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What is the amplitude (Higgs) mode?

collective excitation in systems with broken \\f\/ 177717
continuous symmetry, e.g., I\N\7 11777

— planar magnet breaks O(2) rotation symmetry s/ \N/~ 177177
— superfluid wave function breaks U(1) symmetry | /N> 22777

Higgs mode: corresponds to fluctuations of N\ -~ 17777
order parameter amplitude

Goldstone mode: corresponds to fluctuations of
order parameter phase

Higgs mode is condensed matter analogue of
famous Higgs boson

Higgs mode
Goldstone mode

effective potential for order parameter
in symmetry-broken phase



Amplitude (Higgs) mode in condensed matter?

e |s the Higgs mode a sharp, particle-like excitation or is it overdamped because it
decays into other modes

e Does the Higgs mode remain sharp even in the presence of disorder, i.e.,
impurities and defects?

Raman scattering data for NbSe, 17| NbSe CDW mode
e [ 2

[from Measson et.al., Phys. Rev. B 89,

060503 (2014)]
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Disordered interacting bosons

Ultracold atoms in optical
potentials:

e disorder: speckle laser field

e interactions: tuned by
Feshbach resonance and/or
density

Nature Physics 8, 398403 (2012)

Disordered superconducting films:
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Phys. Rev. Lett. 108, 177006 (2012)



Disordered interacting bosons

Bosonic quasiparticles in doped quantum magnets:
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Nature 489, 379 (2012)
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e bromine-doped dichloro-tetrakis-thiourea-nickel (DTN)
e coupled antiferromagnetic chains of S =1 Ni*T ions

e S = 1 spin states can be mapped onto bosonic states with n = mg + 1



Quantum rotor model

Josephson junction array:

U ~ o 2 I~ I~
H = 5 Z(nz — nz) — Z Jij COS(QZ' — (9])

z (4,5)

A

e 1n,: number operator, 0;: phase operator
e superfluid ground state if Josephson couplings .J;; dominate
e insulating ground state if charging energy U dominates

e chemical potential u; = Un;
Particle-hole symmetry:

o if u; =kU/2, (n; = k/2) with integer k

= Hamiltonian invariant under n; — k — n; and 6, — —0;



Phase diagrams

clean random potentials random couplings

Phys. Rev. B 7, 214516 (2008)
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From quantum rotors to classical XY model

e site-diluted quantum rotor model on square lattice
(e; = 0 or 1 with probabilities p and 1 — p)

—_— . . - _. 2 —_ . . A. —_ A.
H = 5261(%Z n;) JZGZGJ cos(0; — 0;)

g (i7)

e can be mapped onto classical (241)-dimensional XY
model for n; = k (particle-hole symmetric case)

Hy=—J; Z €9t Sit+1—Js Z €€ Si 1St
it

(2,7),t

i o columnar disorder in classical
J, = Js = 1 (values not important for critical

: . . XY model, correlated in
behavior because of universality )

imaginary time



Stability of clean quantum critical behavior

Clean superfluid-Mott insulator quantum phase transition:

e for dilution p = 0, transition is in 3D XY universality class

e correlation length critical exponent v ~ 0.6717
Harris criterion:

e clean critical point stable against disorder if d | v > 2
e for 3D XY model with columnar disorder, d; = 2
e clean correlation length critical exponent violates Harris criterion

= 3D XY critical point unstable against columnar disorder

Critical behavior of superfluid-Mott glass transition must be in new

universality class




Monte Carlo simulations

combine Wolff cluster algorithm and conventional
Metropolis updates

Wolff algorithm greatly reduces critical slowing down

Metropolis updates equilibrate small disconnected
clusters (important for high dilutions)

system sizes up to L = 150 and L, = 1792

dilutionsp =0, 1/8, 1/5, 2/7, 1/3, 9/25 and
percolation threshold p. = 0.407253

averages over 10000 to 50000 disorder
configurations

Pegasus IV Cluster:

o diskless HPC cluster

e designed and built in
Missouri S&T Physics
Department

e highly cost effective,
total cost below US
$140 per CPU core

web.mst.edu/~vojtat/pegasus/home.htm



Anisotropic finite-size scaling

(o)
av — |1 — -
’ [ 3<|(b|2>2] dis

e scaling form: ¢..(r, L) = X (rL'")
[r=(T—1T.)/T.]

Binder cumulant:

Isotropic systems:

® g.. vs. T curves for different L cross at T, with
value ¢.,(0, L) = X (0)

Anisotropic systems:

e L and L, are not equivalent, scaling form: g.,(r, L, L,) = X (rL'/", L./L?)

