Unconventional Metals in Doped J_{eff} =1/2 Mott Insulators Unusual magnetism and competing electronic states in Ruddlesden-Popper series strontium iridates Stephen D. Wilson Associate Professor Materials Department University of California, Santa Barbara #### Collaborators Tom Hogan Julian Schmehr **Xiang Chen** **Zach Porter** Jeff Lynn Zahir Islam Mary Upton Wei Tian Xiaoping Wang K. Finkelstein Jacob Ruff Dave Hsieh Hao Chu C. Van de Walle Vidya Madhavan A. Lanzara Ruihua He Ziqiang Wang Soonjae Moon #### Talk Outline - Ruddlesden-Popper iridates as J_{eff}=1/2 Mott insulators - Monolayer Sr₂IrO₄ - Bilayer Sr₃Ir₂O₇ - Effect of electron doping R.P. iridates - Competing electronic states - $(Sr_{1-x}La_x)_2IrO_4$ - $(Sr_{1-x}Lax)_3Ir_2O_7$ - Effect of hole doping R.P. iridates - Intermediate SDW state beyond the collapse of Mott state - $Sr_3(Ir_{1-x}Ru_x)_2O_7$ - Summary #### SOC in a cubic crystal field Heavy transition metal cation with 5 valence electrons in a cubic crystal field $$\left| J_{eff} = \frac{1}{2}; m_J = \pm \frac{1}{2} \right\rangle = \frac{1}{\sqrt{3}} \left(\left| xy, \mp \sigma \right\rangle \mp \left| yz, \pm \sigma \right\rangle + i \left| zx, \pm \sigma \right\rangle \right)$$ Phys. Rev. Lett. 102, 017205 (2009) ### New phases in/near J_{eff}=1/2 Mott states Layered lattices with corner sharing IrO₆ octahedra R.P. iridates Sr₂IrO₄, Sr₃Ir₂O₇, ... Frustrated lattices with edge-sharing IrO_6 octahedra $\alpha\beta\gamma$ -Na₂ IrO_3 , Na₄ Ir_3O_8 ,... Pyrochlore lattice of IrO₆ octahedra RE₂Ir₂O₇, Y₂Ir₂O₇, Bi₂Ir₂O₇... Multilayer modulation of J_{eff} =1/2 wavefunction, 5d-3d electron interfaces, 111 iridate films # R.P. Iridates: $Sr_{n+1}Ir_nO_{3n+1}$ #### Electron-doping Sr₂IrO₄: La substitution I4₁/a most likely space group: Torchinsky et al., PRL (2015) # High-T_c predicted in *n*-type Sr₂IrO₄ PRL **106**, 136402 (2011) PHYSICAL REVIEW LETTERS week ending 1 APRIL 2011 Twisted Hubbard Model for Sr₂IrO₄: Magnetism and Possible High Temperature Superconductivity Fa Wang and T. Senthil $$\begin{split} H &= -\sum_{\langle jk \rangle,\alpha} (t + i \epsilon_{\alpha} \epsilon_{j} \bar{t}) d_{j,\alpha}^{\dagger} d_{k,\alpha} - \sum_{\langle \langle jk \rangle \rangle,\alpha} t' d_{j,\alpha}^{\dagger} d_{k,\alpha} \\ &- \sum_{\langle \langle \langle jk \rangle \rangle \rangle,\alpha} t'' d_{j,\alpha}^{\dagger} d_{k,\alpha} + U \sum_{j} d_{j,\uparrow}^{\dagger} d_{j,\uparrow} d_{j,\downarrow}^{\dagger} d_{j,\downarrow}, \end{split}$$ *n*-type iridate maps to *p*-type cuprate PRL **110,** 027002 (2013) PHYSICAL REVIEW LETTERS week ending 11 JANUARY 2013 Monte Carlo Study of an Unconventional Superconducting Phase in Iridium Oxide $J_{\rm eff} = 1/2$ Mott Insulators Induced by Carrier Doping Hiroshi Watanabe,* Tomonori Shirakawa, and Seiji Yunoki Other studies predicting SC, some also in *p*-type Sr₂IrO₄ SC predicted near 20% electrons/Ir cation # Unusual metals in surface doped Sr₂IrO₄ 50 Bias (mV) 100 Nodal metal phase apparent around ~7% electrons/Ir D-wave gap opens under surface K-dosing V-shaped gap opens around 50K at 0.5 ML Surface electronically phase separated (coexisting insulating and metallic patches) # Phase diagram of bulk *n*-type Sr₂IrO₄ # Quasiparticles in bulk (Sr_{1-x}La_x)₂IrO₄ - Nodal FS observed at x=0.05 - Pseudogap-like state - STM observes the formation of phase separated state above x=0.04 (8% electrons/lr) - Metallic regions stabilize near this boundary Battisti et al., Nat. Phys. (2016) # Remnant AF order in (Sr_{1-x}La_x)₂IrO₄ RIXS measurement shows transition to short-range order at 4% electrons/Ir and survival of short-range AF order at highest doping levels REXS measurements show coexisting long-range AF order up to 5% electrons/lr (coexisting diffuse and Bragg scatter) #### Is magnetism supported in metallic regions? $(Sr_{1-x}La_x)_2IrO_4$, x=0.04 (8% electrons/Ir) # Formation of IC order via correlated metallic regions in $(Sr_{1-x}La_x)_2IrO_4$ # Incommensurate SDW state forms at FS threshold - Splitting along Ir-Ir bond diagonal - Short-range along c (~8 unit cells) - Necessarily lives phase separated with short-range AF correlations #### Comparison to monolayer cuprates #### "Diagonal" spin density wave in cuprates # Summary for (Sr_{1-x}La_x)₂IrO₄ - Behaves like very lightly doped monolayer cuprate - Electronic phase separation persists to current limits of electrondoping - Insulating regions coexist with metallic patches on nanoscale - Short-range AF order survives - Metallic regions that form near 8% electrons/Ir are coincident with appearance of incommensurate spin state - Reminiscent of diagonal spin density wave state in monolayer cuprates - Suggestive of common magnetic instability - Relation between incommensurate spin state and persistent AF correlations with pseudogap remains an open question #### Electron-doping Sr₃Ir₂O₇: La substitution C2/c most likely space group: Hogan et al., PRB (2016) # Electronic phase diagram (Sr_{1-x}La_x)₃Ir₂O₇ # Correlation effects in metallic (Sr_{1-x}La_x)₃Ir₂O₇ - Mass enhancement in frequency dependent conductivity - Mass enhancement of ~6 - Extended Drude model: $1 + \lambda(\omega) \equiv \frac{m^*(\omega)}{2}$ - $m_{eff} = 0.5 \, \mu_{B} / lr$ - $\Theta_{CW} = -70 \text{ K}$ - Absent in parent system... #### Charge density wave-like instability H. Chu et al., Nature Materials # Structural distortion, T_S, coincident with T_{DW} # Correlation effects in metallic (Sr_{1-x}La_x)₃Ir₂O₇ - Mass enhancement in frequency dependent conductivity - Mass enhancement of ~6 - Curie-Weiss local moment behavior - $m_{eff} = 0.5 \, \mu_{B} / lr$ - $\Theta_{CW} = -70 \text{ K}$ - Absent in parent system... # Spin dynamics in parent Sr₃Ir₂O₇ ## RIXS measurements of (Sr_{1-x}La_x)₃Ir₂O₇ Gapped magnons survive long after collapse of long-range AF order # Magnon dispersion in $(Sr_{1-x}La_x)_3Ir_2O_7$ | | x = 0 Moretti Sala, et al. | x = 0.022 | x = 0.071 | Units | |-----------------------|----------------------------|-----------------|-----------------|---------| | J_1 | 26 | 37.7 ± 0.4 | 29.1 ± 0.7 | meV | | J_2 | -15 | -14.0 ± 0.3 | -17.0 ± 0.6 | meV | | J_3 | 6 | 4.8 ± 0.3 | 5.2 ± 0.6 | meV | | J_c | 90 | 87.6 ± 1.1 | 80.1 ± 2.3 | meV | | $\boldsymbol{\theta}$ | 37 | 41.2 ± 0.7 | 37.2 ± 1.7 | degrees | Magnon spectrum only weakly affected upon entering metallic state and loss of static order Carrier-induced damping of magnons has largest effect Hogan