

Magnetic Order in Fe_{1+y}Te Compounds

Natalia Perkins

University of Minnesota

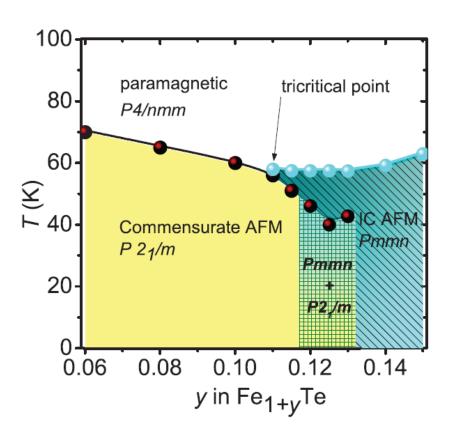
KITP, October 21, 2014

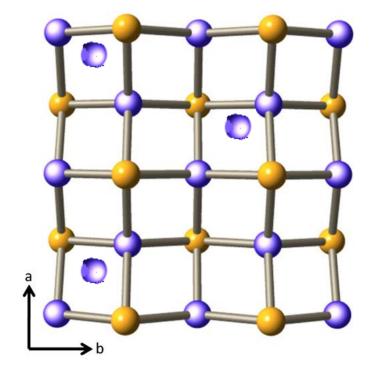
Motivation

The magnetism Fe_{1+y}Te is still an open question:

 $(\pi/2, \pi/2)$ double-stripy order for y<0.11

(q,q) incommensurate spiral order for y>0.11





Koz et al, Phys. Rev. B, 88, 094509 (2013)

Kawashima et. al., Physica B (2012)

Outline

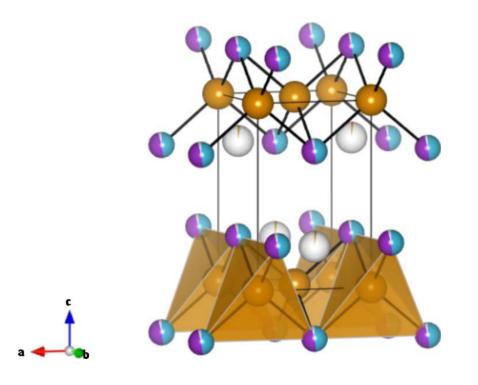
- Introduction
- Double stripe in low-y Fe_{1+v}Te compounds.

Classical vs Quantum approach.

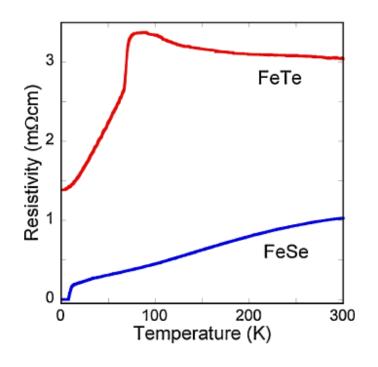
Samuel Ducatman, Natalia Perkins, Andrey Chubukov , PRL 2012

 Effects of Iron Excess – modified RKKY interaction causes an evolution of the magnetic structure.

Samuel Ducatman, Rafael Fernandes, Natalia Perkins, PRB 2014



Y.Mizuguchi and Y. Takano (2010)

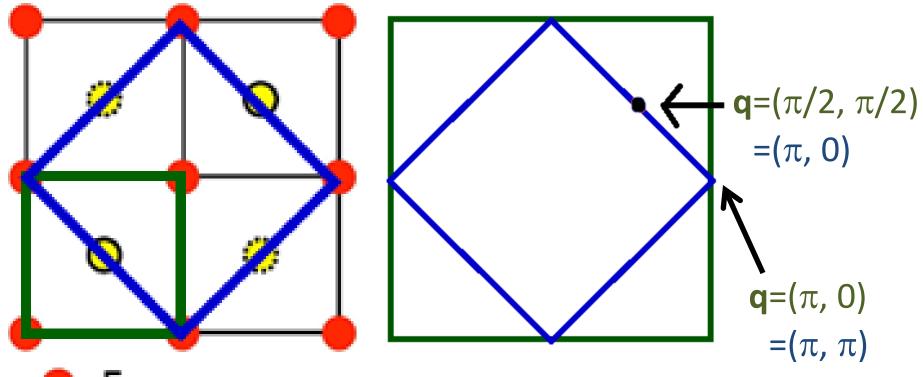


- Fe_{1+y}Te: the simplest structure composed of only Fe and Te layers
- Resistivity decreases with temperature (Poor Metal)
- Different q-vectors for "nesting" $(\pi,0)$ or $(0,\pi)$ and magnetic order $(\pi/2,\pm\pi/2)$

1 vs 2 Fe Unit cell

Unit Cell

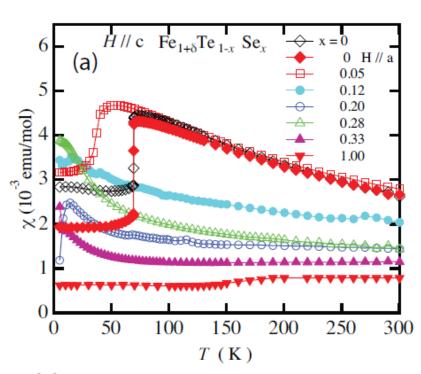
Brillouin Zone



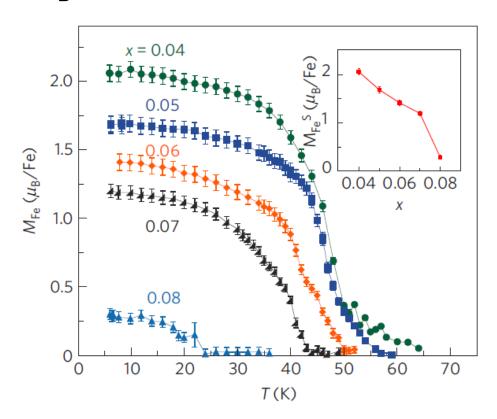
Most experimental results are presented in Te the folded BZ (2 Fe unit cell). We use the unfolded BZ (1 Fe unit cell).

