario for a direct second-order
transition between two phases with different order pa-
rameters and without a higher symmetry at the transi-
tion point. This was achieved by having fractionalized
excitations at the quantum critical point !Senthil et al.,
2004".

Let us now turn to the finite-temperature phase tran-
sitions. In D=3, finite-temperature phase transitions as-
sociated with continuous symmetry breaking are pos-
sible. The order parameters !1 and !2 can therefore
each have their own phase-transition temperatures, Tc
and TN. The interesting question is how these two
second-order lines merge as one changes the parameter
g or, equivalently, the chemical potential ", which inter-
changes the relative stability of the two ordered phases.
There are two generic possibilities. The type-1 phase
diagram is shown in Fig. 10!a", where the two second-
order phase-transition lines intersect at a bicritical point,
Tbc, which is also the termination point of the first-order
transition line separating the two ordered phases. This
type of phase diagram is realized for u12##u1u2. The
first-order transition at "c separates the AF and SC
states with different densities; therefore the T-vs-$ phase
diagram shown in Fig. 10!b" contains a region of phase
separation extending over the doping range 0%$%$c.
The type-2 phase diagram is shown in Fig. 10!c", where
Tc and TN intersect at a tetracritical point, below which
a uniform AF/SC mixed phase separates the two pure
phases by two second-order transition lines. This type of
phase diagram is realized for u12%#u1u2.

In contrast to the conventional superconductors with
a long coherence length, the high-Tc cuprates have a
short coherence length and a large Ginzburg region.
Thus one has the possibility of observing nontrivial criti-
cal behaviors. An interesting point concerns the symme-
try at the multicritical point where TN and Tc !or, more
generally, T1 and T2" intersect. At the multicritical point
defined by r1=r2=0, the critical fluctuations of the order
parameters couple to each other and renormalize the
coefficients of the fourth-order terms u1, u2, and u12.
There are several possible fixed points. The symmetric

fixed point, also known as the Heisenberg fixed point, is
characterized by u1

*=u2
*=u12

* . The O!N1"&O!N2" sym-
metry is enhanced at this point to the higher O!N1
+N2" symmetry. Another fixed point, called the biconi-
cal tetracritical point in the literature, has nonvanishing
values of u1

*, u2
*, and u12

* at the fixed point, which deviates
from the O!N1+N2" symmetry. The third possible fixed
point is the decoupled fixed point, where u12

* =0 and the
two order parameters decouple from each other.

The relative stability of these three fixed points can be
studied analytically and numerically. The general picture
is that there are two critical values, Nc and Nc!. For N1
+N2%Nc, the symmetric bicritical point is stable, for
Nc%N1+N2%Nc!, the biconical point is stable, while for
N1+N2#Nc!, the decoupled point becomes stable.
Renormalization-group !RG" calculations based on the
4−' expansion !Kosterlitz et al., 1976" place the value of
Nc close to 4 and the value of Nc! close to 11. The RG
flow diagram is shown in Fig. 11 for the cases of N1=3
and N2=2. Initially, all RG trajectories flow towards the
symmetric fixed point. The manner in which the trajec-
tories diverge close to the symmetric point depends on
the values of the initial parameters. The trajectories flow
to the symmetric point when u12

2 =u1u2, they flow to the
biconical point when u12

2 %u1u2, and they flow outside of
the regime of weak-coupling RG analysis when
u12

2 #u1u2. In the case of competition between AF and
SC, N=N1+N2=5 is very close to Nc, leading to two
important consequences. First, the biconical point
breaks the SO!5" symmetry weakly. The value of the
interaction parameters at the biconical fixed point is
given by !u1

* ;u2
* ;u12

* "=2(2'!0.0905;0.0847;0.0536". Ex-
trapolating to '=1 gives the root-mean-square deviation
from the symmetric SO!5" point to about 26%, indicat-
ing weak SO!5" symmetry breaking. The second conse-
quence is that the critical exponent associated with the
flow away from the symmetric SO!5" point is extremely
slow. The first loop 4−' expansion gives the value of
1/13 for the exponent associated with the flow away
from the symmetric point. To get an estimate of the or-
der of magnitude, we take the initial value of the scaling

FIG. 10. The finite-temperature phase diagram in D=3 for the class-B1 transition shown in Fig. 13. !a" Direct first-order phase
transition between AF and SC, as a function of the chemical potential; !b" first-order AF-to-SC transition as a function of doping,
classified as the type-1 transition; !c" two second-order phase transitions with a uniform AF/SC mix phase in between, classified as
a type-2 transition. The AF and SC transition temperatures TN and Tc merge into either a bicritical Tbc or a tetracritical point Ttc.
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Fermi surface to eight “hot spots” which are the points
at T = 0 where the electrons scatter through the AF
�-modes. When the electron dispersion ✏

k

' v
hs

k is
linearized at the hot spots, the model possesses an ex-
act SU(2) symmetry defined by the operators of Eqn.
(1) but with Q = Q

diag

, being the diagonal wave vector
depicted in Fig. 2. This model was further studied in
Ref.[110] and an SU(2) precursor of the AF state was
found, where quadrupolar density wave (QDW) with di-
agonal wave vector, which is equivalent to a d-wave CDW
with diagonal wave vector, is degenerate with the d-wave
SC state. This new state can be understood as a kind
of non-Abelian superconductor with order parameter ˆb
that, instead of having a U(1) phase, has an SU(2) uni-
tary matrix fluctuating between the charge and SC sector
[110, 118]

ˆb = b

✓
�

CDW

�

SC

��

⇤
SC

�

⇤
CDW

◆

SU(2)

(7)

subject to the constraint |�
CDW

|2+ |�
SC

|2 = 1. Within
the framework of the EHS model, and the related O (4)

non linear �-model, several experimental findings were
successfully addressed [119–121]. The general picture
follows closely the ideas expressed in the SO(5) the-
ory, which are valid for all theories of emergent symme-
tries. A small curvature term in the electron dispersion
breaks the symmetry in favor of the SC state. Hence
at T = 0 the system is a superconductor. Once the
temperature is raised, thermal fluctuations then excite
the system between the two pseudo-spin states, restoring
the SU(2) invariance below the PG dome. Conversely,
an applied magnetic field breaks the SU(2) symmetry
in favor of the CDW state and beyond a certain criti-
cal field B

c

, a “pseudo spin-flop” is observed where the
ground state “flips” from the SC state to CDW order.
This “pseudo spin-flop” was precisely observed in exper-
iments performed under magnetic field, with a critical
field B

c

⇠ 17T [9, 13, 122]. In particular, the ultra-
sound experiment [18] shows that the typical B versus
T phase diagram in Fig. 3 is very similar to Fig.1-2).
Within the EHS model, this experiment was addressed
in Ref. [120]. Note that a co-existence phase is present
in this phase diagram, which accentuates the similarity
with the phase diagram 2) in Fig. 1 of the SO(5) the-
ory. Notice as well that the CDW and SC temperatures
are of the same order of magnitude, which was never the
case for the AF and SC states. It is another indication
that the SU(2) symmetry is more likely verified in the
underdoped cuprates than the SO(5) symmetry.

Of course, a question can be raised at this point,
which is that the exact realization of the SU(2) sym-
metry within the EHS model gives a charge wave vector
on the diagonal, while only axial charge order was exper-
imentally observed [1, 2, 6, 20, 21, 24, 42, 43, 123]. It is
an important question in the SU(2) theory and we will

FIG. 3. (Color online) Experimental B-T phase diagram
from sound velocity measurements in YBCO from Ref. [18].
The “pseudo spin-flop” is visible from the SC to CDW tran-
sition beyond a critical field B

c

' 18T.

address it in details in the next section. For the moment
let us notice that similar rotations as in Eqn.(1) can be
generated for the axial wave vector Q = {Q

x

,Q
y

} ob-
served experimentally, which rotates similar multiplets as
in Eqn.(5) but for the axial wave vector. This idea of a ro-
tation between the d-wave SC state and the axial charge
order [121] was used to explain that the CDW signal is
peaked at T

c

[20, 21]. It was also used in explaining the
A1g mode observed in Raman scattering as a collective
mode associated to this specific rotation [124–126].

The notion an emergent symmetry is more general than
any of its specific representations. It is indeed very nice to
have a model, although very simplified, where the SU(2)

symmetry is exactly realized (at all energy scales), but
the main concern is whether this symmetry is approxi-
mately realized at finite temperatures in the underdoped
region of the phase diagram. That is the interest of the
concept of emergent symmetry: although it can be ex-
actly realized in only a few effective models, if the split-
ting between the two pseudo-spin states is smaller than
the typical energy of each state, it can also be approxi-
mately realized at low energies in the more realistic 2D
t� t0 Hubbard model (this was verified explicitly in Refs.
[127, 128] using two-loop RG techniques).

Another remark that can be made at this stage, is that
another type of SU(2) symmetry was identified early on,
which consists of performing a particle-hole transforma-
tion on each site c†

i�

! c
i��

, which translates in the
reciprocal space as c†

k�

! c
k��

for all k vector. This sym-
metry is interesting for the phase diagram of the cuprates
because it is exact at half-filling and will be gradually
broken with doping [129, 130]. The operators for this

Phase diagram under applied magnetic field

Le Boeuf (2014)

Forgan, Hayden (2015)
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2

anti-nodal region of the Brillouin zone (BZ) [42–44], and
led to an interpretation in terms of a pair-density-wave
(PDW) [45, 46]- or a finite momentum superconducting
state Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [47, 48].
Coherent neutron scattering showed a Q = 0 signal [49–
54], which was interpreted in terms of intra-unit-cell loop
currents [55–57]. Although a Q = 0 phase is unable to
open a gap in the electronic density of states, the loop-
current line surprisingly follows the T ⇤-line. Note that
NMR [58, 59] and µSR [60, 61] techniques were not able
to detect such loop current. An explanation could be
the longer time scale of local probes (⇡ 10

�8 � 10

�6s)
compared with the INS time scale (⇡ 10

�11s). At lower
temperature, a Kerr effect signal has been reported, hint-
ing at a breaking of time-reversal (TR) symmetry inside
the PG [62]. This last observation is widely discussed by
the community, but it is necessarily related to the Q = 0

loop currents [63, 64]. The inelastic neutron scattering
(INS) is also interesting for revealing collective modes of
the system. A resonance at 41meV was found in YBCO
the early days of cuprate superconductivity [65] and at
similar energies in other compounds [66–69]. It was first
believed that this collective excitation existed only in the
SC phase, where it has a typical “hour-glass” shape cen-
tered around 41 meV at Q = (⇡,⇡), as a function of
energy and wave-vector. It was later shown that the res-
onance exists as well in the PG phase above T

c

, where
it is still centered around 41meV, but shows a typical
“Y”-shape with a long energy-extension at Q = (⇡,⇡)[70–
73]. Many theoretical approaches have been invoked to
describe the resonance below the SC transition [74–77].
This observation of the resonance around similar typical
energies in the SC and PG phases, however, has never re-
ceived a theoretical description, and constrains theories
of the PG to keep some reminiscence of the SC phase.
The neutron resonance was also observed in mono-layer
tetragonal compounds (Hg-1201), where the long energy
extension at Q = (⇡,⇡) persists below T

c

[78].
Collective modes of a material give useful insights to

probe symmetries of an effective model. One example
is a resonance observed in the Raman A1g channel, that
appears at energies very similar to the ones where a col-
lective mode was observed by INS [79–81]. Raman scat-
tering typically probes the symmetries of the Fermi sur-
face and the presence of “two gaps” in the underdoped
regime of the cuprates was observed below T

c

[82–84].
This fact was corroborated in a series of ARPES exper-
iments on BSCO from which the gap velocity v� at the
nodes was extracted and shown to differ from the Fermi
velocity. Three regions in the phase diagram were iden-
tified [85]. Starting from the over-doped region and de-
creasing the doping, v� is shown to first increase then
to reach a plateau in the underdoped region -down to
dopings of the order of 5 %, and after that it drops at
lower dopings when the system gets close to the insulat-
ing Mott-transition. The key question associated with

the PG phase is whether it is a “strong-coupling” phe-
nomenon, emerging as a direct consequence of the Mott
transition [86–90], or whether it is a a very unusual collec-
tive phenomenon which is sensitive to other peculiarities
of the physics of the cuprates, like its low dimensional-
ity, the antiferromagnetic fluctuations or its fermiology
[91–94]. In this work, we argue that the key to explain
the mystery of the PG phase resides in an underlying
emergent SU(2) symmetry, which produces SU(2) pairing
fluctuations at intermediate energy scales. These fluctu-
ations are in turn unstable toward the formation of a new
kind of excitonic state, the (RPE) state, which is respon-
sible for gapping out the Fermi surface in the anti-nodal
region of the BZ [94].

The paper is organized as follows: In section II, we
present the basics of the emergent symmetry model with
SU(2) symmetry. Section III discusses the competition
between the U(1) and SU(2) paring fluctuations in the
framework of the non linear � model. In particular, we
propose to explain the PG state as a new type of charge
order: the Resonant Peierls Excitonic (RPE) state com-
ing from the SU(2) fluctuations. We also demonstrate
that the CDW state is a secondary instability produced
by U(1) fluctuations mediated by a Leggett mode. In sec-
tion IV, we discuss the possible experimental evidence of
this phase before to conclude in section V.

