Quantum Loop Topography for Machine Learning

- on topological phases, phase transitions, and beyond

Yi Zhang (Frank)
Cornell University

Roger G. Melko

Eun-Ah Kim

Aug. 31, 2017 @ KITP

Plain language version

• I. Machine learning quantum systems made possible

Quantum system Carefully chosen operators Machine learning

Plain language version

• I. Machine learning quantum systems made possible

```
Quantum system Carefully chosen operators Machine learning
```

- 2. Phase identification made <u>reliable</u> via machine learning
 - study from the system, by the system, for the system

Plain language version

• I. Machine learning quantum systems made possible

- 2. Phase identification made <u>reliable</u> via machine learning
 - study from the system, by the system, for the system

- 3. How it changes the game and is indeed not an overkill
 - a topological phase diagram in minutes

I. Machine learning

Learning by examples

```
#1: 1 2 2 ... I. learning #2: 2 2 2 ...
```

#3: 3 3 3 ...

Training set

2. Application

Neural network for image recognition

Optimal weights and biases

504192

2. Application

Machine learning as phase classification

Eduardo Fradkin & Steven A. Kivelson, Nature Physics **8**, 864–866 (2012).

Machine learning as phase classification

Coexisting 'phases'

Machine learning in Condensed Matter Physics

- Machine learning phases of matter and phase transitions (for phase diagrams)
- Boltzmann machine as neural network states
- Algorithmic development, e.g. cluster update in Monte Carlo calculations, spectrum analysis, etc.
- Material, dynamics and molecule simulations
- Many more ...

Machine learning phases of matter

- Machine learning phases of matter and phase transitions (for phase diagrams)
- What do we use as data?

Machine learning phases of matter

- Machine learning phases of matter and phase transitions (for phase diagrams)
- What do we use as data?
 - Snapshots of the order parameter field

J. Carrasquilla and R. G. Melko (2016)

Machine learning phases of matter

- Machine learning phases of matter and phase transitions (for phase diagrams)
- What do we use as data?

II.A physical problem

A model for Z₂ quantum spin liquid

Kitaev's toric code in magnetic field

$$H_{2D} = -J_x \sum_{s} A_s - J_z \sum_{p} B_p - h_x \sum_{j} \sigma_j^x - h_z \sum_{j} \sigma_j^z$$

$$A_s = \prod_{j \in s} \sigma_j^x$$
 and $B_p = \prod_{j \in p} \sigma_j^z$

Equivalent Z_2 gauge Higgs model on a 3D cubic lattice

$$\beta H_{3D} = -\lambda_b \sum_j S_j - \lambda_p \sum_p \prod_{j \in p} S_j$$

Topological quantum field theory for the \mathbb{Z}_2 quantum spin liquid

Ideal TQFT:

$$\mathcal{L}_{CS} = \frac{K_{IJ}}{4\pi} \epsilon^{\mu\nu\lambda} a^I_{\mu} \partial_{\nu} a^J_{\lambda} - a^I_{\mu} j^{\mu}_{I} \quad K = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}$$

$$\mathcal{P}W^I_{C_1} W^J_{C_2} = e^{2\pi i K^{-1}_{IJ} L(C_1, C_2)}$$

$$W_C^I \equiv \mathcal{P} \exp\left(i \oint_C a_l^I dl\right)$$

Reality in a lattice Hamiltonian:

- Discrete lattice
- Finite correlation length
- Cut off, fluctuation and uncertainty in measurement

III.A love story

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

PRL **118,** 216401 (2017)

Quantum Loop Topography for Machine Learning

Yi Zhang^{*} and Eun-Ah Kim[†]

Department of Physics, Cornell University, Ithaca, New York 14853, USA

and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

week ending

26 MAY 2017

Machine learning Z₂ quantum spin liquid

Machine learning Z₂ quantum spin liquid

Machine learning Z₂ quantum spin liquid

Efficiency: one training for the entire multi-parameter phase diagram

Calculations take days, if not years

- We can resort to critical scaling, or long-range behavior
- E.g. minimum entropy states, but
 - Constraints
 - All degenerate ground states
 - Nontrivial manifold
 - Cost

Parallel MC

105CPUmins× *100*× *100/2 56CPUs*

<u>= 7.5 years..</u>

^{*}Assuming 100 trails for maxima and 100 parameters in phase space

Not years, not days, just minutes

Summary

- Quantum Loop Topography as a bridge between the physical systems and machine learning technology
- Machine learning as a novel approach for physical problems, such as the phase diagram with \mathbb{Z}_2 quantum spin liquid
- Advantages:
 - Accuracy
 - Efficiency
 - Versatility
- The story is just beginning...