Evidence for Local Magnetic Order

- Susceptibility shows Curie-Weiss T-dependence
- Ordered moment about $~2.5\mu_{B}$

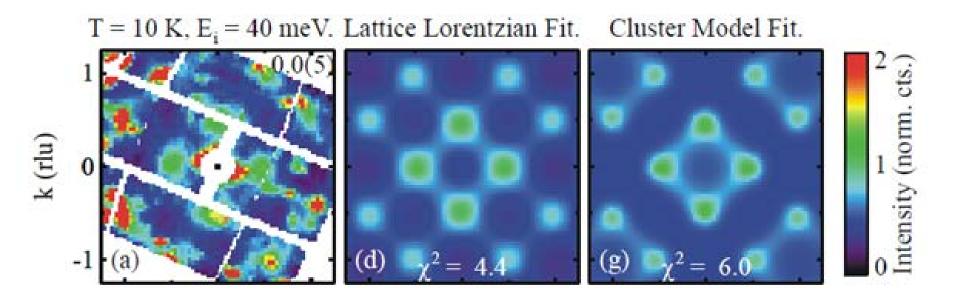


J. Yang et al, J. Phys. Soc. Jpn. **79**, 074704 (2010).



T.J. Liu et al., Nature Mater. 9, 718 (2010)

Magnetic order in FeTe has momenta $\pm(\pi/2, \pm \pi/2)$. However, this does not uniquely determine spin configuration as a generic $\pm(\pi/2, \pm \pi/2)$ order is a superposition of two different Q-vectors: $(\pi/2, -\pi/2)$ and $(\pi/2, \pi/2)$.



Zaliznyak et. al., PRL 107, 216403 (2011)

Double stripe in low-y Fe_{1+y} Te compounds.

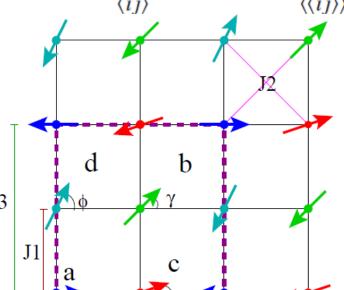
Classical vs Quantum approach.

Samuel Ducatman, Natalia Perkins, Andrey Chubukov , PRL 2012

Minimal model and classical ground state

Heisenberg J₁- J₂- J₃ Model

$$H = J_1 \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + J_2 \sum_{\langle \langle (ij) \rangle} \vec{S}_i \cdot \vec{S}_j + J_3 \sum_{\langle \langle (\langle ij \rangle) \rangle} \vec{S}_i \cdot \vec{S}_j$$



R. Yu, et. al (2011); P. Sindzingre, et. al (2010); J. Reuther, et al. (2011) $J_3 > J_2/2 >> J_1$ (F. Ma, et.al, PRL 2009)

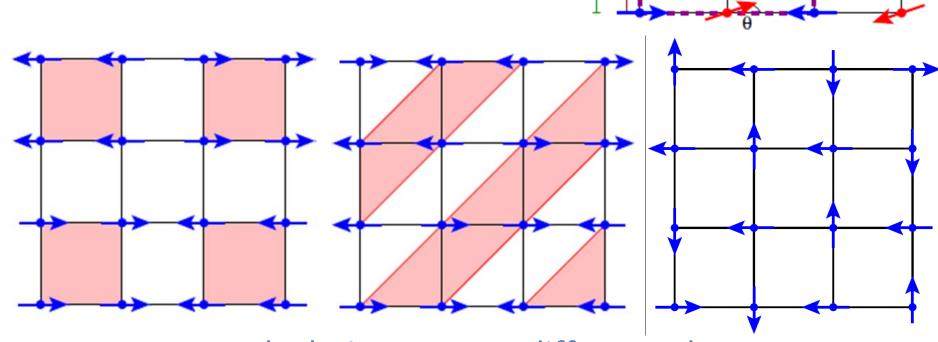
In this limit, the classical ground state is a spiral with the pitch vector $\mathbf{Q} = (\pm q, \pm q)$

$$E_{cl} = -(2J_3 + \frac{J_1^2}{2J_2 + 4J_3})NS^2$$

$$q = \arccos(\frac{-J_1}{2J_2 + 4J_3})$$

An infinite number of $q=(\pm\pi/2,\pm\pi/2)$ states, all degenerate.

$$E_{cl} = -2J_3NS^2$$



J3

DFT calculation: energy difference between double stripe and spiral is 0.06 meV.

How to stabilize $\mathbf{q} = (\pi/2, \pi/2)$ states and to remove the degeneracy between them?

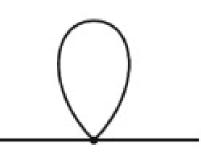
Classically:

Biquadratic term due to magnetoelastic coupling (or from a purely electronic basis)

$$H = \sum_{ij} [J_{ij}\mathbf{S_i} \cdot \mathbf{S_j} - K_{ij}(\mathbf{S_i} \cdot \mathbf{S_j})^2]$$

Quantum Mechanically:

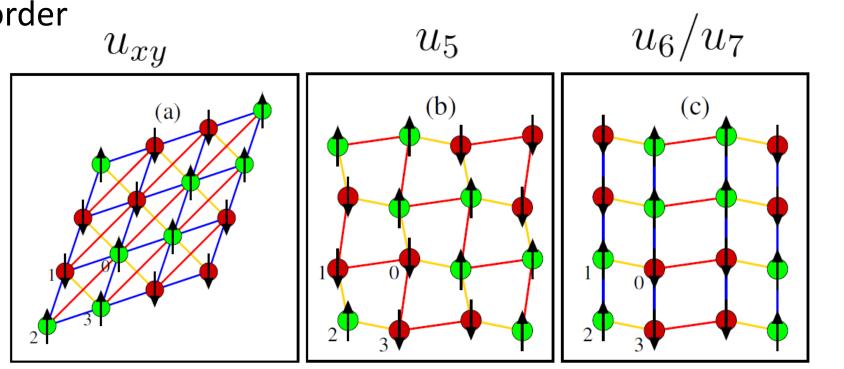
Quantum fluctuations due to interacting spin waves



Both mechanisms stabilize collinear structures and remove degeneracy

Magnetoelastic Couplings

Three primary lattice distortions associated with $\mathbf{q} = (\pi/2\pi/2)$ order



 u_{xy} gives anisotropic ${
m J_2}$ but also biquadratic coupling along diagonals

 u_5,u_6,u_7 gives anisotropic ${\rm J_1}$ but also biquadratic coupling along sides and the ring exchange.