II. THE EMERGENT SU(2) SYMMETRY

The concept of emergent symmetry in the context of
the cuprate superconductors can be traced back to the
work of Yang and later Zhang [95, 96] where a representa-
tion with pseudo-spin operators was introduced which ro-
tated the d-wave SC state onto a d-wave bi-partite charge
order. The lowering and raising pseudo-spin operators
⌘+, ⌘� = (⌘+)

†, and ⌘
z

, which follow from the definition
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The operators (1) form an SU(2) Lie algebra. Noticeably,
the ⌘-pairing stat – which is equivalent to finite center of
mass pairing of vector Q = (⇡,⇡), or FFLO state – is an
eigenstate of the Hubbard Hamiltonian, both for positive
and negative U. The simplest irreducible representation
for the pseudo-spin is the triplet vector �

m

, with m =

3

{�1, 0, 1} defined as
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which represents the two conjugated s-wave SC states
(��1,�1) and the charge ordering state �0. The SU(2)
pseudo-spin operators (1) rotate each component of the
multiplet (2) into one another in the standard way (l is
the rank of the irreducible representation Eq. (2), here
l = 1)
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The effective theory describing the pseudo-spin symme-
try is the SO (4) [SO (4) = (SU (2) ⇥ SU (2))/Z2] non-
linear �-model which excites thermally from the SC state
to the ordered state. This model describes transitions
from one state to the other within the generic framework
of “spin-flop” transitions. In the case above one has a
pseudo spin-flop from the s-wave SC to the CDW states,
whereas the standard spin-flop transition from easy axis
to easy plane belongs to the SO(3) group [97]. The con-
cept of SU(2)-symmetry was used later on in an effec-
tive theory of the PG leading to a rotation from the d-
wave superconductor to the d-density wave state [98].
Here the generators of the symmetry are simply i⌘+, i⌘�
and ⌘z and the effective theory is the O (4) non-linear
�-model. Let us mention a similar rotation between the
nematic d-wave bond order �
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Note that the chemical potential couples to the generator
⌘z (or L0) and thus a finite chemical potential breaks the
SU(2) symmetry in favor of the SC state.

Another rotation, this time from the SC state towards
the AF state, was introduced early on and became fa-
mous as the SO(5) theory [97, 101, 102] . The SO(5)
theory is the one of a non-linear �-model which oper-
ates on a five state “superspin”

�
n1, n2, n3, n4, n5

�
-

two SC states
�
n1 = �

s

, n5 = �

†
s

�
and three AF vec-

tors
�
n2 = s+, n3 = s�, n4 = sz

�
[97]. The superspin

n
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is a vector representation of the SO(5) algebra. The
SO(5) theory was based on the idea that both the SC
and the AF states are key players of the physics of
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FIG. 1. (Color online) Schematic phase diagram of the
SO(5) model [100]. Four types of scenarios are discussed in
Ref. [100]: 1) a direct first order transition with a bi-critical
point, 2) two second order transitions with an intermediate
coexistence regime, 3) one single second order transition ter-
minating at a QCP at zero temperature and 4) two second
order transitions with a quantum disordered phase. Although
the SO(5) symmetry is broken in scenario 1), 2) and 3) at zero
temperature, thermal fluctuations lead to a restoration below
the mean-field critical temperature T

MF

. Adapted from Ref.
[100].

these compounds and are close enough in energy so that
in between their respective phase transition an SO(5)-
symmetric state is found where SC and AFM are undis-
tinguishable. This phase was naturally associated with
the PG of the cuprates. A typical SO(5) non-linear �-
model was introduced to describe the effective physics of
the system, and four typical phase diagrams were derived
which are depicted in Fig. 1. The mechanism favoring
one of the states in the non-linear �-model can be un-
derstood as a spin-flop transition- also called “super spin
flop” transition for the SO(5) symmetries. As mentioned
above, one gets a very accurate picture by thinking of
the spin-flop transition of the antiferromagnetic state in a
uniform magnetic field B along the easyz-axis [103, 104].
The magnetic field creates an easy plane xy, so that at
a critical value of the field, the Néel wave vector changes
its orientation abruptly from the z-axis to the xy-plane.
Hence although in each of the above cases the symme-
tries are different, the underlying physics is as simple
as the one on a spin-flop transition. The four typical
phase diagrams show the various phases as a function of
temperature and an external parameter which breaks the
symmetry and are depicted in Fig. 1. They correspond
to the cases where: 1) a first order transition between
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try is the SO (4) [SO (4) = (SU (2) ⇥ SU (2))/Z2] non-
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to the ordered state. This model describes transitions
from one state to the other within the generic framework
of “spin-flop” transitions. In the case above one has a
pseudo spin-flop from the s-wave SC to the CDW states,
whereas the standard spin-flop transition from easy axis
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Note that the chemical potential couples to the generator
⌘z (or L0) and thus a finite chemical potential breaks the
SU(2) symmetry in favor of the SC state.

Another rotation, this time from the SC state towards
the AF state, was introduced early on and became fa-
mous as the SO(5) theory [97, 101, 102] . The SO(5)
theory is the one of a non-linear �-model which oper-
ates on a five state “superspin”
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FIG. 1. (Color online) Schematic phase diagram of the
SO(5) model [100]. Four types of scenarios are discussed in
Ref. [100]: 1) a direct first order transition with a bi-critical
point, 2) two second order transitions with an intermediate
coexistence regime, 3) one single second order transition ter-
minating at a QCP at zero temperature and 4) two second
order transitions with a quantum disordered phase. Although
the SO(5) symmetry is broken in scenario 1), 2) and 3) at zero
temperature, thermal fluctuations lead to a restoration below
the mean-field critical temperature T
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. Adapted from Ref.
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these compounds and are close enough in energy so that
in between their respective phase transition an SO(5)-
symmetric state is found where SC and AFM are undis-
tinguishable. This phase was naturally associated with
the PG of the cuprates. A typical SO(5) non-linear �-
model was introduced to describe the effective physics of
the system, and four typical phase diagrams were derived
which are depicted in Fig. 1. The mechanism favoring
one of the states in the non-linear �-model can be un-
derstood as a spin-flop transition- also called “super spin
flop” transition for the SO(5) symmetries. As mentioned
above, one gets a very accurate picture by thinking of
the spin-flop transition of the antiferromagnetic state in a
uniform magnetic field B along the easyz-axis [103, 104].
The magnetic field creates an easy plane xy, so that at
a critical value of the field, the Néel wave vector changes
its orientation abruptly from the z-axis to the xy-plane.
Hence although in each of the above cases the symme-
tries are different, the underlying physics is as simple
as the one on a spin-flop transition. The four typical
phase diagrams show the various phases as a function of
temperature and an external parameter which breaks the
symmetry and are depicted in Fig. 1. They correspond
to the cases where: 1) a first order transition between
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these compounds and are close enough in energy so that
in between their respective phase transition an SO(5)-
symmetric state is found where SC and AFM are undis-
tinguishable. This phase was naturally associated with
the PG of the cuprates. A typical SO(5) non-linear �-
model was introduced to describe the effective physics of
the system, and four typical phase diagrams were derived
which are depicted in Fig. 1. The mechanism favoring
one of the states in the non-linear �-model can be un-
derstood as a spin-flop transition- also called “super spin
flop” transition for the SO(5) symmetries. As mentioned
above, one gets a very accurate picture by thinking of
the spin-flop transition of the antiferromagnetic state in a
uniform magnetic field B along the easyz-axis [103, 104].
The magnetic field creates an easy plane xy, so that at
a critical value of the field, the Néel wave vector changes
its orientation abruptly from the z-axis to the xy-plane.
Hence although in each of the above cases the symme-
tries are different, the underlying physics is as simple
as the one on a spin-flop transition. The four typical
phase diagrams show the various phases as a function of
temperature and an external parameter which breaks the
symmetry and are depicted in Fig. 1. They correspond
to the cases where: 1) a first order transition between
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 Topological structure:  
Skyrmions in the pseudo spin space
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].
The degeneracy of the various channels at the hot-

spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-

by-disorder formalism, first described by Villain in the
classical context [50].
Remarkably, the choice of the starting charge modula-

tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Q

x

, 0) and (0,±Q
y

)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.
These axial modulations have been described in a pre-

vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:
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where �2
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fields, this constraint can be written as:
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where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �

SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.
At every doping x, equation (4) describes a three di-

mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n2 = 1, with n1,2 = �
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SU2 and the sign
of the masses m
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depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.

In the specific context of the S3 sphere, no topological
defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2

�
S3

�
= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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Topological states of matter are at the root
of some of the most fascinating phenomena in
condensed matter physics. Here we argue that
skyrmions in the pseudo-spin space related to an
emerging SU(2) symmetry enlighten many myste-
rious properties of the pseudogap phase in under-
doped cuprates. We detail the role of the SU(2)
symmetry in controlling the phase diagram of the
cuprates, in particular how a cascade of phase
transitions explains the arising of the pseudogap,
superconducting and charge modulation phases
seen at low temperature. We specify the struc-
ture of the charge modulations inside the vor-
tex core below T

c

, as well as in a wide temper-
ature region above T

c

, which is a signature of the
skyrmion topological structure. We argue that
the underlying SU(2) symmetry is the main struc-
ture controlling the emergent complexity of exci-
tations at the pseudogap scale T ⇤. The theory
yields a gapping of a large part of the anti-nodal
region of the Brillouin zone, along with q = 0
phase transitions, of both nematic and loop cur-
rents characters.

The pseudo-gap (PG) phase in the under-doped region
of cuprate superconductors remains one of the most mys-
terious known states of matter. First observed as a de-
pression in the Knight shift of nuclear magnetic resonance
(NMR) [1–3], it was soon established that, for a region
of intermediate dopings around 0.08 < x < 0.20, part
of the Fermi surface was gapped in a region close to the
(0,⇡) and (⇡, 0) points of the Brillouin zone, called anti-
nodal region because of its remoteness from the point
were the d-wave superconducting gap changes sign on
the (0, 0) � (⇡,⇡) segment of the Brillouin zone. In this
anti-nodal region, the Fermi surface was found to be
“wiped out”, and only some lines of massless quasiparti-
cles known as Fermi arcs to be left out [4–9].

This puzzling situation became more complex with the
observation of a reconstruction of the Fermi surface by
quantum oscillation and other transport measurements
in the same doping region [10–17]. This was attributed
to the presence of incipient charge modulations with in-
commensurate wave vectors developing along the crys-
tallographic axes: Q

x

,Q
y

' 0.3⇥ (2⇡/a), where a is the
lattice spacing in a tetragonal structure, detected by X-
ray scattering [18–30]. In real space, patches of charge
modulation of a size of the order of twenty lattice sites
have been observed at low temperatures (T ⇠ 4 K) using
both scanning tunneling microscopy (STM) [31–34] and
nuclear magnetic resonance (NMR) [35] measurements.

FIG. 1: In the some regions of real space, the SU(2) order
parameter is constrained to a two-dimensional hemisphere,
where the vertical axis corresponds to a charge order param-
eter, and the horizontal plane to the superconducting order
parameter. This leads to the proliferation of merons (or half-
skyrmions) in meron-antimeron pairs. Note that in the center
of such a meron or antimeron stands a vector with no super-
conducting component, and a maximal charge component.

These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
twice the lattice spacing. The amplitude of these oscil-
lations decreases away from its centerpoint in real space
and disappears around ten lattice lengths away from it.

Charge modulations were observed at the core of
the superconducting vortices, below the superconducting
transition temperature (T

c

). When voltage bias is in-
creased, these modulations persist until the applied volt-
age reaches the energy scale corresponding to the forma-
tion of the pseudogap: �

PG

[36, 37].

Below the pseudogap onset temperature T ⇤, loop cur-
rents have been detected [39–41], and the areas exhibit-
ing charge modulations coexist with zones with long-
range nematic order [42, 43], reminiscent of the vicin-
ity of a smectic-nematic transition. The latter are more
and more numerous compared to charge-modulated areas
when the temperature approaches T ⇤ [44]. Simultaneous
measurements of the real and reciprocal space spectral
functions however established that the opening of the
pseudogap is correlated with the presence of charge mod-
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skyrmions) in meron-antimeron pairs. Note that in the center
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These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
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Below the pseudogap onset temperature T ⇤, loop cur-
rents have been detected [39–41], and the areas exhibit-
ing charge modulations coexist with zones with long-
range nematic order [42, 43], reminiscent of the vicin-
ity of a smectic-nematic transition. The latter are more
and more numerous compared to charge-modulated areas
when the temperature approaches T ⇤ [44]. Simultaneous
measurements of the real and reciprocal space spectral
functions however established that the opening of the
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].
The degeneracy of the various channels at the hot-

spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-

by-disorder formalism, first described by Villain in the
classical context [50].
Remarkably, the choice of the starting charge modula-

tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Q

x

, 0) and (0,±Q
y

)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.
These axial modulations have been described in a pre-

vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:
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where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:
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where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �

SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.
At every doping x, equation (4) describes a three di-

mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]
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depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.

In the specific context of the S3 sphere, no topological
defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2
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S3
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= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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Topological states of matter are at the root
of some of the most fascinating phenomena in
condensed matter physics. Here we argue that
skyrmions in the pseudo-spin space related to an
emerging SU(2) symmetry enlighten many myste-
rious properties of the pseudogap phase in under-
doped cuprates. We detail the role of the SU(2)
symmetry in controlling the phase diagram of the
cuprates, in particular how a cascade of phase
transitions explains the arising of the pseudogap,
superconducting and charge modulation phases
seen at low temperature. We specify the struc-
ture of the charge modulations inside the vor-
tex core below T

c

, as well as in a wide temper-
ature region above T

c

, which is a signature of the
skyrmion topological structure. We argue that
the underlying SU(2) symmetry is the main struc-
ture controlling the emergent complexity of exci-
tations at the pseudogap scale T ⇤. The theory
yields a gapping of a large part of the anti-nodal
region of the Brillouin zone, along with q = 0
phase transitions, of both nematic and loop cur-
rents characters.

