Schedule Sep 18, 2014
Transport near a quantum critical point in BaFe2(As1-xPx)2
James Analytis, UC Berkeley

The physics of quantum critical phase transitions connects to some of the most difficult problems in condensed matter physics, including metal-insulator transitions, frustrated magnetism and high-temperature superconductivity. Near a quantum critical point, a new kind of metal emerges, the thermodynamic and transport properties of which do not fit into the unified phenomenology for conventional metalsâe Landau Fermi-liquid theory. Studying the evolution of the temperature dependence of these observables as a function of a control parameter leads to the identification of both the presence and the nature of the quantum phase transition in candidate systems. In this study we measure the transport properties of BaFe2(As1-xPx)2 below the critical temperature Tc by suppressing superconductivity with high magnetic fields. At sufficiently low temperatures, the resistivity of all compositions (x>0.31) crosses over from a linear to a quadratic temperature dependence, consistent with a low-temperature Fermi-liquid ground state. As compositions with optimal Tc are approached from the overdoped side, this crossover becomes steeper, consistent with models of quantum criticality where the effective Fermi temperature TF goes to zero. These measurements also point to a unversality class of quantum-criticality which extends to the physics of heavy fermions and the cuprates.

Other video options

Author entry (protected)