Magnetoelastic Hamiltonian

$$H = H_{\rm M} + H_{\rm ME} + H_{\rm Elastic}$$

$$H_{\rm Elastic} = \frac{c_{66}}{2} u_{\rm xy}^2 + \frac{\Omega_1}{2} \mathbf{u}_5^2 + \frac{\Omega_2}{2} (\mathbf{u}_6^2 + \mathbf{u}_7^2)$$

$$H_{\text{ME}} = g_1(\mathbf{S}_c \cdot \mathbf{S}_d - \mathbf{S}_a \cdot \mathbf{S}_b) u_{\text{xy}}$$

$$+ g_2[(\mathbf{S}_a \cdot \mathbf{S}_c - \mathbf{S}_b \cdot \mathbf{S}_d) \mathbf{u}_5^x + (\mathbf{S}_a \cdot \mathbf{S}_d - \mathbf{S}_b \cdot \mathbf{S}_c) \mathbf{u}_5^y]$$

$$+ g_3[(\mathbf{S}_a \cdot \mathbf{S}_c + \mathbf{S}_b \cdot \mathbf{S}_d) \mathbf{u}_6^x + (\mathbf{S}_a \cdot \mathbf{S}_d + \mathbf{S}_b \cdot \mathbf{S}_c) \mathbf{u}_7^y]$$

Integrating out u_{xy} , u_5 , u_6 , and u_{7} , we get effective biquadratic and ring exchange terms

$$\sum_{\langle ijkl\rangle} K_{ijkl}(\mathbf{S_i} \cdot \mathbf{S_j})(\mathbf{S_k} \cdot \mathbf{S_l})$$

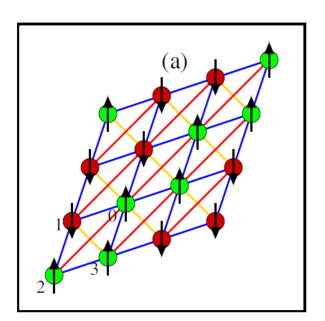
Dominant term: biquadratic coupling along diagonal due to u_{xy} distortions

I.Paul (2010)

How to stabilize $\mathbf{q} = (\pi/2, \pi/2)$ states and to remove the degeneracy between them?

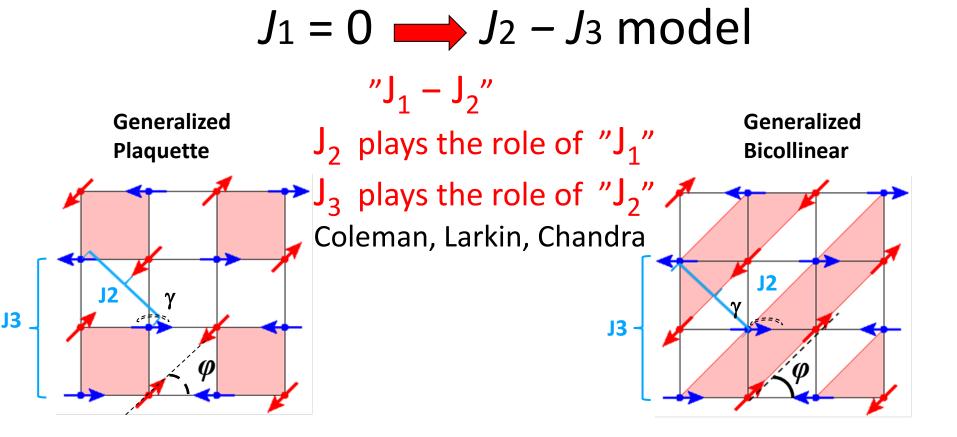
Classically:

K₂ ,biquadratic coupling along diagonal, lowers the energy of bicollinear stripe



How to stabilize $\mathbf{q} = (\pi/2, \pi/2)$ states and to remove the degeneracy between them?

Quantum mechanically:



For $J_3 > J_2/2$, quantum fluctuations select stripe configuration for each sublattice: the angle γ is locked at $\gamma = 0$ or $\gamma = \pi$, and the angle θ is locked to $\theta = \phi$ or $\theta = \phi + \pi$.

Order by Disorder!

J_1 = 0: Spin-wave excitations

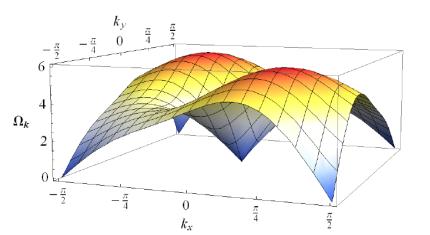
$$H_{sw} = S(\Omega_{\alpha \mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + \Omega_{\beta \mathbf{k}} \beta_{\mathbf{k}}^{\dagger} \beta_{\mathbf{k}})$$

$$\uparrow \text{Even sites} \qquad \uparrow \text{Odd sites}$$

$$\Omega_{\mathbf{k}} = S(A_{\mathbf{k}}^2 - B_{\mathbf{k}}^2)^{1/2}, \ A_{\mathbf{k}} = 4J_3 + 2J_2 \cos(k_x + k_y),$$

$$B_{\mathbf{k}} = 2J_2(\cos 2k_x + \cos 2k_y) + 2J_2 \cos(k_x - k_y).$$

 Linear Spin Wave (LSW) Theory: two spectrums, one for even sites and one for odd sites