The pseudo-gap (PG) phase in the under-doped region
of cuprate superconductors remains one of the most mys-
terious known states of matter. First observed as a de-
pression in the Knight shift of nuclear magnetic resonance
(NMR) [1–3], it was soon established that, for a region
of intermediate dopings around 0.08 < x < 0.20, part
of the Fermi surface was gapped in a region close to the
(0,⇡) and (⇡, 0) points of the Brillouin zone, called anti-
nodal region because of its remoteness from the point
were the d-wave superconducting gap changes sign on
the (0, 0) � (⇡,⇡) segment of the Brillouin zone. In this
anti-nodal region, the Fermi surface was found to be
“wiped out”, and only some lines of massless quasiparti-
cles known as Fermi arcs to be left out [4–9].

This puzzling situation became more complex with the
observation of a reconstruction of the Fermi surface by
quantum oscillation and other transport measurements
in the same doping region [10–17]. This was attributed
to the presence of incipient charge modulations with in-
commensurate wave vectors developing along the crys-
tallographic axes: Q

x

,Q
y

' 0.3⇥ (2⇡/a), where a is the
lattice spacing in a tetragonal structure, detected by X-
ray scattering [18–30]. In real space, patches of charge
modulation of a size of the order of twenty lattice sites
have been observed at low temperatures (T ⇠ 4 K) using
both scanning tunneling microscopy (STM) [31–34] and
nuclear magnetic resonance (NMR) [35] measurements.

FIG. 1: In the some regions of real space, the SU(2) order
parameter is constrained to a two-dimensional hemisphere,
where the vertical axis corresponds to a charge order param-
eter, and the horizontal plane to the superconducting order
parameter. This leads to the proliferation of merons (or half-
skyrmions) in meron-antimeron pairs. Note that in the center
of such a meron or antimeron stands a vector with no super-
conducting component, and a maximal charge component.

These take the form of oscillations of the charge density
on the copper oxide planes of a frequency comparable to
twice the lattice spacing. The amplitude of these oscil-
lations decreases away from its centerpoint in real space
and disappears around ten lattice lengths away from it.

Charge modulations were observed at the core of
the superconducting vortices, below the superconducting
transition temperature (T

c

). When voltage bias is in-
creased, these modulations persist until the applied volt-
age reaches the energy scale corresponding to the forma-
tion of the pseudogap: �

PG

[36, 37].

Below the pseudogap onset temperature T ⇤, loop cur-
rents have been detected [39–41], and the areas exhibit-
ing charge modulations coexist with zones with long-
range nematic order [42, 43], reminiscent of the vicin-
ity of a smectic-nematic transition. The latter are more
and more numerous compared to charge-modulated areas
when the temperature approaches T ⇤ [44]. Simultaneous
measurements of the real and reciprocal space spectral
functions however established that the opening of the
pseudogap is correlated with the presence of charge mod-
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Figure 10. Model for a hc/2e vortex. The SU(2) quantization axis
points for the north pole at the centre (forming a staggered flux
vortex core) and rotates smoothly towards the equatorial plane as
one moves out radially.

Figure 11. Schematic picture of the quantization axis I in different
parts of the phase diagram shown in figure 2. (a) In the
superconducting phase I is ordered in the x–y plane. (b) In the
Nernst phase, I points to the north or south pole inside the vortex
core. (c) The pseudogap corresponds to a completely disordered
arrangement of I. (I is a three dimensional vector and only a
two-dimensional projection is shown.)

is raised, vortices are created with staggered flux cores and
the proliferation of these vortices drives the Berezinskii–
Kosterlitz–Thouless transition in the standard way. Above this
transition (which is the true superconducting Tc), vortex and
anti-vortex proliferates giving rise to the Nernst phase. At even
higher temperature the I vector is completely disordered and
this is our picture of the pseudogap phase.

We emphasized that in this theory the pseudogap
phenomenon and superconductivity are intimately connected.
There is no separate pairing mechanism for superconductivity.
What drives superconductivity is the coherence of the boson
to select the true ground state out of a myriad of fluctuating
possibilities. This is very different from the competing order
scenario which does require a separate pairing mechanism and
a completely separate energy gap scale. This dichotomy has
spurred a debate concerning one gap versus two gaps, i.e.
whether a smaller energy gap appears which scales with Tc

[80]. The debate is often couched in a black and white
language, with one gap favouring a superconducting gap
destroyed by phase fluctuations and two gaps implying the
need for some kind of competing order. In my view, the
truth is likely to be more complicated. In the mean field
RVB picture, a sharp quasiparticle peak appears below Tc

with weight x which follows the d-wave dispersion with only
one gap. The mean field picture is probably too simplistic.
For example, it is possible that the large gap at (0, π) is
a spin gap which can remain broad while the low energy
quasiparticles near the nodes become coherent below Tc. To
a first approximation, the coherent nodal quasiparticle has a
dispersion which extrapolates to the large pseudogap at (0, π).
There could be a coherence energy scale which scales with Tc,
but exactly how this coherence scale affects the density of states
and how it develops as a function of temperature is an open
question.

The issue of one gap/two gaps is not settled
experimentally. For moderately underdoped Bi2212 (Tc >

50 K) the evidence from ARPES is that the quasiparticle in
the superconducting state is reasonably peaked even near the
antinodes and obey the d-wave dispersion with a single gap
which increases with decreasing doping. This is supported
by low temperature thermal conductivity data which measures
the ratio vF/v" where v" is the quasiparticle velocity in the
direction of (0, π) [81]. It is found that v" increases with
decreasing x and extrapolates to the antinodal gap measured by
ARPES. On the other hand, for severely underdoped samples
and one layer cuprates with low Tcs, there are claims based
on ARPES that the energy gap in the Fermi arc region near
the nodal point does not scale with the pseudogap at (0, π),
which increases with decreasing doping as mentioned before
[82]. Instead, it seems to stay constant or increase with
decreasing doping. It is argued that this reveals a new gap scale
associated with superconductivity. I should caution that deeply
underdoped samples are known to be strongly disordered, and
the disorder increases with reduced doping. Furthermore,
the lineshape remains very broad in the antinodal direction
even in the superconducting state. Thus it is risky to draw a
strong conclusion from lineshapes without an understanding
of disorder effects and of the lineshape.

Other support for two gaps comes from Andreev reflection
studies [83] and Raman scattering [84]. In a superconductor-
normal metal junction in conventional superconductors,
normal electrons incident on the junction has an extra
channel for transport, by tunnelling as a Cooper pair into the
superconductor and Andreev reflected as a hole. This leads
additional conductance below an energy scale of the energy
gap. Such extra conductance was observed in underdoped
cuprates, but the energy scale observed is much lower than the
pseudogap and is more related to Tc. I note that in contrast
to conventional tunnelling, Andreev reflection does not simply
measure the density of states, but requires coherence of the
quasiparticle in its interaction with the condensate. What is
seen in the Andreev data may be this coherence scale.

I must emphasize that the simple cartoon shown in
figure 11 is only an approximate picture. We have assumed
that the bosons are locally condensed and can be treated as
a c-number which varies in space and time. However, even
at T = 0, the vortex configurations shown in figure 10 can
tunnell between each other and destroy the staggered flux
order at some time scale. I think the correct answer requires a
quantum mechanical treatment of the boson strongly coupled
to gauge fields, which is not available at present. In particular,
we have not yet been able to compute the ARPES spectrum
and make a satisfactory comparison with experiment. We
make crude approximations such as assuming a binding of
the bosons with fermions via gauge fluctuations [73]. As
an example of an alternative aproach, Ribeiro and Wen [85]
introduced a new formulation which hybridizes the physical
hole with the spin carrying fermions and have had success in
understanding the higher energy spectra. Their theory seems to
favour the two gap scenario. The truth is that the theory of the
spectral function is not under control at present: the problem
of a fermion and boson strongly interacting with a gauge field
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].
The degeneracy of the various channels at the hot-

spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-

by-disorder formalism, first described by Villain in the
classical context [50].
Remarkably, the choice of the starting charge modula-

tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Q

x

, 0) and (0,±Q
y

)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.
These axial modulations have been described in a pre-

vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:

�̂
SU2 =

✓
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◆
, (3)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
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. (4)

where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �

SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.
At every doping x, equation (4) describes a three di-

mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n2 = 1, with n1,2 = �
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, n3,4 =
�
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, where � = �/�
SU2, � = �/�

SU2 and the sign
of the masses m

↵

depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.

In the specific context of the S3 sphere, no topological
defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2

�
S3

�
= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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Figure 10. Model for a hc/2e vortex. The SU(2) quantization axis
points for the north pole at the centre (forming a staggered flux
vortex core) and rotates smoothly towards the equatorial plane as
one moves out radially.

Figure 11. Schematic picture of the quantization axis I in different
parts of the phase diagram shown in figure 2. (a) In the
superconducting phase I is ordered in the x–y plane. (b) In the
Nernst phase, I points to the north or south pole inside the vortex
core. (c) The pseudogap corresponds to a completely disordered
arrangement of I. (I is a three dimensional vector and only a
two-dimensional projection is shown.)

is raised, vortices are created with staggered flux cores and
the proliferation of these vortices drives the Berezinskii–
Kosterlitz–Thouless transition in the standard way. Above this
transition (which is the true superconducting Tc), vortex and
anti-vortex proliferates giving rise to the Nernst phase. At even
higher temperature the I vector is completely disordered and
this is our picture of the pseudogap phase.
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the superconducting state is reasonably peaked even near the
antinodes and obey the d-wave dispersion with a single gap
which increases with decreasing doping. This is supported
by low temperature thermal conductivity data which measures
the ratio vF/v" where v" is the quasiparticle velocity in the
direction of (0, π) [81]. It is found that v" increases with
decreasing x and extrapolates to the antinodal gap measured by
ARPES. On the other hand, for severely underdoped samples
and one layer cuprates with low Tcs, there are claims based
on ARPES that the energy gap in the Fermi arc region near
the nodal point does not scale with the pseudogap at (0, π),
which increases with decreasing doping as mentioned before
[82]. Instead, it seems to stay constant or increase with
decreasing doping. It is argued that this reveals a new gap scale
associated with superconductivity. I should caution that deeply
underdoped samples are known to be strongly disordered, and
the disorder increases with reduced doping. Furthermore,
the lineshape remains very broad in the antinodal direction
even in the superconducting state. Thus it is risky to draw a
strong conclusion from lineshapes without an understanding
of disorder effects and of the lineshape.

Other support for two gaps comes from Andreev reflection
studies [83] and Raman scattering [84]. In a superconductor-
normal metal junction in conventional superconductors,
normal electrons incident on the junction has an extra
channel for transport, by tunnelling as a Cooper pair into the
superconductor and Andreev reflected as a hole. This leads
additional conductance below an energy scale of the energy
gap. Such extra conductance was observed in underdoped
cuprates, but the energy scale observed is much lower than the
pseudogap and is more related to Tc. I note that in contrast
to conventional tunnelling, Andreev reflection does not simply
measure the density of states, but requires coherence of the
quasiparticle in its interaction with the condensate. What is
seen in the Andreev data may be this coherence scale.

I must emphasize that the simple cartoon shown in
figure 11 is only an approximate picture. We have assumed
that the bosons are locally condensed and can be treated as
a c-number which varies in space and time. However, even
at T = 0, the vortex configurations shown in figure 10 can
tunnell between each other and destroy the staggered flux
order at some time scale. I think the correct answer requires a
quantum mechanical treatment of the boson strongly coupled
to gauge fields, which is not available at present. In particular,
we have not yet been able to compute the ARPES spectrum
and make a satisfactory comparison with experiment. We
make crude approximations such as assuming a binding of
the bosons with fermions via gauge fluctuations [73]. As
an example of an alternative aproach, Ribeiro and Wen [85]
introduced a new formulation which hybridizes the physical
hole with the spin carrying fermions and have had success in
understanding the higher energy spectra. Their theory seems to
favour the two gap scenario. The truth is that the theory of the
spectral function is not under control at present: the problem
of a fermion and boson strongly interacting with a gauge field
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FIG. 3: In some regions of real space, the SU(2) order parameter is constrained to two-dimensional hemispheres (A). It can
therefore be mapped on a pseudo-spin vector (B). This constraint causes the proliferation of pseudo-spin merons of size L (C),
which have a maximal charge component and a zero superconducting component at the core (C). The charge component of a
set of these merons is schematically represented in (D), which matches STM experimental observations [31].

symmetry in a region of the Brillouin zone, in the sense
that one can define an SU(2) algebra relating the two
[38]. This symmetry is exact on a line of the Brillouin
zone joining the hot-spots, and is broken away from it
[38]. This naturally causes the arising of the fluctuations
associated to this symmetry, which we call SU(2) fluctu-
ations [38].
The degeneracy of the various channels at the hot-

spots introduced above has been shown to be lifted by
considering the SU(2) fluctuations through the diagram
in Fig. 2B [38], similarly to what happens in the order-

by-disorder formalism, first described by Villain in the
classical context [50].
Remarkably, the choice of the starting charge modula-

tion wave vector becomes irrelevant at this point, since it
was found that the SU(2) fluctuations select three wave
vectors characterizing respectively d-wave nematic order-
ing at Q0 = (0, 0) and axial modulations with or without
C4 symmetry breaking at Q0 = (±Q

x

, 0) and (0,±Q
y

)
[38] (Fig. 2A). Both nematic and axial orders are there-
fore naturally selected by the SU(2) fluctuations.
These axial modulations have been described in a pre-

vious work by the arising of excitonic patches prolifer-
ating in some regions of the phase diagram [38]. In the
following, we give a topological interpretation of the pro-
liferation of local objects in real space, by introducing the
SU(2) order parameter, which enables us to encompass
many aspects of the phase diagram of the cuprates in an
integrated manner.