et al., PRB (2016) #### Hints of disordered dimer spin state ZC spectral weight suppressed across MIT (vanishing AF order) Remnant weight has weak momentum dependence Local moments induced by La-substitution Induced moment approaches J=1/2 per electron doped # Summary for (Sr_{1-x}La_x)₃Ir₂O₇ - Electron doping Sr₃Ir₂O₇ causes first order collapse of spin-orbit Mott state - Competing charge density wave (-like) instability appears - Lattice distortion accompanies this density wave order - Magnetism's evolution into nearby correlated metallic state is unusual - Static AF order vanishes at MIT - Robust spin dynamics persist up to the limit of doping - Gap value, bandwidth, and modeled exchange parameters only weakly affected - Evolution of spectral weight and magnon dispersions best modeled via bond operator derived model - Local moments appear with doped electrons and scale as S=1/2 impurities - Suggest potential disordered dimer state... ### Sr₃Ir₂O₇: B-site substitution # MIT in $Sr_3(Ir_{1-x}Ru_x)_2O_7$ # Intermediate SDW state in Sr₃(Ir_{1-x}Ru_x)₂O₇ #### Intermediate AF states beyond the Mott state Thermodynamic arguments for first order transition into AF-M Disorder driven collapse of Mott gap with extended survival of AF-M #### Spin dynamics in intermediate SDW state | x | gap (meV) | bandwidth
(meV) | |-----|-----------|--------------------| | 0 | 90 | 72 | | 17% | 84 | 60 | | 48% | 125 | 35 | Increasing gap and narrowing bandwidth with increased Ru content #### S(q) and J values in AF metallic phase #### **Parent Mott state** $$J_1$$ = 26 meV J_2 = -15 meV J_3 = 6 meV J_c = 90 meV Θ = 37 meV #### AF metallic state $$J_1 = 59 \text{ meV}$$ $J_2 = 4 \text{ meV}$ $J_3 = 0 \text{ meV}$ $J_c = 97 \text{ meV}$ $\Theta = 43 \text{ meV}$ - Difficult to parameterize - Evolution of Θ unknown - Anisotropy coupled to J_C - Extended in-plane exchange damped out - Interplane coupling largely unaffected - Magnons heavily damped # Structure largely unperturbed in Sr₃(Ir_{1-x}Ru_x)₂O₇ Heavy alloying with Ru is only a weak perturbation to the lattice structure # Summary for $Sr_3(Ir_{1-x}Ru_x)_2O_7$ - Ru-alloying into is naively a strong perturbation to J_{eff}=1/2 state - Modified SOC - Added holes - S=1 impurities - J_{eff}=1/2 Mott insulating phase survives locally until ~50% replacement of Ir with Ru - AF survives beyond this and remains stable within an inhomogenous, globally metallic, state - Spin dynamics are unusual in new AF metallic state - Spin gap increases, bandwidth narrows - Disorder screens longer range J terms - Coupling between layers robust (in dimer type fitting) - Work ongoing in exploring this state.... #### Unconventional metals in doped R.P. iridates Electron-doped Sr₂IrO₄ at 12% electrons/Ir acts like hole-doped La₂CuO₄ at 2% holes/Cu Phase separated spin density wave state with "diagonal" character Electron-doped Sr₃Ir₂O₇ reveals competing CDW-like instability Persistent spin dynamics beyond collapse of static AF order. Phenomena suggestive of potential disordered dimer phase. Electron-doped Sr₃Ir₂O₇ reveals competing CDW-like instability Persistent spin dynamics beyond collapse of static AF order. Phenomena suggestive of potential disordered dimer phase.