Nodes at $\pm(\pi/2,\pm\pi/2)$, but some of them are accidental

1/S Corrections

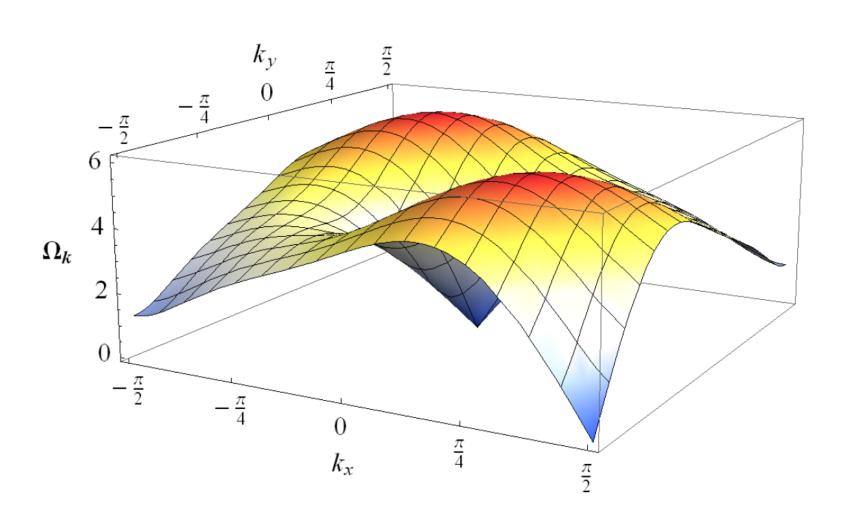
$$H_4 = \sum_{\langle ij \rangle} J_{ij} [-\frac{1}{2} a_i^{\dagger} a_i a_j^{\dagger} a_j + \dots]$$

Performing Hartree-Fock

$$H_4 = \sum_{\langle ij \rangle} J_{ij} \left[-\frac{1}{2} a_i^{\dagger} a_i < a_j^{\dagger} a_j > -\frac{1}{2} a_i a_j < a_i^{\dagger} a_j^{\dagger} > + \dots \right]$$

Gaps open at "accidental zeroes"

1/S Corrections



Small J₁

- J₁ provides a coupling between two sublattices
- J₁ is introduced peturbatively, and only leads to a strong renormoralization in the spectra near the Goldstone modes.

Two cases:

- The excitations have Goldstone modes at the same q vectors — case for diagonal double stripe (bicollinear)
- 2) The Goldstone modes have different q-vectors case for orthogonal double stripe (plaquette)

Spectrum of Bicollinear State

$$\Omega_{\tilde{\mathbf{k}}}^{\alpha} = \Omega_{\tilde{\mathbf{k}}}^{\beta} \qquad H_{2} = \frac{S}{2} \sum_{\mathbf{k}} [\omega_{\mathbf{k}} (\alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}} + \alpha_{-\mathbf{k}} \alpha_{-\mathbf{k}}^{\dagger} + \beta_{\mathbf{k}}^{\dagger} \beta_{\mathbf{k}} + \beta_{-\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger}) \\
+ \Delta_{\mathbf{k}} (-\alpha_{\mathbf{k}}^{\dagger} \beta_{\mathbf{k}} - \alpha_{-\mathbf{k}} \beta_{-\mathbf{k}}^{\dagger} + \alpha_{-\mathbf{k}}^{\dagger} \beta_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}} \beta_{-\mathbf{k}}) \\
+ \Delta_{\mathbf{k}}^{*} (-\alpha_{-\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}} - \alpha_{\mathbf{k}} \beta_{\mathbf{k}}^{\dagger} + \alpha_{\mathbf{k}}^{\dagger} \beta_{-\mathbf{k}}^{\dagger} + \alpha_{-\mathbf{k}} \beta_{\mathbf{k}}) \\
H_{2} = \frac{S}{2} \sum_{\mathbf{k}} [\epsilon_{\mathbf{k}} + 2\tilde{\omega}_{1_{\mathbf{k}}} \tilde{\alpha}_{\mathbf{k}}^{\dagger} \tilde{\alpha}_{\mathbf{k}} + 2\tilde{\omega}_{2_{\mathbf{k}}} \tilde{\beta}_{\mathbf{k}}^{\dagger} \tilde{\beta}_{\mathbf{k}}] \\
\tilde{\omega}_{1,2_{\mathbf{k}}}^{2} = \omega_{\mathbf{k}}^{2} \pm 2\sqrt{\omega_{\mathbf{k}}^{2} |\Delta_{\mathbf{k}}|^{2} - 4|Re[\Delta_{\mathbf{k}}]Im[\Delta_{\mathbf{k}}]|^{2}} \\
\tilde{\omega}_{1,2} (\frac{\pi}{2} + \tilde{k}, \frac{-\pi}{2} - \tilde{k}) = 4\sqrt{\pm\sqrt{J_{1}^{2} \tilde{k}^{2} ((2 + J_{2})^{2} - J_{1}^{2} \cos^{2} \theta)}}$$

Interacting Goldstone bosons with $\Delta_k \sim J_1$ Instability in spectrum near $\mathbf{q}=(\pi/2, \pi/2)$, grows as where \tilde{k} is distance from Goldstone point $\sqrt{\tilde{k}}$

Spectrum of Plaquette

$$E_{1,2}^{2} = \frac{1}{2} \left((\Omega_{\tilde{k}}^{\alpha})^{2} + (\Omega_{\tilde{k}}^{\beta})^{2} \right)$$

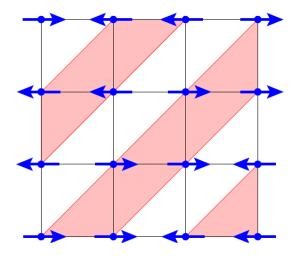
$$\pm \sqrt{((\Omega_{\tilde{k}}^{\alpha})^{2} - (\Omega_{\tilde{k}}^{\beta})^{2})^{2} + 16(\Delta_{\tilde{k}}^{ODS})^{2}\Omega_{\tilde{k}}^{\alpha}.\Omega_{\tilde{k}}^{\beta}}$$

One solution is gapped to order 1/S, the other is linear in \tilde{k} with the stiffness which differs from its value at $J_1 = 0$ by $O(J_1S/J_3)$.