SU(2) order parameter

The order parameter that naturally emerges from the
previous discussion to describe the pseudogap is a com-
posite of � and �, which can be cast into the form:
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SU2 =
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, (3)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
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. (4)

where the indices R and I denote the real and imaginary
parts of the operators, respectively. In this picture, �

SU2

represents the energy scale below which the fluctuations
between the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.
At every doping x, equation (4) describes a three di-

mensional hypersphere S3 in a four-dimensional space.
The transverse fluctuations of the order parameter on
this hypersphere are naturally described by an O(4) non-
linear �-model [48]
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where ↵ = 1, 4 are the four-component vector subject
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, where � = �/�
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SU2 and the sign
of the masses m
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depends on the presence or absence
of an applied magnetic field. The amplitude modes, or
massive modes, can be safely neglected since the energy
di↵erence between the charge and superconducting states
is much smaller than both their energies.

In the specific context of the S3 sphere, no topological
defect is generated, since a careful examination of the
corresponding homotopy class gives ⇡2

�
S3

�
= 0 [51]. In

the following, we discuss the case where one degree of
freedom is lost, allowing for topological defects to appear.

Topological defects

We now argue that, as the temperature is lowered,
the phase of the charge modulations is frozen in some
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4

FIG. 4: Suggested setup for generating SU(2) merons, based
on constraining the SU(2) order parameter in order to create
a topological texture measureable by charge density probes.
Using the proximity e↵ect, the order parameter can be con-
strained to be purely along � at the (0, L) and (0,�L) points
using connections with a ferroelectric, and purely along �R

at the (L, 0) and (�L, 0) points using connections with a su-
perconductor. This causes the arising of a peculiar evolution
of the charge order in real space, along with a superconduct-
ing current along the x axis, corresponding to a gradient of
the phase of �, '�. Moreover, defining the order parameter
� = �R+ i� yields a gradient of its phase along the edge, and
therefore an associated current.

real space regions, as measured by phase-resolved STM
[34, 42]. This reduces this phase to a few integer values
±i⇡/n, with n an integer and thus reduces the fluctua-
tion space from S3 to S2 ⇥ Z2n [52]. These regions are
thus characterised by �2

SU2 = �2 + �2
R

+ �2
I

, and the
e↵ective non-linear �-model becomes O(3). The space of
the fluctuations is depicted in Fig. 3A where a fluctuat-
ing hemi-sphere is shown; Z2n has been reduced to Z2

for the clarity of the representation, with phase +1 and
�1 corresponding to the upper and lower hemi-spheres,
respectively.

The second homotopy class in these O(3) regions of
real space is ⇡2

�
S2

�
= Z, which yields the spontaneous

generation of skyrmions [51, 53, 54]. These are actually
half-skyrmions because of their half-integer topological
charge:

Q
top

=
1

4⇡

Z
n · @

x

n⇥ @
y

n dxdy (6)

They are also called merons and correspond to a variation
of the vector n over one hemisphere, as illustrated in Fig.
1, 3A and 3C. They take two equivalent typical forms, of
an edgehog and a vortex, and the proliferation pattern in-
volves meron/anti-meron pairs such as the one presented
in Fig. 1. Note that, contrary to the magnetic skyrmions
observed in magnetic systems (see e.g. [55, 56]), here the
topological structure acts on the pseudo-spin sector, with

the three quantization axes (S
x

, S
y

, S
z

) corresponding re-
spectively to (�

R

,�
I

,�) (Fig. 3B). The choice of the
quantization axis z to be parallel to the charge modula-
tion parameter � is arbitrary but convenient, since the
superconducting phase then corresponds to a simple easy
plane situation (Fig. 3C).

Non-zero topological numbers are associated with the
arising of edge currents. One can therefore imagine iso-
lating one topological defect in order to examine these
currents. In the most simple case of a single meron,
such as displayed in Fig. 1, the SU(2) order parameter
along the edge is purely in the superconducting plane,
with a superconducting phase varying by 2⇡ when go-
ing around the full edge, exactly like in the case of a
superconducting vortex. One can however engineer more
interesting situations by taking opportunity, for example,
of the proximity e↵ect. Indeed, one could use four leads:
two superconducting leads and two ferroelectric leads, as
depicted in Fig. 4. This would constrain �

SU2 to be
purely superconducting or purely charge-like at each of
these points, and force the creation of a particular meron
depicted in Fig. 4, corresponding to a rotation of the axes
of the simple case considered in Fig. 1 and 3 such that �

I

would now be along z. Note that this would mean that
the phase of the charge order parameter changes along a
line dividing the meron in two (the (x, 0) axis in Fig. 4),
on which it has zero magnitude. Along this line, |�| is
maximal and the corresponding phase '� changes by ⇡
when crossing the sample, as depicted in the inset of Fig.
4. Experimentally, this would give rise to a supercurrent
along (x, 0), as well as a peculiar charge pattern, mea-
sureable for example via STM. Applying a current along
this line would also be a way to generate this gradient
of superconducting phase, and consequently the whole
meron [57]. Moreover, one can define a specific order
parameter along the edge as � = �

R

+ i�. The phase
of this order parameter then rotates by 2⇡ when going
round the sample, giving rise to a finite phase gradient,
and hence to a peculiar type of current, which could also
possibly be detected. Such a setup would provide a vi-
able experimental test of the existence of the SU(2) order
parameter through its direct manipulation.

The mechanism that allows one to see these topological
defects is the freezing of the phase of the charge order pa-
rameter component of the SU(2) order parameter. This
is caused by pinning to local defects or superconducting
vortices and coupling of the charge order parameter to
the lattice. In this formalism there is therefore coexis-
tence, in the pseudogap phase, of two types of regions in
real space: regions where the phase of � is continuous,
and which exhibit a nematic response, and regions where
the phase of � is quantised, where merons proliferate.

Measurements of superconducting vortices below T
c

found that they bear a very specific structure where
charge modulations are observed at the core [58]. This
corresponds to a pseudo-spin meron in whose centre the
pseudo-spin vector is oriented along the z-axis, produc-
ing charge modulations while the superconductivity order
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FIG. 5. (Color online) Infinite ladder series corresponding re-
spectively to the gap equations (16) for diagram a) and(18)for
diagram b).

B. Charge and SC decoupling

We can now decouple the second term in Eqn. (15) in
the charge and SC channels, which leads to two types of
gap Equations

• In the charge channel, the Hubbard-Stratonovich
decoupling of Eqn. (15) leads to the effective action
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. Integrating the
fermions out of the partition function and then dif-
ferentiating with respect to � leads to the gap equa-
tion, in the charge sector. Here k0�k = Q

0

, where
Q0 is the incommensurate charge modulation vec-
tor:

�
k,k

0
= ��

k

0
,k+Q0 <T

X

!,q

J
q

⇥ (16)

�
k+q,k

0+q

(i✏+ i! � ⇠
k+q

)(i✏0 + i! � ⇠
k

0+q

) � �2
k+q,k

0+q

.

• Similar action is derived in the SC channel, with
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FIG. 6. (Color online) Solution of the gap equations from
Eqns. (16) and (18) for various modulation wave vectors with
a) the diagonal wave vector (Q0, Q0) linking two hot spots,
b) the axial wave vector (Q0, 0) and c) (0, Q0) which are ob-
served experimentally, d) the AF wave vector (⇡,⇡) and e)
the null wave vector. The solution of the SC gap equation
is given in f). The calculations are made on the band struc-
ture of Bi2212 form Ref.115 (see details in the text for the
band parameters). The calculations are made within the ap-
proximation Jq = J� (q), with J = 0.35, which restricts the
q-integration at the vector (⇡,⇡). The energy units, if not
stated otherwise, are in eV.

Throughout the paper, if not stated otherwise, the cal-
culations are made for Bi2212, with a band structure
taken from Ref.115. Specifically we take

⇠
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y

) + 2t3 cos k
x

cos k
y

(19)
+ t4 cos 2k
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with (in eV) t1 = 0.196, t2 = �0.6798, t3 = 0.2368,
t4 = �0.0794, t5 = 0.0343 and t6 = 0.0011. The solu-
tion of Eqns.(16,18) is given in Fig.(6) for various charge
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FIG. 5. (Color online) Infinite ladder series corresponding re-
spectively to the gap equations (16) for diagram a) and(18)for
diagram b).

B. Charge and SC decoupling

We can now decouple the second term in Eqn. (15) in
the charge and SC channels, which leads to two types of
gap Equations
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FIG. 6. (Color online) Solution of the gap equations from
Eqns. (16) and (18) for various modulation wave vectors with
a) the diagonal wave vector (Q0, Q0) linking two hot spots,
b) the axial wave vector (Q0, 0) and c) (0, Q0) which are ob-
served experimentally, d) the AF wave vector (⇡,⇡) and e)
the null wave vector. The solution of the SC gap equation
is given in f). The calculations are made on the band struc-
ture of Bi2212 form Ref.115 (see details in the text for the
band parameters). The calculations are made within the ap-
proximation Jq = J� (q), with J = 0.35, which restricts the
q-integration at the vector (⇡,⇡). The energy units, if not
stated otherwise, are in eV.
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tion of Eqns.(16,18) is given in Fig.(6) for various charge
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the vicinity of the Mott transition in two dimensions [18].
Here we argue that the presence of an underlying SU(2)
symmetry in the under-doped region sheds light on the
variety of observed complex phenomena and clarifies the
mysteries of the real space picture. First, we describe
the SU(2) order parameter and its components, then lay
out its derivation from a short-range antiferromagnetic
model, and finally describe the cascade of phase transi-
tions it generates.

SU(2) order parameter — The order parameter we use
to describe the pseudogap is a composite of two famil-
iar ones: the d-wave superconducting state described by
� = c†k,�c

†
�k,��

, where c†k,� creates an electron of mo-
mentum k and spin �, and d-wave charge modulations of
momentum Q0, described by � = c†k�Q0/2

ck+Q0/2. The
charge modulation wave vectors are typically incommen-
surate, and taken either parallel to the crystal axes [19] or
diagonal [20, 21] (Figure 2). The SU(2) order parameter
can be cast into the form:

�̂
SU2 =

✓
� �

��⇤ �⇤

◆
, (1)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
SU2 = �2

R

+ �2
I

+�2
R

+�2
I

. (2)

where the indices denote the real and imaginary parts of
the operators, respectively. In this picture, �

SU2 repre-
sents the energy scale below which the fluctuations be-
tween the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.

Topological consequences — At every oxygen doping x,
equation (2) describes a three dimensional hypersphere
S3 in a four-dimensional space, which can be described
by an O(4) non-linear �-model [21]
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n2 = 1, with n1,2 = �

I

,�
R

, n3,4 =
�

I

,�
R

, with � = �/�
SU2, � = �/�

SU2 and the sign
of the masses m

↵

depending on the presence or absence
of an applied amgnetic field. In the specific context of
the S3 sphere, no topological defect is generated, since a
careful examination of the corresponding homotopy class
gives ⇡2

�
S3

�
= 0 [22]. Here, we argue that the presence

of disorder in cuprates compounds, and coupling of the
order parameter ot the lattice, provides a freezing effect
on the phase of the charge modulations, which reduces
the phase to a few integer values ±i⇡/n, with n and inte-
ger and effectively reduces the fluctuations space from S3
to S2⇥Z2n at T ⇤. The order parameter given in Eqn.(1)

can be understood as a non-abelian superconductor : at
T ⇤ it aquires a non zero amplitude, but at the same time
one of its phase is frozen due to the presence of disorder
in the compound. The pseudogap phase is thus charac-
terised by �2

SU2 = �2 +�2
R

+�2
I

, and the effective non
linear �-model becomes O(3) with n1 = n2. The space
of the fluctuations is depicted in Fig. [rentrer la ref à
la figure]. where two fluctuating hemi-spheres have been
shown; Z2n has been reduced to Z2 for the clarity of the
representation, with phase +1 and �1 corresponding to
the upper and lower hemi-spheres, respectively. The sec-
ond homotopy class in the pseudogap phase gives now
⇡2

�
S2

�
= Z, which yields the spontaneous generation of

skyrmions [23]. Those are actually half skyrmions, also
called merons corresponding to a variation of the vector n
over one hemisphere in Fig. 1. They take two equivalent
typical forms, of a edgehog and vortice, and the prolifera-
tion pattern involves meron/anti-meron pairs. Note that,
contrarily to the magnetic skyrmions observed in mag-
netic systems (see e.g. [24]), here the topological struc-
ture acts on the pseudo-spin sector, with the three axes
of quantization (S

x

, S
y

, S
z

) corresponding respectively to
(�

R

,�
I

,�) (Figure 1). The choice of the quantization
axis z to be parallel to the charge modulation parameter
� is arbitrary but convenient, since the superconducting
phase then corresponds to a simple easy plane situation
(Figure 1).