How to choose correct sample shapes if dynamical exponent z is not known?
= (av VS. L, has maximum at optimal shape (L./L equals correlation length ratio &, /&)

= gav VS. T for optimal shapes cross at T,.:  ¢.,(0, L, L™**) = X (0, ¢)



Phase diagram
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e classical temperature T' represents ratio U/J of quantum rotor Hamiltonian
(physical temperature of quantum system is zero)



Finding the optimal shapes
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e dilution p = 1/3, classical temperature T' = 1.577



Dynamical critical exponent z
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e significant deviations from pure power laws =- corrections to scaling
e fit to ansatz LM** =qalL*(1+ bL™%) with universal z and w

e dynamical critical exponent 2z = 1.52(3)



Order parameter ¢ and susceptibility y

0.3 , S ] Scaling forms:
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Correlation length critical exponent v
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(dilution p = 1/3)

exponent clean  disordered

e scaling at criticality: > 1 1.52

(d/dT)gay ~ (d/dT)ér /Ly ~ LYY v 0.6717 1.16

o fit data to L/¥(1 + bL™¥) Q?Z 0159168 g.gg

e critical exponent: v = 1.16(5)
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Scalar susceptibility

parameterize order parameter fluctuations into
amplitude and direction

6 = ¢o(1+ p)h

Higgs mode is associated with scalar susceptibility Higgs mode
Goldstone mode

Xpp(Z; 1) = 1O(2) ([p(Z; 1), p(0,0)])

Monte-Carlo simulations compute imaginary time correlation function
Xpo(Z,7) = (p(Z,7)p(0,0))

Wick rotation required: analytical continuation from imaginary to real
times/frequencies



Analytic continuation - maximum entropy method

e Matsubara susceptibility x,,(iw,,) vs. spectral function A(w) =

2w
2 2
Wi, + W

Xonlion) = [ dwA(w)

Maximum entropy method:

inversion is ill-posed problem, highly sensitive
to noise

fit A(w) to x,,(iw,,) MC data by minimizing
Q=1is2—-0aS

2

parameter « balances between fit error o?

and entropy S of A(w), i.e., between fitting
information and noise

best o value chosen by L-curve method [see
Bergeron et al., PRE 94, 023303 (2016)]
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Higgs mode in clean undiluted system

Scaling form of the scalar susceptibility: [Podolsky + Sachdev, PRB 86, 054508 (2012)]

pr(w) — |T|3V_2X(W|T’_V)

0.147

0.12}

2.002
2.052
2.082
2.102
2.122
2.142 |58
2.162
2.182
2.192

sharp Higgs peak in spectral function, Higgs mass wy (peak position) scales as
expected with r =T — T, [confirms older results, Gazit et al. PRL 110, 140401 (2013)]



Higgs mode in disordered system

Scaling form for arbitrary d and z:

dilution p=1/3

0.05f SN
T, =1.577

_ d+z)v—2 —2zv [
Xpp(w) = [r| PV 2X (wlr|~*)
30.03
e spectral function shows broad peak near ~
0.02r
w=1
. - . 0.01} f;?;:r““
e peak is noncritical: it does not move as
T Is approached OB et T R TR
e Higgs mode is not visible 0.25

Interpretation:

e amplitude of Higgs mode proportional
to ‘,r|(d—|—z)u—2 ~ 21

= Higgs mode suppressed as 7 — 0

e scalar response dominated by local
excitations (clusters?)




Higgs mode in disordered system ||

Shoulder feature:

e scalar spectral function has weak
“shoulder” at low frequencies

e better visible in B(w) = A(w)/w
e Is this the Higgs mode?

= unlikely, peak energy does not scale when
critical point is approached
Isolated percolation clusters:

e |s broad peak in scalar response caused by
isolated finite-size percolation clusters?
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Conclusions

e disordered interacting bosons (with particle hole symmetry) undergo quantum
phase transition between superfluid state and insulating Mott glass state

e critical behavior can be studied by mapping quantum Hamiltonian onto classical
(241)-dimensional XY model and applying Monte Carlo simulations

e conventional power-law dynamical scaling &, ~ &% rather than exotic activated
scaling In &, ~ &Y [see classification in T.V., J. Phys. A 39, R143 (2006)]

e universal critical exponents z = 1.52(3), /v = 0.48(2), v/v = 2.52(4),
v = 1.16(5) fulfill hyperscaling relation 26/v +v/v =d + 2

e scalar susceptibility of clean, undiluted system shows sharp Higgs mode that
survives all the way to the quantum phase transition

e Higgs mode is not visible in diluted system, scalar response appears to be
dominated by local excitations

T.V., Jack Crewse, Martin Puschmann, Daniel Arovas, and Yury Kiselev, PRB 94, 134501 (2016)



Anisotropic finite-size scaling
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Iterative procedure:

e guess z and corresponding “optimal”’ sample shapes
e find estimate of 1, from approximate crossing of g,, vs. T' curves

o find L'** which gives improved optimal shapes



Percolation transition across p,.

driven by critical geometry of the lattice

dynamical fluctuations “go along for the
ride”

theory predicts exact exponent values
B=5/36,v=059/12, v =4/3, z = 91/48
[T.V. +J. Schmalian, PRL 95, 237206 (2005)]

simulation data at 7' = 1.0 and p = p.
agree nearly perfectly with predictions
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