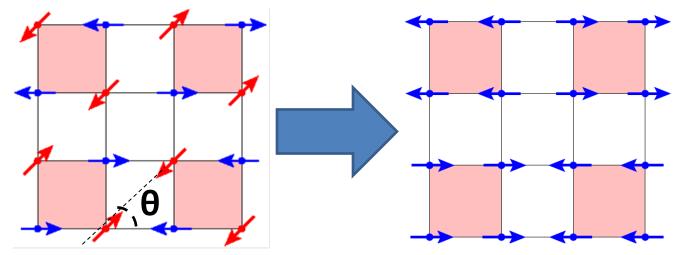
The Plaquette states are stable as long as J_1S/J_3 is small. Largest energy renormalization for collinear plaquette

Results

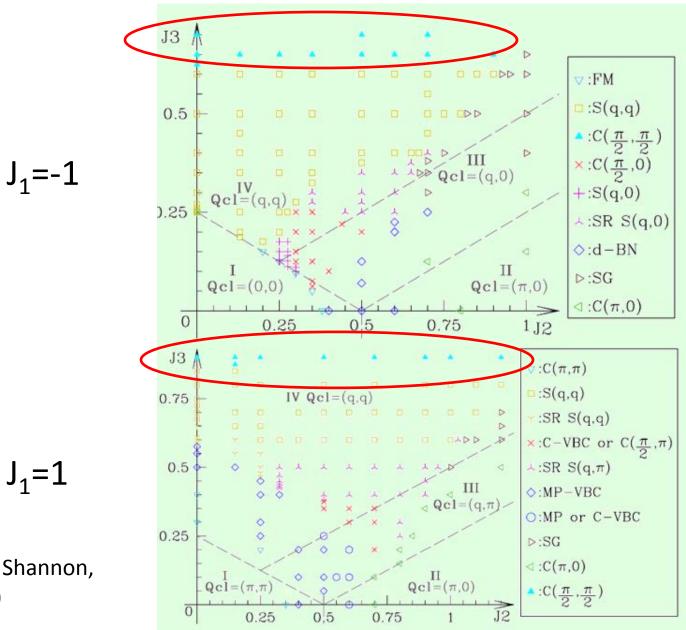
For isotropic case, bicollinear structure unstable to quantum fluctuations. Lattice distortions probably stabilize this state



Quantum fluctuations select plaquette order



$(\pi/2, \pi/2)$ order found in exact diagonalization



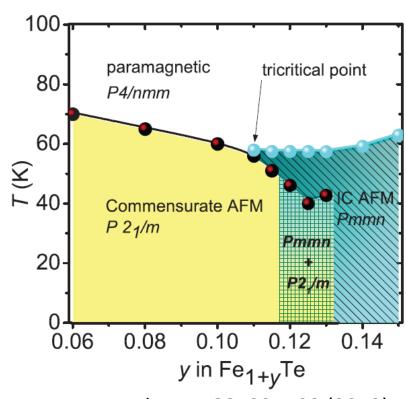
P. Sindzingre, N. Shannon, T.Momoi (2009)

• Effects of Iron Excess – modified RKKY interaction causes an evolution of the magnetic structure.

S. Ducatman, R. Fernandes, N. Perkins, PRB 2014

Magnetic Transitions in Fe_{1+y}Te

- Magnetic and structural lowering of symmetry coincide
- At y<0.11, 1st order PT from paramagnet to $\mathbf{q}=(\pi/2, \pi/2)$ state
- y>0.11, 2^{nd} order PT to incommensurate spiral state with $\mathbf{q}=(\pi/2-\Delta,\pi/2-\Delta)$, magnetic order varies with T
- Δ locks at \Box 0.02 for low T



Koz et al., PRB 88, 094509 (2013)

Zaliznyak et al., PRB 85, 085105 (2012)

How can we model Iron excess?

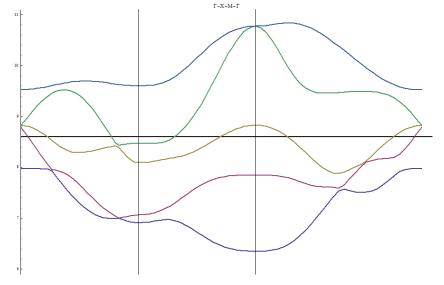
- Local spin model does not capture evolution from iron excess, itinerant model does not capture correct magnetic order
- Recent DMFT calculations of Lanata et al suggested Hund's coupling driven orbital selected localization at T>T_N.
- Consider hybrid model: Coexistence of local spins and itinerant electrons

Haule et al, New J. Phys. 11, 025021 (2009)

Lanata et al, PRB **87**, 045122 (2013)

Localization of electrons

- FeTe: multi-orbital nature of degrees of freedom
- The x²-y², 3z²-r² orbitals are almost localized due to narrow bandwidth and larger interactions. xy, yz, zx are still itinerant.
- We use the tight binding (TB) model of F. Wang et al, PRB 81, 184512 (2010), and project out the x²-y², 3z²-r² orbitals



Fermi Surfaces

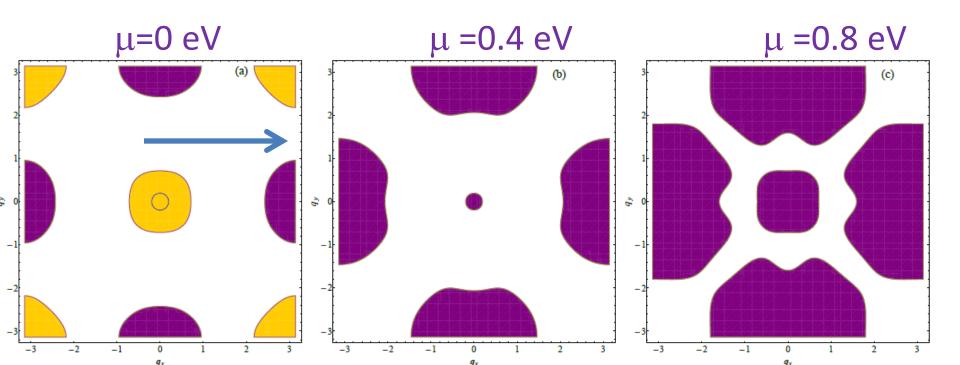
(Virtual crystal approximation)