Below T
c

, superconducting vortices have been mea-
sured to bear a very specific structure where charge mod-
ulations are observed at the core [25]. This corresponds
to a pseudo-spin skyrmion where at the core the pseudo
spin is oriented along the z-axis, producing charge modu-
lations while the superconductivity order parameter van-
ishes (Figure 3). The energy associated to the creation
of this vortex is intrinsically of the order of the energy
splitting between the superconducting and charge mod-
ulation orders, which is precisely the typical energy scale
of the superconducting coherence �

c

⇠ 1
2kBTc

. Hence
pseudo-spin skyrmion vortices will proliferate around T

c

in the under-doped region of the phase diagram, acting as
a Kosterlitz-Thouless (KT) transition towards the pseu-
dogap state [26, 27].

Derivation of the order parameter — In this picture,
the starting point is that, above x ' 5% of oxygen dop-
ing, short range antiferromagnetic interactions, strongly
coupled to conduction electrons, are the main ingredient
of the physics of the cuprates. This leads to the most
simple Hamiltonian:

H =
X

i,j,�

c†
i,�

t
ij

c
j,�

+ J
X

hi,ji

S
i

· S
j

(4)

where t
ij

is the hopping matrix from one site to another,
S
i

=
P

↵,�

c†
i,↵
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↵�

c
i�

the on-site spin operator and hi, ji
denotes the summation over nearest neighbors.

Decoupling the interaction term into the charge and
superconducting channels � and � defined above, yields
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Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:

=>> = −2?@
0

AB CD>(/)0 EF)
GH )
G) I(/, ))0

�

�

�

,

=>J = −4?
0@7

3AB CD> / MD> /
GDJ /
G/J

�

,

−
DJ / GDJ /

G/>
NEF) GH )

G) I /,) 7
�

�

• This	gives	us	the	Hall	resistance	and	the	Hall	number:

OP =
QRS

(QRR)T
,	UP = V

WXY

Large	nematic response

and
Response	along	the	
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FIG. 5. (Color online) Infinite ladder series corresponding re-
spectively to the gap equations (16) for diagram a) and(18)for
diagram b).

B. Charge and SC decoupling

We can now decouple the second term in Eqn. (15) in
the charge and SC channels, which leads to two types of
gap Equations

• In the charge channel, the Hubbard-Stratonovich
decoupling of Eqn. (15) leads to the effective action
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fermions out of the partition function and then dif-
ferentiating with respect to � leads to the gap equa-
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Q0 is the incommensurate charge modulation vec-
tor:

�
k,k

0
= ��

k

0
,k+Q0 <T

X

!,q

J
q

⇥ (16)

�
k+q,k

0+q

(i✏+ i! � ⇠
k+q

)(i✏0 + i! � ⇠
k

0+q

) � �2
k+q,k

0+q

.

• Similar action is derived in the SC channel, with

Seff

� =

ˆ
k,k

0
,q

(J�1
q

�

†
k,k

0�
k+q,k

0�q

+ �

†
k,k

0

X

�

� 
k+q,�

 
k

0�q,��

+ �
k+q,k

0�q

X

�

� †
k,�

 †
k

0
,��

), (17)

where �

k,k

0
= hP

�

� 
k,�

 
k

0
,��

i, and k0
=

�k. We get the standard SC gap equation
(�

k

= �

k,�k

) :

�

k

= T
X

!,q

J
q

�

k+q

�

2
k+q

+ ⇠2
k+q

+ (✏+ !)

2 , (18)

a)

b)

c) d)

e) f)

FIG. 6. (Color online) Solution of the gap equations from
Eqns. (16) and (18) for various modulation wave vectors with
a) the diagonal wave vector (Q0, Q0) linking two hot spots,
b) the axial wave vector (Q0, 0) and c) (0, Q0) which are ob-
served experimentally, d) the AF wave vector (⇡,⇡) and e)
the null wave vector. The solution of the SC gap equation
is given in f). The calculations are made on the band struc-
ture of Bi2212 form Ref.115 (see details in the text for the
band parameters). The calculations are made within the ap-
proximation Jq = J� (q), with J = 0.35, which restricts the
q-integration at the vector (⇡,⇡). The energy units, if not
stated otherwise, are in eV.

Throughout the paper, if not stated otherwise, the cal-
culations are made for Bi2212, with a band structure
taken from Ref.115. Specifically we take
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with (in eV) t1 = 0.196, t2 = �0.6798, t3 = 0.2368,
t4 = �0.0794, t5 = 0.0343 and t6 = 0.0011. The solu-
tion of Eqns.(16,18) is given in Fig.(6) for various charge
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B. Charge and SC decoupling

We can now decouple the second term in Eqn. (15) in
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gap Equations
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the vicinity of the Mott transition in two dimensions [18].
Here we argue that the presence of an underlying SU(2)
symmetry in the under-doped region sheds light on the
variety of observed complex phenomena and clarifies the
mysteries of the real space picture. First, we describe
the SU(2) order parameter and its components, then lay
out its derivation from a short-range antiferromagnetic
model, and finally describe the cascade of phase transi-
tions it generates.

SU(2) order parameter — The order parameter we use
to describe the pseudogap is a composite of two famil-
iar ones: the d-wave superconducting state described by
� = c†k,�c

†
�k,��

, where c†k,� creates an electron of mo-
mentum k and spin �, and d-wave charge modulations of
momentum Q0, described by � = c†k�Q0/2

ck+Q0/2. The
charge modulation wave vectors are typically incommen-
surate, and taken either parallel to the crystal axes [19] or
diagonal [20, 21] (Figure 2). The SU(2) order parameter
can be cast into the form:

�̂
SU2 =

✓
� �

��⇤ �⇤

◆
, (1)

where �2
SU2 = |�|2 + |�|2, which is the constraint en-

forcing the SU(2) symmetry. Since � and � are complex
fields, this constraint can be written as:

�2
SU2 = �2

R

+ �2
I

+�2
R

+�2
I

. (2)

where the indices denote the real and imaginary parts of
the operators, respectively. In this picture, �

SU2 repre-
sents the energy scale below which the fluctuations be-
tween the two fields � and � are dominant; this scale
is thus doping dependent. Notice that, by construction,
this composite SU(2) order parameter is non-abelian.

Topological consequences — At every oxygen doping x,
equation (2) describes a three dimensional hypersphere
S3 in a four-dimensional space, which can be described
by an O(4) non-linear �-model [21]
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where ↵ = 1, 4 are the four-component vector subject
to the constraint n2 = 1, with n1,2 = �

I

,�
R

, n3,4 =
�

I

,�
R

, with � = �/�
SU2, � = �/�

SU2 and the sign
of the masses m

↵

depending on the presence or absence
of an applied amgnetic field. In the specific context of
the S3 sphere, no topological defect is generated, since a
careful examination of the corresponding homotopy class
gives ⇡2

�
S3

�
= 0 [22]. Here, we argue that the presence

of disorder in cuprates compounds, and coupling of the
order parameter ot the lattice, provides a freezing effect
on the phase of the charge modulations, which reduces
the phase to a few integer values ±i⇡/n, with n and inte-
ger and effectively reduces the fluctuations space from S3
to S2⇥Z2n at T ⇤. The order parameter given in Eqn.(1)

can be understood as a non-abelian superconductor : at
T ⇤ it aquires a non zero amplitude, but at the same time
one of its phase is frozen due to the presence of disorder
in the compound. The pseudogap phase is thus charac-
terised by �2

SU2 = �2 +�2
R

+�2
I

, and the effective non
linear �-model becomes O(3) with n1 = n2. The space
of the fluctuations is depicted in Fig. [rentrer la ref à
la figure]. where two fluctuating hemi-spheres have been
shown; Z2n has been reduced to Z2 for the clarity of the
representation, with phase +1 and �1 corresponding to
the upper and lower hemi-spheres, respectively. The sec-
ond homotopy class in the pseudogap phase gives now
⇡2

�
S2

�
= Z, which yields the spontaneous generation of

skyrmions [23]. Those are actually half skyrmions, also
called merons corresponding to a variation of the vector n
over one hemisphere in Fig. 1. They take two equivalent
typical forms, of a edgehog and vortice, and the prolifera-
tion pattern involves meron/anti-meron pairs. Note that,
contrarily to the magnetic skyrmions observed in mag-
netic systems (see e.g. [24]), here the topological struc-
ture acts on the pseudo-spin sector, with the three axes
of quantization (S

x

, S
y

, S
z

) corresponding respectively to
(�

R

,�
I

,�) (Figure 1). The choice of the quantization
axis z to be parallel to the charge modulation parameter
� is arbitrary but convenient, since the superconducting
phase then corresponds to a simple easy plane situation
(Figure 1).

Below T
c

, superconducting vortices have been mea-
sured to bear a very specific structure where charge mod-
ulations are observed at the core [25]. This corresponds
to a pseudo-spin skyrmion where at the core the pseudo
spin is oriented along the z-axis, producing charge modu-
lations while the superconductivity order parameter van-
ishes (Figure 3). The energy associated to the creation
of this vortex is intrinsically of the order of the energy
splitting between the superconducting and charge mod-
ulation orders, which is precisely the typical energy scale
of the superconducting coherence �

c

⇠ 1
2kBTc

. Hence
pseudo-spin skyrmion vortices will proliferate around T

c

in the under-doped region of the phase diagram, acting as
a Kosterlitz-Thouless (KT) transition towards the pseu-
dogap state [26, 27].

Derivation of the order parameter — In this picture,
the starting point is that, above x ' 5% of oxygen dop-
ing, short range antiferromagnetic interactions, strongly
coupled to conduction electrons, are the main ingredient
of the physics of the cuprates. This leads to the most
simple Hamiltonian:

H =
X

i,j,�

c†
i,�

t
ij

c
j,�

+ J
X

hi,ji

S
i

· S
j

(4)

where t
ij

is the hopping matrix from one site to another,
S
i

=
P

↵,�

c†
i,↵

�
↵�

c
i�

the on-site spin operator and hi, ji
denotes the summation over nearest neighbors.

Decoupling the interaction term into the charge and
superconducting channels � and � defined above, yields
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Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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• This	gives	us	the	Hall	resistance	and	the	Hall	number:

OP =
QRS

(QRR)T
,	UP = V

WXY

Large	nematic response
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modulation vectors. The main point of this preliminary
study, is that all the wave vectors have an equivalent re-
sponse at the hot-spot, which is also the same as the SC
response. The difference between the gap solution of var-
ious wave vectors lies in its extension in k-space, which
is more pronounced for the SC and (Q

0

, Q
0

) cases. The
only modulation wave vectors which give a non zero an-
swer are the ones relating two hot spots. The case of
strong coupling is treated in Appendix A, where we see
that, as the coupling increased, the shape of the SC and
CDW changes. The SC solution is now gapping out the
entire fermi surface whereas the CDW solutions are con-
fined within the anti-nodal regions.

C. High energy dome

The starting point of our reflexion is to notice that a
simple model with short range AF correlations, which is
minimal to describe the under-doped regime of cuprate
superconductors, has a few quasi-degenerate solutions at
the hot spot, including the d-wave SC and d-wave charge
orders. Our assumption, starting from now, is that this
simple model gives a good insight, and hints that an
SU(2) symmetry is present in the phase diagram of those
compounds, which relates the d-wave SC state to the d-
wave charge sector. The SU(2) symmetry is broken at
low temperature, but then fluctuations will exist up to
a temperature scale which defines the SU(2)-dome. In
Fig.7 the solutions at the hot spots of the d-wave SC
and d -wave CDW are given for various wave vectors,
as a functions of the decreasing AF coupling constant
J0 � J . For a wide region, the SC solution at the hot
spot is degenerate with the CDW one. When J ⇠ J0 the
CDW solution is lost whereas the SC solution survives.
The phase diagrams of Fig.7 mimic the situation in the
under-doped regime of the cuprates as a function of hole
doping. The region where the two solutions are degener-
ate is interpreted in our framework as the SU(2) dome,
below which SU(2) fluctuations are present. They will
be described in the next section.

