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e 2.Phase identification made reliable via machine learning
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e 3. How it changes the game and is indeed not an overkill
— a topological phase diagram in minutes




l. Machine learning



Learning by examples
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Neural network for image recognition
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Machine learning as phase classification
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Machine learning as phase classification
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Machine learning in
Condensed Matter Physics

Machine learning phases of matter and phase
transitions (for phase diagrams)

Boltzmann machine as neural network states

Algorithmic development, e.g. cluster update in Monte
Carlo calculations, spectrum analysis, etc.

Material, dynamics and molecule simulations

Many more ...



Machine learning phases of matter

¢ Machine learning phases of matter and phase
transitions (for phase diagrams)

e What do we use as data!?

> How do we process it!? /
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Machine learning phases of matter

¢ Machine learning phases of matter and phase
transitions (for phase diagrams)

e What do we use as data!?

Snapshots of the order parameter field
J. Carrasquilla and R. G. Melko (2016)




Machine learning phases of matter

¢ Machine learning phases of matter and phase
transitions (for phase diagrams)
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> How do we process it!? /
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ll. A physical problem



A model for Z, quantum spin liquid

Kitaev’s toric code in magnetic field
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Topological quantum field theory for
the Z, quantum spin liquid

. >
C, C,
TS

Readlity in a lattice

Hamiltonian:

* Discrete lattice

* Finite correlation
length

e Cut off, fluctuation
and uncertainty in
measurement
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lll. A love story
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Machine learning Z, quantum spin liquid
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2. Interpolating



Machine learning Z, quantum spin liqui
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Machine learning Z, quantum spin liquid
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Calculations take days, if not years

* We can resort to critical scaling, or long-range behavior

e E.g. minimum entropy states, but //”‘\\
> Constraints ‘A |
All degenerate ground states \
Nontrivial manifold
> Cost
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= 1.5 vears...

* Assuming 100 trails for maxima and 100 parameters in phase space

YZ, Tarun Grover, Ari Turner, Masaki Oshikawa, and Ashvin Vishwanath (2012).



Not years, not days,

minutes
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Summary

e Quantum Loop Topography as a bridge between the
physical systems and machine learning technology

e Machine learning as a novel approach for physical
problems, such as the phase diagram with Z,
quantum spin liquid

e Advantages:
> Accuracy
o Efficiency
> Versatility

e The story is just beginning...