Purple: electron Pockets

Yellow: hole Pockets

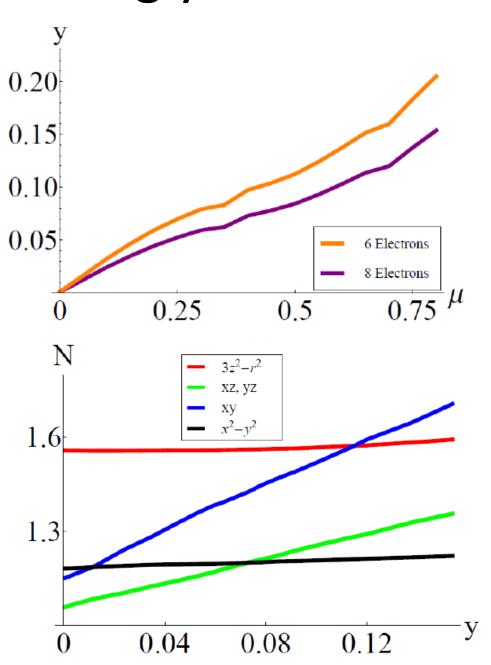
Nesting vector of $(\pi,0)$, no perfect nesting.

 $(\pi,0)$ is not the Q-vector associated with magnetic order



Increasing y

- y>0 increases the number of electrons. Excess iron donates 8 electrons per site.
 Savrasov et al, PRL **103**, 067001 (2009)
 P. Singh et al PRL **104**, 099701 (2010).
- We increase μ, calculate occupation number to find y.
- The extra electrons barely change the occupation of $x^2-y^2,3z^2-r^2$ orbitals



Hybrid Model: Local Moments in Multiband Correlated Electron sea

$$H = H_{spin} + H_{itinerant} + H_{coupling}$$

• Spin-Spin Interaction:

$$H_{spin} = \sum_{\langle ij \rangle} J_{ij} \mathbf{S_i} \cdot \mathbf{S_j} + \sum_{\langle ijkl \rangle} K_{ijkl} (\mathbf{S_i} \cdot \mathbf{S_j}) (\mathbf{S_k} \cdot \mathbf{S_l})$$

- J_{ii}: J₁-J₂-J₃ superexchange couplings
- K_{ijkl}: Biquadratic and ring exchange terms arise from magnetoelastic effects
- S_j localized spins from electrons on $x^2 y^2$, z^2 orbitals.

Assumption: S=1

Hybrid Model: Local Moments in Multiband Correlated Electron sea

$$H = H_{spin} + H_{itinerant} + H_{coupling}$$

 Effective 3 band Hubbard Model (after projection) with onsite Interactions

$$H_{itinerant} = H_0 + H_{int}$$

$$H_0 = \sum_{\mathbf{k},a,b,\sigma} \left(t_{\mathbf{k}\sigma}^{ab} c_{\mathbf{k}a\sigma}^{\dagger} c_{\mathbf{k}b\sigma} + h.c. \right)$$

$$H_{int} = \frac{1}{2} \sum_{i,ab\sigma\sigma'} \left(U_{ab} c_{ia\sigma}^{\dagger} c_{ia\sigma} c_{ia\sigma}^{\dagger} c_{ib\sigma'}^{\dagger} c_{ib\sigma'} + J_{ab} c_{ia\sigma}^{\dagger} c_{ib\sigma'} c_{ia\sigma}^{\dagger} c_{ib\sigma'} \right)$$

Hybrid Model: Local Moments in Multiband Correlated Electron sea

$$H = H_{spin} + H_{itinerant} + H_{coupling}$$

$$H_{coupling} = -J_H \sum_{j,a} \mathbf{S}_j \cdot \sigma_{ja}$$

- Coupling between local and itinerant moment arises from Hund's coupling
- S_j localized spins from electrons on $x^2 y^2$, z^2 orbitals.

Assumption: S=1

• σ_{ia} itinerant electrons with orbital a=xy, yz, zx.

Derivation of an effective low energy theory

 Integrating out the itinerant electrons, we obtain additional long range spin-spin interactions

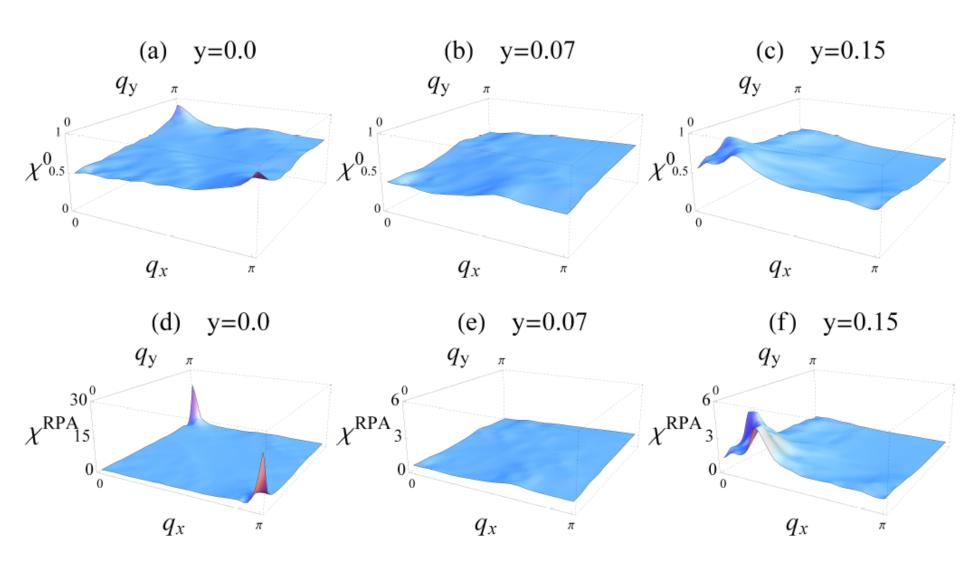
$$H_{RKKY} = \sum_{\langle ij \rangle} J_{ij}^{RKKY} \mathbf{S}_i \mathbf{S}_j$$