IV. SU(2) FLUCTUATIONS COUPLED TO
FERMIONS

In order to proceed with the study of the SU(2) fluc-
tuations, we must choose one of the wave vectors asso-
ciated with the charge sector. For definiteness, we start
with the diagonal wave vector Q

0

= (Q
0

, Q
0

), bearing
in mind that it is not the one experimentally observed in
the under-doped region. Our starting point is to derive
the SU(2) effective model which couples to fermions. The
action is comprised of three terms :

S
st

= S0
 

+ S
int

+ S0
Q

. (20)

A. Bare action S0
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is the bare action for electrons, which is defined in
SU(2) context as

S0
 

= �
ˆ

x,x

0
 

x

G0
�1
x,x

0 
x

0 , (21)

where x = (r, ⌧, �) with � 2 {", #} the spin and
´

x

⌘´
dr
´
�

0 d⌧
P

�

and the free inverse propagator is

G0
�1
x,x

0 = (@
⌧

� ˆ⇠
ir

r

)�(d)
(r � r0

)�(⌧ � ⌧ 0
)�
�,�

0 . (22)

b) (0,q)

��� ��� ��� ��� ��� ���
����

����

����

����

����

����

��-�

�
��

FIG. 7. (Color online) Comparison of the d-wave charge
�
k,k+Q0 solution of Eqn.(16) (dashed red) and d-wave SC �

k

solution of the Eqn.(18) (black line) taken at the hot spot. We
compare various modulation wave vectors for �

k,k+Q0 with a)
the diagonal wave vector (Q0, Q0) linking two hot spots, b)
the axial wave vector (0, Q0) and c)(Q0, 0). The evolution of
as a function of J�J0 has the typical form of a dome. SC and
CDW solutions at the hot spots are completely degenerate in
a with range of J , whereas the CDW solution is lost before
the SC one when J ⇠ J0 (J0 = 1).
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Order by disorder : SU(2) fluctuations lift 
the degeneracy 

Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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Order by disorder : SU(2) fluctuations lift 
the degeneracy 

Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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Order by disorder : SU(2) fluctuations lift 
the degeneracy 

Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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• This	gives	us	the	Hall	resistance	and	the	Hall	number:

OP =
QRS

(QRR)T
,	UP = V

WXY

Large	nematic response

and
Response	along	the	

crystal	axes

Hole	doping

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300

R
H

e
/V

Temperature (K/t0)

0.14
0.15
0.16
0.17
0.18
0.19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.05  0.1  0.15  0.2  0.25  0.3

nH = x

nH = 1+x

n
H

x

P

Q=0
Qy

Qx

Intertwined orders: not 
competing w. others

Loop currents 
OK with symmetries



28

Experiments



ARPES 

INS in Hg1201

Anomalous 
transport 

Raman: A1g 
resonance



ARPES 

INS in Hg1201

Anomalous 
transport 

Raman: A1g 
resonance

4

FIG. 2. (Color online) a) to e) Experimental energy dispersion curves that were taken from [30] and measured by ARPES at T = 10K (blue
circle) and T = 170K (red circle) at approximately constant kx = p �dkx for dkx = 0, 0.3, 0.6, 1.2, 1.6 (The Fermi arcs begin around dkx = 1.2).
Note that the green circles appear only below Tc. The black arrows locate the back-bending vector kG which differ from the Fermi momentum
in the normal state kF . In the figures f) to j), we represent the band dispersion with color intensity proportional to the spectral weight A(k,w).
These curves have been calculated for the order parameters magnitude D2pF

0 = 50meV and DqS
0 = 0.4D2pF

0 and the width of the Gaussian
function as sx = 0.5414 and sy = 1.083. The solid lines is the electronic dispersion in the metallic phase.

FIG. 3. (Color online) The spectral weight A(k,w) at the Fermi level
(at w = 0 with a broadening of h = 10meV ). The parameters are the
same as in Fig. 2. We clearly observe the formation of Fermi arc
after the anti-nodal zone has been gapped out.

FIG. 4. (Color online) Density of states r(w) as a function of the
frequency in the PG state (solid line) and in the normal state (dashed
line). The parameters are the same than in Fig. 2.
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FIG. 1. (a)-(e) Constant-energy images of magnetic susceptibility at T = 5 K (left panels) and 100 K (right panels). Data within
a 6 meV window centered at the indicated energies are averaged. White dots on the left-most panels represent the momentum
resolution at each energy. (f)-(j) The corresponding constant-energy cuts averaged over {100} and {010} trajectories at 5 K
(black circles) and 100 K (red squares). Solid lines are gaussian fits to data convolved with the momentum resolution. (k)
Energy dependence of incommensurability � at 5 K. The horizontal error bars are fit uncertainties for �. Filled black circles
and open squares are data taken with incident energy Ei = 100 meV and 130 meV, respectively. The filled grey region indicate
Full-Width-at-Half-Maximum (FWHM) momenta of the response. The hatched area is the magnetic excitation gap. (l) Energy
dependence of incommensurability � at 100 K. The dispersion of the spectrum at 5 K (dotted line) is shown for comparison.
The horizontal black bar represents the experimental momentum resolution at ! = 40 meV.

shaped spectrum in the normal state similar to that in
HgUD71 [18], the topology of the excitations changes in
the SC state, yielding a recurrence of both the magnetic
resonance (at a rather high energy of !

r

⇠ 59 meV) and
the lower hourglass dispersion. This is reminiscent of the
phenomenology in the bilayer cuprates [14, 15]. The con-
current emergence of these features in the SC state im-
plies a common origin. Furthermore, the characteristic
resonance energy and spectral weight in HgUD88 scale
with the particle-hole Stoner continuum threshold en-
ergy in a manner consistent with results in other cuprates
and with expectations for a spin-exiton resulting from an
itinerant spin formalism. The strong indication uncov-
ered here for the role of itinerant spins in describing the
magnetic excitations in the SC state of HgUD88 should
motivate fresh theoretical work on the distinct Y-shaped
spectrum utilizing itinerant carriers and particular mod-
els for the PG state.

The sample, prepared in accordance with previously
described procedures [18], consists of approximately 30
coaligned single crystals with a total mass of 2.8 g
with FWHM mosaic of 1.5o. Measurements were per-
formed on the ARCS time-of-flight spectrometer at Oak
Ridge National Laboratory [19], with incident energies
E

i

= 100 meV (at 5 K and 100 K) and 130 meV
(5 K). The incident beam was aligned along the sam-
ple’s crystalline c-axes. The dynamic magnetic suscep-
tibility �00(q,!) was determined from the scattering in-
tensity by normalizing by the anisotropic Cu2+ form fac-
tor [20] and the Bose population factor and calibrated to
a Vanadium standard. A description of the data pro-
cessing is given in Ref.[18]. Focused temperature de-
pendence measurements were performed at Laboratoire
Léon Brillouin, with the 2T triple-axes-spectrometer.
Double focusing Pyrolyic Graphite (PG) monochroma-
tor, PG analyzer, and PG filters were used, with fixed
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Peierls-type instability as possible mechanism for antinodal charge ordering and the

linear-T resistivity in cuprate superconductors

T. Kloss, X. Montiel, C. Pépin
IPhT, L’Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France

(Dated: August 20, 2015)

We probe a Peierls-type instability as a new concept to generate charge ordering in cuprate super-
conductors. Starting from a spin-fermion model which is decoupled in the superconducting channel,
the charge mode arises as a subsequent instability after having integrated out superconducting fluc-
tuations. In contrast to superconductivity there is no single ordering vector any more. Instead,
a distribution of vectors coupling opposed points on the Fermi suface stabilizes charge order and
open naturally a gap in the anti-nodal region. A semiclassical Boltzmann calculation where only
the dominant 2pF coupling vector is kept leads to a regime where the resistivity scales linearly
with the temperature T . We interpret the 2pF coupling as the crutial ingredient to describe the
strange-metal phase with its long-standing resistivity anomaly.

The discovery of charge ordering [1–16] is about to
change our understanding of high-Tc superconductiv-
ity. Alongside with a Mott insulating phase, an anti-
ferromagnetic (AFM) Néel-order and the superconduct-
ing (SC) phase, charge order is now widely believed to be
a fourth player that makes up the complexity in the su-
perconducting phase diagram (Fig. 1). Apart from serv-
ing only as a direct competitor for superconductivity, the
relationship between charge ordering and superconduc-
tivity seems however to be more intimate than previously
thought. Recently, the proximity to a Quantum Critical
Point (QCP) was shown to create a composite pseudogap
(PG) state, composed of a superconducting and a charge
component which are related by an emerging SU(2) sym-
metry [17, 18]. This PG state can form “hot regions”
which are broadened relatives of the “hot spots” that are
located at the intersection points of the fermi surface
(FS) with the AFM zone boundary, see Fig. 2 and [19].
Although these hot regions may gap out large regions of
the FS, charge order is often observed in the antinodal
region of the first Brillouin zone (BZ) even in the absence
of SC. A second long standing mystery in the phase di-
agram of cuprates poses the strange-metal phase, which,
adjacent to PG and SC phase, exists in the absence of
a gap. To the best of our knowledge, this phase is not
captured by any theoretical attempt so far.

In the present work we propose a new mechanism to
generate charge ordering in the antinodal region even
when the SC state is destroyed due to thermal fluctu-
ations (PG state) or a magnetic field. The subtle point
is that even when the SC state is absent, SC fluctuations
around the vacuum state are still present and can form
a secondary instability, which couples electrons close to
the FS. A related scenario was proposed recently [20], but
only with a static coupling between the antinodal points
that is not sufficient to gap out larger regions along the
FS. Here we propose a generalization of this idea, where
a distribution of 2p

F

vectors couples opposed FS points
and generates a secondary instability, to which we will
refer in the following as Peierls-type instability. We like

to mention that the 2p
F

coupling is genuinely different
from the SC coupling, which is mediated by the AFM
ordering vector. Taking only the 2p

F

coupling as a pre-
cursor of the fluctuation induced charge order, we show
that linear T resistivity regime arises naturally, providing
perhaps a first glimpse of the strange-metal phase.

Tc

T*

doping

T

AFM PG

SC

strange metal

fermi liquid

FIG. 1. (Color online) Schematic phase diagram of cuprate
superconductors as a function of hole doping and tempera-
ture T . In the gray shaded region, the so-called strange-metal
phase, the electrical resistivity scales linearly with the tem-
perature.

FIG. 2. (Color online) left) Schematic representation of
the Fermi surface and the first BZ boundary of hole-doped
cuprates. “Hot regions” of charge ordering, situated in the
antinodal region, are represented by orange clouds. For ori-
entation propose “hot spots” are marked in red. right) Rep-
resentation of the 2pF coupling between neighbouring Fermi
surfaces in the antinodal region that gives rise to the Peierls-
type instability.
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FIG. 3. (Color online) Charge order �
k,k

0 obtained from a
numerical solution [23] of Eqs. (7,8) at fixed k as a function
of p = k0 � k. The four upper figures correspond to four
different reference points k (highlighted by coloured points),
which were centred for the representation. As a guide for the
eyes, the FS is visualized by a black line. The position k
corresponds to the hotspot (red point), the diagonal symmet-
ric point (blue), the antinodal point (green) and a randomly
choosen point (magenta) shifted away from the FS, and they
are again summarized in the lower figure. The only non-zero
solutions are obtained when both points k and k0 are situated
in close vicinity to the FS (e.g. like k and k0

1, respectively un-
like k and k0

2 in the lower figure).

quasi one-dimensional in parallel direction (see Fig. 4),
⇧q is calculated for q ⌘ (qk, 0). The Matsubara sum at
T = 0 is then performed before integrating over k, and
we have to regularize the momentum integrals by an UV
cutoff. After dropping the nonuniveral, pure cutoff de-
pendent part and performing the analytic continuation
to real frequencies i!n ! ⌦+ i0+, the self-energy yields
⇧ =⇧

0
+ i⇧00, with

⇧

0
q(⌦)=c


(⌦+ qk) ln|⌦+ qk|�(⌦� qk) ln|⌦� qk|

�
, (10a)

⇧

00
q(⌦)=⇡c

h
(⌦+ qk)✓(�⌦� qk)+(⌦� qk)✓(⌦� qk)

i
,(10b)

and c�1
= (4⇡/�)2vkv?. It turns out that only the small

momentum, respectively small frequency behavior of the
bosonic propagator Dq with D�1

q (⌦) = q2 +m� ⇧q(⌦)

FIG. 4. (Color online) left) 2pF-scattering between two
electrons sitting close to the Fermi surface mediated by a
bosonic mode with propagator D. Due to geometry, the trans-
fered momentum q ⌘ (qk,q?) with |q| ⌧ |kF| is quasi one-
dimensional in direction qk only. right) Diagrammatic repre-
sentation of the 2pF scattering process as interaction vertex.

FIG. 5. (Color online) left) Representation of the 2pF-
scattering process between two electrons sitting on opposed
Fermi surfaces of the first BZ. Upper right: Diagrammatic
representation of interaction vertex of the 2pF-scattering pro-
cess, mediated by SC fluctuations. Lower figure: Diagram-
matic representation of the bosonic and fermionic propaga-
tors by a wavy and a straight line, as well as the one-loop
bosonic self-energy correction.

is important for the leading T behavior of the resistivity.
The imaginary part of Dq is then approximately given
by

ImDq(⌦) '
1

⇡c

1

⌦� qksgn⌦
. (11)

Next, we calculate the relaxation time for electron-
electron scattering process from a semiclassical Boltz-
mann treatment. The Boltzmann equation for the
nonequilibrium electron distribution fk writes [24–26]

✓
@fk
@t

◆

collisions

= �eE ·rkfk = �Iei [fk]� Iee [fk] ,

(12)
where e is the elementary charge, E a static electric
field and Iei respectively Iee are the electron-impurity
respectively electron-electron collision integrals. For
small E, the so-called relaxation-time approximation
amounts to write fk ' f0,k � gkf0,k(1 � f0,k) with
gk = �⌧eE · vk and where ⌧ is the relaxation time and
f0,k = (exp(�⇠k) + 1)

�1 the equilibrium distribution of
noninteracting fermions. The electron-electron collision
integral is obtained from Fermi’s golden rule

Iee [fk] =
1

V

X

q

ˆ 1

�1
d⌦ ImDq (⌦) �

�
✏k � ✏k̄�q � ⌦

�
⇥

h
fk

�
1� fk̄�q

�
(1 + n

B

(⌦))� (1� fk) fk̄�qnB

(⌦)

i
,

(13)

and we will drop the contribution from Iei. Evaluating

⇢ ⇠ T/ log T

⌃ ⇠ i✏n/ log |✏n|
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Consequently, the h-mode response only exists in A1g sym-
metry.

In addition long-range Coulomb interaction U ⇠ 1/q2 plays
an important role in screening the Raman in the A1g channel19.
Doing the summation over all the coulomb diagram (Fig. 8 b),
one can find easily:

c

l

coul =
Uc

0
g

l 1
c

0
1g

l

1�Uc

0
11

(17)

where c

0
g

l 1
is the Raman susceptibility with one of the ver-

tex put to unitiy and c

0
11 the bare polarization bubble. In the

limit q ! 0, the "Coulomb screened" susceptibility simplifies
as c

l

coul = �c

0
g

l 1
c

0
1g

l

/c

0
11. In the A1g symmetry, the contri-

bution of c

A1g
coul cannot be neglected17. Its contribution will

screen partly the bare Raman susceptibility c

0
g

A1g
g

A1g
. Con-

sequently, the Raman response in the A1g symmetry writes
c

A1g
Raman = c

0
g

A1g
g

A1g
+c

A1g
coul +c

A1g
h

. Around optimal doping, we
will see that the contribution of the h-mode (last term) is of
the same order of magnitude as the bare screened A1g Raman
response (first two terms). By increasing the doping, because
of the weakening of the CDW order we expect a decrease of
the h-mode intensity and the A1g spectra will be dominated
by the bare screened Raman response.

The Coulomb screening can be neglected in the B1g and
B2g channels for symmetry reasons17. Consequently, the full
Raman susceptibility is simply given by the unscreened re-
sponse: c

l

Raman ⇡ c

0
g

l

g

l

with l = B1g(B2g).

III. RESULTS AND DISCUSSION

The theoretical spectra are calculated without solving the
self-consistent equation derived from the spin-fermion model.
As a consequence, we need to adjust the amplitude of the or-
der parameters as well as the value of J and V to reproduce
the experimental data. The parameters values are adjusted in
the following way : the value of D0

SC is chosen to reproduce
the Raman peak frequency in the B1g channel. The value of
D0

CDW is chosen to adjust the intensity of the resonance in the
A1g channel. Note that the value of D0

CDW does not influence
the frequency of the h-mode. We adjust the value of J to fit
the neutron resonance frequency and the value of V to fit fre-
quency of the Raman resonance in the A1g symmetry. A full
self-consistent determination of the CDW and SC order pa-
rameter amplitude is not done here as our goal is to identify
the main theoretical features necessary to explain the Raman
resonance in the A1g symmetry.

A. Results

The imaginary parts of the neutron spin susceptibility (spin
response) and the full Raman susceptibility in the A1g sym-
metry (Raman response) are presented in (a) and (b) panels of
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FIG. 9. (a) Calculated spin response. (b) Experimental (solid line)
and calculated (dashed line) Raman response in the A1g symmetry
and (c) in the B1g symmetry at optimal doping p= 0.16 (d = 10meV ,
2D0

SC = 63meV,2D0
CDW = 45meV ). In (b), the dotted line presents

the calculated bare screened Raman response without the h mode
contribution, c

A1g? = c

0
g

A1g
g

A1g
+ c

A1g
coul . Phonon lines have been sub-

tracted out of the experimental Raman spectra for clarity in (b) but
not in (c). The arrows in (c) indicate the location of the phonon lines
superimposed on the electronic background.

Fig.9 for optimal doping (p=0.16) with 2D0
SC = 63meV and

2D0
CDW = 45meV . The theoretical curves are obtained for

J = 107.5meV and V = 54.5meV . To the best of our knowl-
edge, the amplitude of the CDW order parameter D0

CDW has
not been evaluated yet in the experiments. However, in our
effective model, the value of D0

CDW is reasonable compared
with the SC order parameter amplitude.

For this set of parameters, the calculated spin response ex-
hibits a sharp peak at w = 364cm�1 at the same energy than
the energy of the calculated A1g Raman resonance. Note that
the frequency dependence of the CDW order DCDW cuts the
SC coherence peak at 2D0

SC ⇠ (510cm�1(63meV ) in the A1g
channel but leaves the B1g channel unaffected (see panel (c)).
Fig.9 (b) and (c) show a qualitative agreement between the
peak energies in the A1g and B1g calculated Raman spectra
(red curves) and the experimental Raman spectra obtained
from Bi2212 single crystals (black curves)51. We note that
in our approximation, the calculated susceptibility vanishes in
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The integral over frequency can be simplified using the
standard approximation [44]:
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which gives:
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We generalise this approach to the cubic case and obtain:
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These expressions allow us to calculate the Hall resistance
[42]

RH =
�

+
xy + �

�
xy�

�

+
xx + �

�
xx

�2 (15)

We parametrize the symmetry breaking coe�cient in
the free energy using a smooth step function:

M

2
0 =

1

e

30⇤
⇣

�⇠k
�SU2

⌘2
�0.02

+ 1

(16)

where �SU2 is the magnitude of the gap and �⇠k =
1
2 (⇠k � ⇠k+Q) is the SU(2) symmetry-breaking disper-
sion, or SU(2) line. The SU(2) wave vector Q0 is chosen
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FIG. 4: Hall number with respect to doping (purple). The
experimental values from [23] (green) and the low-doping and
high-doping asymptotes (black) are also plotted for reference.
Note that x⇤ = 0.2.

as the vector between the two closest hot spots, following
previous studies [22]. We set M0 to zero when smaller
than one hundredth. If �⇠k is zero, the SU(2) symme-
try is conserved, M

2
0 = 1, and hence the gap is open.

Conversely, if the SU(2) symmetry is broken, �⇠k is fi-
nite, and the gap is small. This is consistent with the
fact that the SU(2) fluctuations can only be strong if
this symmetry is not broken. The �SU2 parameter rep-
resents the magnitude of the pseudogap order parameter
in the SU(2) theory and was parametrised by:

�SU2 =

✓
1

e

(x�0.175)⇥170 + 1
� 0.018

◆
⇥ 0.58 (17)

For consistency we also set B = �SU2. We use �± =
0.01⇥ t0, and set x⇤ = 0.2. We use the electronic disper-
sion used in a previous work [34], and shown to properly
replicate the doping dependence of the Hall number for
x > x

⇤.
Results — We calculated the magnitude of the gap

B⇥M

2
0 over the Brillouin zone and on the Fermi surface

(Figure 2). The gap opens along the SU(2) line, as found
previously [22]. The SU(2) line crosses the Fermi surface
at the hot spots, consequently of our choice of ordering
wave-vector. The gap opens in the antinodal zone and is
closed in the nodal zone. It gets both thinner and smaller
in magnitude with rising doping and finally vanishes at
the critical doping. This can be compared with ARPES
data which showed that the pseudogap was closed in the
nodal zone [37]. Our data fits qualitatively these exper-
imental results, unlike methods based on a pure d-wave
gap (i.e. a gap linear in the d-wave factor).
The spectral functions of the two renormalised bands

at zero frequency were calculated using equation (8) (Fig-
ure 1). The dispersion in the denominator of the self-
energy (equation (4)), which corresponds to the disper-
sion of the SU(2) fluctuations bosonic mode, is the op-
posite of the bare electronic dispersion. The self-energy
therefore diverges on the Fermi surface. This also means
that the renormalised bands are equal to each other up
to a sign, and therefore the spectral functions at zero
frequency are equal. Consequently, we only plot one of
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• .(/) :	breaking	of	the	SU(2)	symmetry
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• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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Electronic	propagator

• Linearly	expanding	the	SU(2)	fluctuations	gives	us:

G(k,ω) = 1

) − +, − -
.(/)0
) + +,

E(k) = +,0 + -×.(/)0
�

• .(/) :	breaking	of	the	SU(2)	symmetry
• . / = 1 if	the	symmetry	is	preserved
• . / = 0 if	the	symmetry	is	broken
• - :	size	of	the	gap

• The	gap	opens	at	the	crossing between the	SU(2)	line	and	the	Fermi	
surface,	i.e.	at	the	hot	spots.

• In	the	nodal	region,	the	SU(2)	symmetry is broken,	hence the	gap	
closes.

From	the	t-J	model	to	the	SU(2)	theory

• We start with the	t-J	model:

• The	magnetic exchange	term can be decoupled in	the	charge	(χ)	and	
superconducting (Δ)	channels [1,2]:

• The	charge	ordering wavevector can be chosen to	be linking any
two hot	spots:

• These	possibilities	are	degenerate	at	the	hot	spots.

Pseudogap

• The	gap	opens	in	the	antinodal region.
• It	is not	strictly d-wave,	in	accordance	with ARPES	measurements.

• Indeed it is not	linear with respect	to	the	d-wave factor	[3]:

Evolution	of	spectral	and	transport	quantities	with	doping	

in	the	SU(2)	theory	of	cuprates
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Hall	number

• Extrapolating the	Hall	resistivity to	zero temperature at	various
dopings	gives us:

• The	theoretical prediction (blue)	follows the	experimental results
(orange	[4])	closely.
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SU(2)	symmetry

• At	strong coupling (large	J),	χ and	Δ	are	related by	an	exact	SU(2)	
symmetry on	a	line	of	the	Brillouin	zone	[1,2].

• The	fluctuations	related to	this symmetry,	named SU(2)	
fluctuations,	lift	the	degeneracy by	selecting a	response along the	
crystal axes [1,2]:

Topological	defects

• We can also consider the	SU(2)	order parameter:

• We	describe	the	fluctuations	of	this order parameter using	an	O(4)	
non-linear	σ-model	[1,2]:

• The	SU(2)	order	parameter	fluctuates	on	a	3D	sphere	67 in	a	4D	
space.

No	topological	defects.

• We	postulate	that	the	phase	of	the	charge	order	parameter	will	
freeze	in	some	real	space	regions.

• The	order	parameter	now	fluctuates	on	a	2D	sphere	60 in	a	3D	
space	(i.e.	is	a	pseudo-spin).

Arising	of	pseudo-spin	merons.

Spectral	function

• We	obtain Fermi	arcs	(8 = 0, 9∗ = 0.20)
• This	is due	to	the	fact that the	gap	is symmetric with respect	to	the	

Fermi	level,	unlike in	theories that obtain pockets.

Transport

• We	can	calculate	the	temperature-dependent	conductivities	using	the	
spectral	function:
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• This	gives	us	the	Hall	resistance	and	the	Hall	number:
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Peierls-type instability as possible mechanism for antinodal charge ordering and the

linear-T resistivity in cuprate superconductors

T. Kloss, X. Montiel, C. Pépin
IPhT, L’Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France

(Dated: August 20, 2015)

We probe a Peierls-type instability as a new concept to generate charge ordering in cuprate super-
conductors. Starting from a spin-fermion model which is decoupled in the superconducting channel,
the charge mode arises as a subsequent instability after having integrated out superconducting fluc-
tuations. In contrast to superconductivity there is no single ordering vector any more. Instead,
a distribution of vectors coupling opposed points on the Fermi suface stabilizes charge order and
open naturally a gap in the anti-nodal region. A semiclassical Boltzmann calculation where only
the dominant 2pF coupling vector is kept leads to a regime where the resistivity scales linearly
with the temperature T . We interpret the 2pF coupling as the crutial ingredient to describe the
strange-metal phase with its long-standing resistivity anomaly.

The discovery of charge ordering [1–16] is about to
change our understanding of high-Tc superconductiv-
ity. Alongside with a Mott insulating phase, an anti-
ferromagnetic (AFM) Néel-order and the superconduct-
ing (SC) phase, charge order is now widely believed to be
a fourth player that makes up the complexity in the su-
perconducting phase diagram (Fig. 1). Apart from serv-
ing only as a direct competitor for superconductivity, the
relationship between charge ordering and superconduc-
tivity seems however to be more intimate than previously
thought. Recently, the proximity to a Quantum Critical
Point (QCP) was shown to create a composite pseudogap
(PG) state, composed of a superconducting and a charge
component which are related by an emerging SU(2) sym-
metry [17, 18]. This PG state can form “hot regions”
which are broadened relatives of the “hot spots” that are
located at the intersection points of the fermi surface
(FS) with the AFM zone boundary, see Fig. 2 and [19].
Although these hot regions may gap out large regions of
the FS, charge order is often observed in the antinodal
region of the first Brillouin zone (BZ) even in the absence
of SC. A second long standing mystery in the phase di-
agram of cuprates poses the strange-metal phase, which,
adjacent to PG and SC phase, exists in the absence of
a gap. To the best of our knowledge, this phase is not
captured by any theoretical attempt so far.

In the present work we propose a new mechanism to
generate charge ordering in the antinodal region even
when the SC state is destroyed due to thermal fluctu-
ations (PG state) or a magnetic field. The subtle point
is that even when the SC state is absent, SC fluctuations
around the vacuum state are still present and can form
a secondary instability, which couples electrons close to
the FS. A related scenario was proposed recently [20], but
only with a static coupling between the antinodal points
that is not sufficient to gap out larger regions along the
FS. Here we propose a generalization of this idea, where
a distribution of 2p

F

vectors couples opposed FS points
and generates a secondary instability, to which we will
refer in the following as Peierls-type instability. We like

to mention that the 2p
F

coupling is genuinely different
from the SC coupling, which is mediated by the AFM
ordering vector. Taking only the 2p

F

coupling as a pre-
cursor of the fluctuation induced charge order, we show
that linear T resistivity regime arises naturally, providing
perhaps a first glimpse of the strange-metal phase.