$$J_{ij}^{RKKY}(R_i - R_j) = -J_H^2 \sum_{\mathbf{q}} e^{i(\mathbf{R}_i - \mathbf{R}_j)\mathbf{q}} \chi(\mathbf{q})$$

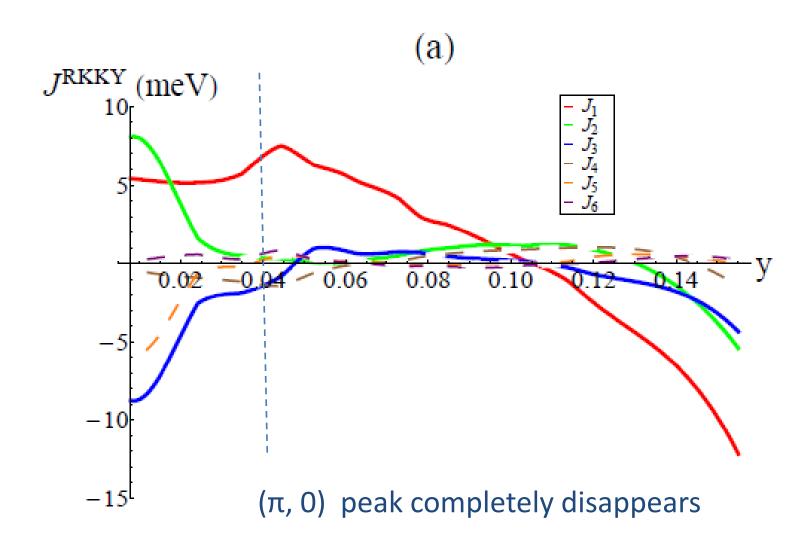
 χ (q)- Pauli susceptibility computed using the tight-binding model

$$\chi_{aa'bb'}(\mathbf{q},\omega) = \chi^0_{aa'bb'}(\mathbf{q},\omega) + \chi^0_{aa'cc'}(\mathbf{q},\omega) U_{cc'dd'} \chi_{dd'bb'}(\mathbf{q},\omega)$$

Results (Bare and RPA Susceptiblity) Fe_{1+v}Te



JRKKY

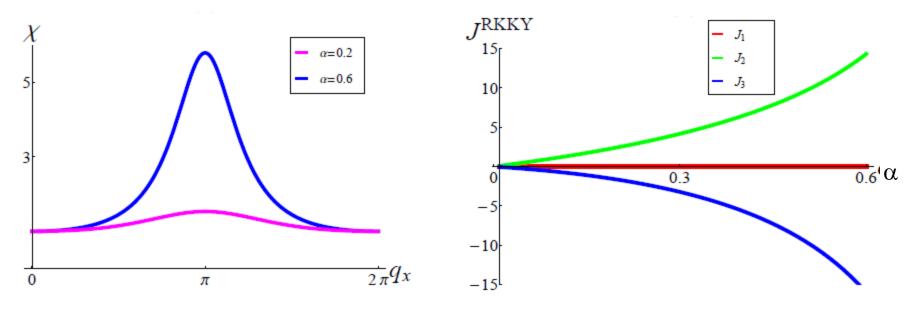


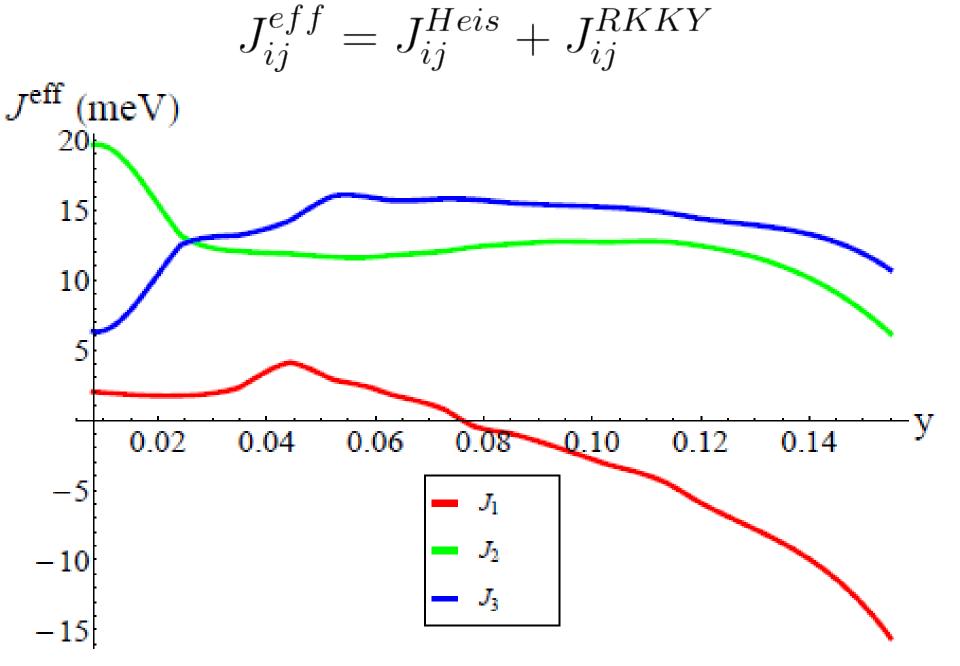
A toy model for χ for y<0.04

• Consider a phenomenological χ^{RPA} for y<0.04, where α is a parameter controlling the height of peak.

$$\chi^{-1}(\mathbf{q}) = \frac{1 + \alpha \left[\cos q_x \cos q_y - \frac{1}{8} \left(\cos 2q_x + \cos 2q_y \right) \right]}{\chi_0 \left(1 + \frac{3}{4} \alpha \right)}$$

With this model, we can calculate JRKKY analytically.

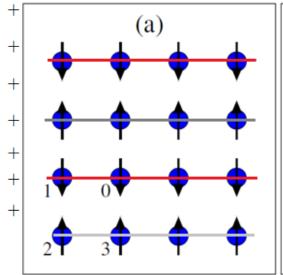


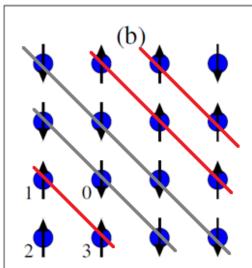


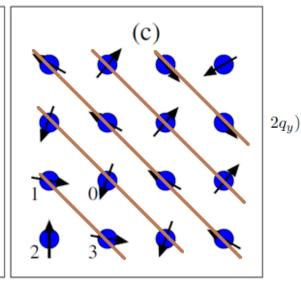
Ground State

$$H = \sum_{ij} J_{ij}^{eff} \mathbf{S_i} \cdot \mathbf{S_j} + \sum_{ijkl} K_{ijkl} (\mathbf{S_i} \cdot \mathbf{S_j}) (\mathbf{S_k} \cdot \mathbf{S_l})$$

- We consider all possible 4-sublattice-single-q ground states. We find the ground state by the Hamiltonian minimizing over all variables
- Of all possible states, only three states appear for physical parameters in our phase diagram $E_{cl} = \frac{1}{4} J_1 \left(\cos \varphi_1 + \cos (\varphi_1 + 2q_x) + \cos (\varphi_3 \varphi_2) + \cos (\varphi_3 (\varphi_2 + 2q_x)) + \cos \varphi_3 + \cos (\varphi_3 + 2q_y)\right)$





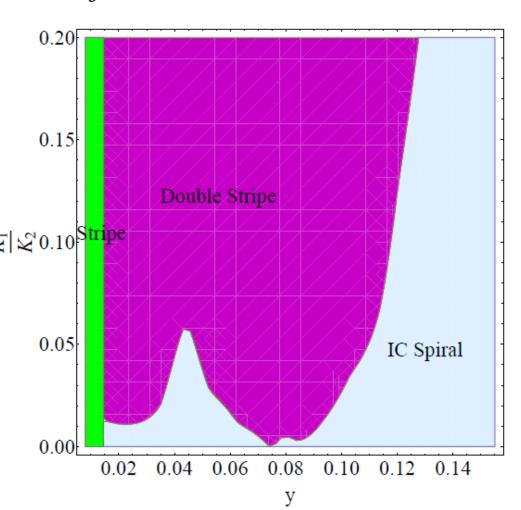


Phase Diagram

$$H = \sum_{ij} J_{ij}^{eff} \mathbf{S_i} \cdot \mathbf{S_j} + \sum_{ijkl} K_{ijkl} (\mathbf{S_i} \cdot \mathbf{S_j}) (\mathbf{S_k} \cdot \mathbf{S_l})$$

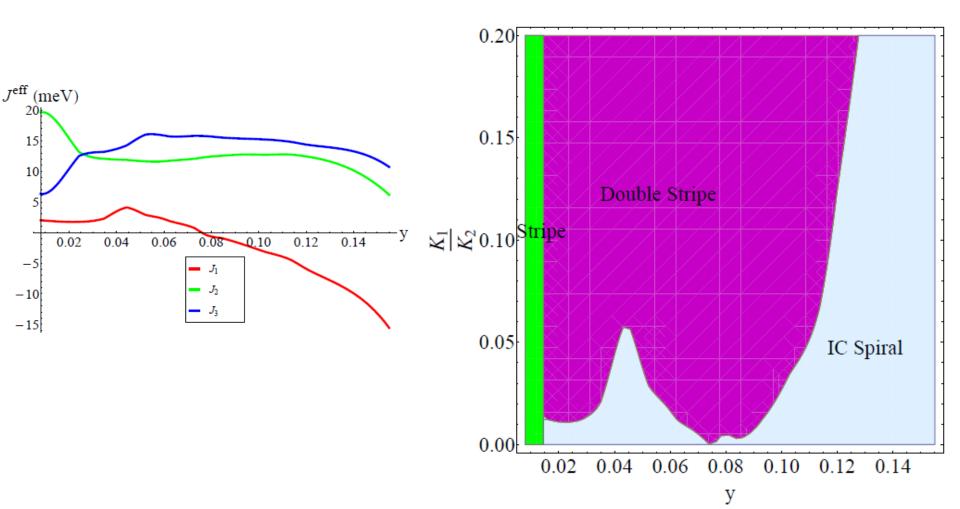
K₁ is the nearest neighbor biquadratic, K₂ is the value for both next-nearest neighbor biquadratic and ring exchange terms.

Here, fix $K_2 = 3 \text{ meV}$



Phase Diagram

$$H = \sum_{ij} J_{ij}^{eff} \mathbf{S_i} \cdot \mathbf{S_j} + \sum_{ijkl} K_{ijkl} (\mathbf{S_i} \cdot \mathbf{S_j}) (\mathbf{S_k} \cdot \mathbf{S_l})$$



Conclusion

- Fe_(1+y)Te has features of both local magnetic moments and itinerant electrons.
- The \mathbf{q} =(π /2, π /2) ground state (for y<0.11) can be obtained with a local model. It is not clear if it is possible to get it from the itinerant picture.
- Increasing y corresponds to electron doping.
- Integrating out itinerant electrons gives effective Heisenberg coupling, $J_{ij}^{RKKY}(y)$.
- The hybrid model captures the evolution of magnetic order with increasing Fe excess.

Thank You!