Tc

T*

doping

T

AFM PG

SC

strange metal

fermi liquid

FIG. 1. (Color online) Schematic phase diagram of cuprate
superconductors as a function of hole doping and tempera-
ture T . In the gray shaded region, the so-called strange-metal
phase, the electrical resistivity scales linearly with the tem-
perature.

FIG. 2. (Color online) left) Schematic representation of
the Fermi surface and the first BZ boundary of hole-doped
cuprates. “Hot regions” of charge ordering, situated in the
antinodal region, are represented by orange clouds. For ori-
entation propose “hot spots” are marked in red. right) Rep-
resentation of the 2pF coupling between neighbouring Fermi
surfaces in the antinodal region that gives rise to the Peierls-
type instability.
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FIG. 3. (Color online) Charge order �
k,k

0 obtained from a
numerical solution [23] of Eqs. (7,8) at fixed k as a function
of p = k0 � k. The four upper figures correspond to four
different reference points k (highlighted by coloured points),
which were centred for the representation. As a guide for the
eyes, the FS is visualized by a black line. The position k
corresponds to the hotspot (red point), the diagonal symmet-
ric point (blue), the antinodal point (green) and a randomly
choosen point (magenta) shifted away from the FS, and they
are again summarized in the lower figure. The only non-zero
solutions are obtained when both points k and k0 are situated
in close vicinity to the FS (e.g. like k and k0

1, respectively un-
like k and k0

2 in the lower figure).

quasi one-dimensional in parallel direction (see Fig. 4),
⇧q is calculated for q ⌘ (qk, 0). The Matsubara sum at
T = 0 is then performed before integrating over k, and
we have to regularize the momentum integrals by an UV
cutoff. After dropping the nonuniveral, pure cutoff de-
pendent part and performing the analytic continuation
to real frequencies i!n ! ⌦+ i0+, the self-energy yields
⇧ =⇧

0
+ i⇧00, with

⇧

0
q(⌦)=c


(⌦+ qk) ln|⌦+ qk|�(⌦� qk) ln|⌦� qk|

�
, (10a)

⇧

00
q(⌦)=⇡c

h
(⌦+ qk)✓(�⌦� qk)+(⌦� qk)✓(⌦� qk)

i
,(10b)

and c�1
= (4⇡/�)2vkv?. It turns out that only the small

momentum, respectively small frequency behavior of the
bosonic propagator Dq with D�1

q (⌦) = q2 +m� ⇧q(⌦)

FIG. 4. (Color online) left) 2pF-scattering between two
electrons sitting close to the Fermi surface mediated by a
bosonic mode with propagator D. Due to geometry, the trans-
fered momentum q ⌘ (qk,q?) with |q| ⌧ |kF| is quasi one-
dimensional in direction qk only. right) Diagrammatic repre-
sentation of the 2pF scattering process as interaction vertex.

FIG. 5. (Color online) left) Representation of the 2pF-
scattering process between two electrons sitting on opposed
Fermi surfaces of the first BZ. Upper right: Diagrammatic
representation of interaction vertex of the 2pF-scattering pro-
cess, mediated by SC fluctuations. Lower figure: Diagram-
matic representation of the bosonic and fermionic propaga-
tors by a wavy and a straight line, as well as the one-loop
bosonic self-energy correction.

is important for the leading T behavior of the resistivity.
The imaginary part of Dq is then approximately given
by

ImDq(⌦) '
1

⇡c

1

⌦� qksgn⌦
. (11)

Next, we calculate the relaxation time for electron-
electron scattering process from a semiclassical Boltz-
mann treatment. The Boltzmann equation for the
nonequilibrium electron distribution fk writes [24–26]

✓
@fk
@t

◆

collisions

= �eE ·rkfk = �Iei [fk]� Iee [fk] ,

(12)
where e is the elementary charge, E a static electric
field and Iei respectively Iee are the electron-impurity
respectively electron-electron collision integrals. For
small E, the so-called relaxation-time approximation
amounts to write fk ' f0,k � gkf0,k(1 � f0,k) with
gk = �⌧eE · vk and where ⌧ is the relaxation time and
f0,k = (exp(�⇠k) + 1)

�1 the equilibrium distribution of
noninteracting fermions. The electron-electron collision
integral is obtained from Fermi’s golden rule

Iee [fk] =
1

V

X

q

ˆ 1

�1
d⌦ ImDq (⌦) �

�
✏k � ✏k̄�q � ⌦

�
⇥

h
fk

�
1� fk̄�q

�
(1 + n

B

(⌦))� (1� fk) fk̄�qnB

(⌦)

i
,

(13)

and we will drop the contribution from Iei. Evaluating

⇢ ⇠ T/ log T

⌃ ⇠ i✏n/ log |✏n|
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FIG. 2. (Color online) a) to e) Experimental energy dispersion curves that were taken from [30] and measured by ARPES at T = 10K (blue
circle) and T = 170K (red circle) at approximately constant kx = p �dkx for dkx = 0, 0.3, 0.6, 1.2, 1.6 (The Fermi arcs begin around dkx = 1.2).
Note that the green circles appear only below Tc. The black arrows locate the back-bending vector kG which differ from the Fermi momentum
in the normal state kF . In the figures f) to j), we represent the band dispersion with color intensity proportional to the spectral weight A(k,w).
These curves have been calculated for the order parameters magnitude D2pF

0 = 50meV and DqS
0 = 0.4D2pF

0 and the width of the Gaussian
function as sx = 0.5414 and sy = 1.083. The solid lines is the electronic dispersion in the metallic phase.

FIG. 3. (Color online) The spectral weight A(k,w) at the Fermi level
(at w = 0 with a broadening of h = 10meV ). The parameters are the
same as in Fig. 2. We clearly observe the formation of Fermi arc
after the anti-nodal zone has been gapped out.

FIG. 4. (Color online) Density of states r(w) as a function of the
frequency in the PG state (solid line) and in the normal state (dashed
line). The parameters are the same than in Fig. 2.
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after the anti-nodal zone has been gapped out.

FIG. 4. (Color online) Density of states r(w) as a function of the
frequency in the PG state (solid line) and in the normal state (dashed
line). The parameters are the same than in Fig. 2.

[1] H. Alloul, T. Ohno, and P. Mendels, Phys. Rev. Lett. 63, 1700
(1989).

[2] W. W. Warren, R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Ty-



2

FIG. 1. (a)-(e) Constant-energy images of magnetic susceptibility at T = 5 K (left panels) and 100 K (right panels). Data within
a 6 meV window centered at the indicated energies are averaged. White dots on the left-most panels represent the momentum
resolution at each energy. (f)-(j) The corresponding constant-energy cuts averaged over {100} and {010} trajectories at 5 K
(black circles) and 100 K (red squares). Solid lines are gaussian fits to data convolved with the momentum resolution. (k)
Energy dependence of incommensurability � at 5 K. The horizontal error bars are fit uncertainties for �. Filled black circles
and open squares are data taken with incident energy Ei = 100 meV and 130 meV, respectively. The filled grey region indicate
Full-Width-at-Half-Maximum (FWHM) momenta of the response. The hatched area is the magnetic excitation gap. (l) Energy
dependence of incommensurability � at 100 K. The dispersion of the spectrum at 5 K (dotted line) is shown for comparison.
The horizontal black bar represents the experimental momentum resolution at ! = 40 meV.

shaped spectrum in the normal state similar to that in
HgUD71 [18], the topology of the excitations changes in
the SC state, yielding a recurrence of both the magnetic
resonance (at a rather high energy of !

r

⇠ 59 meV) and
the lower hourglass dispersion. This is reminiscent of the
phenomenology in the bilayer cuprates [14, 15]. The con-
current emergence of these features in the SC state im-
plies a common origin. Furthermore, the characteristic
resonance energy and spectral weight in HgUD88 scale
with the particle-hole Stoner continuum threshold en-
ergy in a manner consistent with results in other cuprates
and with expectations for a spin-exiton resulting from an
itinerant spin formalism. The strong indication uncov-
ered here for the role of itinerant spins in describing the
magnetic excitations in the SC state of HgUD88 should
motivate fresh theoretical work on the distinct Y-shaped
spectrum utilizing itinerant carriers and particular mod-
els for the PG state.

The sample, prepared in accordance with previously
described procedures [18], consists of approximately 30
coaligned single crystals with a total mass of 2.8 g
with FWHM mosaic of 1.5o. Measurements were per-
formed on the ARCS time-of-flight spectrometer at Oak
Ridge National Laboratory [19], with incident energies
E

i

= 100 meV (at 5 K and 100 K) and 130 meV
(5 K). The incident beam was aligned along the sam-
ple’s crystalline c-axes. The dynamic magnetic suscep-
tibility �00(q,!) was determined from the scattering in-
tensity by normalizing by the anisotropic Cu2+ form fac-
tor [20] and the Bose population factor and calibrated to
a Vanadium standard. A description of the data pro-
cessing is given in Ref.[18]. Focused temperature de-
pendence measurements were performed at Laboratoire
Léon Brillouin, with the 2T triple-axes-spectrometer.
Double focusing Pyrolyic Graphite (PG) monochroma-
tor, PG analyzer, and PG filters were used, with fixed
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Consequently, the h-mode response only exists in A1g sym-
metry.

In addition long-range Coulomb interaction U ⇠ 1/q2 plays
an important role in screening the Raman in the A1g channel19.
Doing the summation over all the coulomb diagram (Fig. 8 b),
one can find easily:

c

l

coul =
Uc

0
g

l 1
c

0
1g

l

1�Uc

0
11

(17)

where c

0
g

l 1
is the Raman susceptibility with one of the ver-

tex put to unitiy and c

0
11 the bare polarization bubble. In the

limit q ! 0, the "Coulomb screened" susceptibility simplifies
as c

l

coul = �c

0
g

l 1
c

0
1g

l

/c

0
11. In the A1g symmetry, the contri-

bution of c

A1g
coul cannot be neglected17. Its contribution will

screen partly the bare Raman susceptibility c

0
g

A1g
g

A1g
. Con-

sequently, the Raman response in the A1g symmetry writes
c

A1g
Raman = c

0
g

A1g
g

A1g
+c

A1g
coul +c

A1g
h

. Around optimal doping, we
will see that the contribution of the h-mode (last term) is of
the same order of magnitude as the bare screened A1g Raman
response (first two terms). By increasing the doping, because
of the weakening of the CDW order we expect a decrease of
the h-mode intensity and the A1g spectra will be dominated
by the bare screened Raman response.

The Coulomb screening can be neglected in the B1g and
B2g channels for symmetry reasons17. Consequently, the full
Raman susceptibility is simply given by the unscreened re-
sponse: c

l

Raman ⇡ c

0
g

l

g

l

with l = B1g(B2g).

III. RESULTS AND DISCUSSION

The theoretical spectra are calculated without solving the
self-consistent equation derived from the spin-fermion model.
As a consequence, we need to adjust the amplitude of the or-
der parameters as well as the value of J and V to reproduce
the experimental data. The parameters values are adjusted in
the following way : the value of D0

SC is chosen to reproduce
the Raman peak frequency in the B1g channel. The value of
D0

CDW is chosen to adjust the intensity of the resonance in the
A1g channel. Note that the value of D0

CDW does not influence
the frequency of the h-mode. We adjust the value of J to fit
the neutron resonance frequency and the value of V to fit fre-
quency of the Raman resonance in the A1g symmetry. A full
self-consistent determination of the CDW and SC order pa-
rameter amplitude is not done here as our goal is to identify
the main theoretical features necessary to explain the Raman
resonance in the A1g symmetry.

A. Results

The imaginary parts of the neutron spin susceptibility (spin
response) and the full Raman susceptibility in the A1g sym-
metry (Raman response) are presented in (a) and (b) panels of
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FIG. 9. (a) Calculated spin response. (b) Experimental (solid line)
and calculated (dashed line) Raman response in the A1g symmetry
and (c) in the B1g symmetry at optimal doping p= 0.16 (d = 10meV ,
2D0

SC = 63meV,2D0
CDW = 45meV ). In (b), the dotted line presents

the calculated bare screened Raman response without the h mode
contribution, c

A1g? = c

0
g

A1g
g

A1g
+ c

A1g
coul . Phonon lines have been sub-

tracted out of the experimental Raman spectra for clarity in (b) but
not in (c). The arrows in (c) indicate the location of the phonon lines
superimposed on the electronic background.

Fig.9 for optimal doping (p=0.16) with 2D0
SC = 63meV and

2D0
CDW = 45meV . The theoretical curves are obtained for

J = 107.5meV and V = 54.5meV . To the best of our knowl-
edge, the amplitude of the CDW order parameter D0

CDW has
not been evaluated yet in the experiments. However, in our
effective model, the value of D0

CDW is reasonable compared
with the SC order parameter amplitude.

For this set of parameters, the calculated spin response ex-
hibits a sharp peak at w = 364cm�1 at the same energy than
the energy of the calculated A1g Raman resonance. Note that
the frequency dependence of the CDW order DCDW cuts the
SC coherence peak at 2D0

SC ⇠ (510cm�1(63meV ) in the A1g
channel but leaves the B1g channel unaffected (see panel (c)).
Fig.9 (b) and (c) show a qualitative agreement between the
peak energies in the A1g and B1g calculated Raman spectra
(red curves) and the experimental Raman spectra obtained
from Bi2212 single crystals (black curves)51. We note that
in our approximation, the calculated susceptibility vanishes in


