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Plan of this Lecture:

1. What are local QCF’s? Need for introducing them in 
Cuprates, AFM criticality in Heavy fermions, 

     and possibly the Fe-based Superconductors.

2. A simple model for itinerant AFM -  
    Mapped to a decorated Diss. Qtm. XY model.

3. Solution of the Model.

4. Test of the solution by Qtm. Monte-Carlo calcs.
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Unusual Properties in the “Strange Metal Phase”
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Landau Fermi-Liquid Theory and Quasi-particle

concepts do not work.



Point of view:

The diverse anomalies must all come from 
one and the same basic physics and finding it 
is the central problem. 

Contrast, for example:
Raman Scattering (q     0, as a fn. of     ) 
 
S(!) ⇡ constant,! . !c, !c ⇡ 0.4eV

Nuclear relaxation rate: 
 

(! ! 0, integrated over q)

On Cu, T�1
1 ⇡ A+BT



 Landau Fermi-liquid

Low Density of Low-energy
Excitations.
Scattering rate of electrons

� T 2

      Marginal Fermi Liquid

High Density of Low-energy Excitations
controlled only by the temperature of 
measurement and independent of momentum.

Scattering rate of electrons
� T

Scale-Invariant Spectrum- implies a 
phase transition at T � 0.

Phenomenology for the Right Kind of Fluctuations in Cuprates
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What does not work and what works.

(
, |!|), ind. of momentum.

predicted

Sp. Heat ~T ln T.



A New Paradigm for Criticality

Im �(!,q) / �!/T for !/T << 1,

/ �sgn(!) for !c >> ! >> T.

Re �(!,q) / ln (!c/x) , x ⇡ max(!, T ).

1. A singularity at T ! 0, i.e. a Quantum Critical Point.

2. Scale-invariant in frequency but spatially local!

What is this a fluctuation of?

Related Quantum criticality also found in some Heavy-Fermion
Compounds near their AFM QCP (Lohneysen, Coleman, Si -2000).

Also in the Fe-superconductors, although not as much detailed!
data as in the Cuprates, where the problem is more elusive.

Crazy but important predictions from it worked.
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2. Scale-invariant in frequency but spatially local!

What is this a fluctuation of?

Related Quantum criticality also found in some Heavy-Fermion
Compounds near their AFM QCP (Lohneysen, Coleman, Si -2000).

Also in the Fe-superconductors, although not as much detailed!
data as in the Cuprates, where the problem is more elusive.
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)−1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10−3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈ 10−3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y)(k
′2
x + k

′2
y ) − (k2

x − k2
y)(k

′2
x − k

′2
y )

− 4(kxky)(k
′
xk

′
y)]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−xFx):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)−1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.
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Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10−3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈ 10−3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑
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g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′
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'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef
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i(k × k′). The pairing vertex is then
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Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
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Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−xFx):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)−1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10−3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈ 10−3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].

11

Rep. Prog. Phys. 75 (2012) 000000 C M Varma

model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y)(k
′2
x + k

′2
y ) − (k2

x − k2
y)(k

′2
x − k

′2
y )

− 4(kxky)(k
′
xk

′
y)]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−xFx):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)−1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10−3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈ 10−3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑
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'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form
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y)]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−xFx):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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There exists a canonical Transformation between
a repulsive Hubbard model at arbitrary filling
and a decorated attractive Hubbard model at finite
Zeeman field.Consider the following Hamiltonian for fermions

H =
X

<ij>,�=",#

tija
†
i,�aj,� +H.C.+ U

X

i

(ni" � 1/2)(ni# � 1/2) (1)

+ Iz
X

i

(Sz
i )

2 � µ
X

i

ni.

< ij > sums over nearest neighbors on a bi-partite two dimensional lattice. U > 0 so that

for large enough U/t, a Mott insulating state is expected with AFM correlations or commen-

surate order at half-filling when the chemical potential µ = 0. Beyond some deviation from

half-filling a metallic state is expected, with AFM correlations with long correlation length

⇠ at low enough temperatures. These correlations are in general peaked at the incommen-

surate vectors Q = (Q0 + q0) with Q0.R0 = ⇡, where R0’s are the nearest neighbor vectors

in the bi-partite lattice and q0 are the incommensurate vectors. A single ion anisotropy

term with coe�cient Iz > 0 ensures that the AFM correlations are stronger for planar spin-

correlations, i.e. spin in the xy plane, and Iz < 0 ensures the same for uni-axial correlations,

i.e spins along the z-axis. Only h = 0 is considered in this paper but finite h may be useful

in further work. No magnetic order is expected for large enough deviation from half-filling.

So, there is a quantum critical point as a function of doping. The Hamiltonian of Eq. (1)

may be considered paradigmatic of a general class of models with AFM correlations.

The (canonical) transformations? ,

ai," ! ei�i ãi,"; a†i," ! e�i�i ã†i,"; (2)

ai,# ! ã†i,#e
iQ0.Ri+i�i ; a†i,# ! ãi,#e

�iQ0.Ri�i�i .

with
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2
q0 ·Ri,
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H̃ =
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X
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X

i

S̃z
i , (3)

ñi� is the number operator for spin � and

t̃ = t; Ũ = U � 2Iz, h̃ = µ, µ̃ = h. (4)

The transformed Hamiltonian is a model with on-site attractive interactions, a Zeeman field

related to the deviation of the original model from half-filling and a spin-orbit coupling
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(ñi" � 1/2)(ñi# � 1/2)� h̃

X

i

S̃z
i , (3)
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AFM transition at a vector Q0 + q0, Q0 = ⇡/R0
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(ñi" � 1/2)(ñi# � 1/2)� h̃

X

i

S̃z
i , (3)
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(�i � �j)↵ in the link (i, j) related to the incommensurate vector q0 or the deviation from

half-filling. As a result, the Fermi-surface of up and down spins are shifted in opposite

directions by ±q0/2; thus �(�i � �j) is a spin-orbit field. At half-filling in the original

model, the order is commensurate and µ = 0. So there is neither a spin-dependent vector

potential or a Zeeman field in the transformed model.

We expect that in the original model, the transition temperature ! 0 for large enough

deviation from 1/2-filling or chemical potential far away from 0. Correspondingly, for large

enough magnetic field and or spin-orbit field (??), superconductivity and CDW transition

temperatures are likely ! 0. Since our aim is to relate large Q correlations in one model
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spin-orbit coupling.

leads to:

Attractive Interaction. Zeeman-Fld.

With the canon. transformation,

In 2D, the the latter is calculable from the 
2D-XY model with Dissipation.
The usual Dissipation used for the AFM model transforms 
to the Caldeira-Legett Dissipation used for the XY Model.



Quantum-Critical Fluctuations of the Model

(Vivek Aji, CMV - PRL 2007, PRB-2009, 2010)

Classical Model: XY model with 4-fold Anisotropy

L =

P
<ij> K cos(✓i � ✓j) +K4 cos 2(✓i � ✓j) + h4 cos(4✓i)

Anisotropy: Marginally Irrelevant in the Fluctuation region,
Highly relevant in the ordered region.

Topological Phase Transition (Kosterlitz-Thouless, Berezinsky)
Ordering by Binding of vortices of opposite circulation.

✓ � field



Quantum Model:

Add Kinetic Energy of Rotors:

K⌧
P

i

⇣
@✓i
@t

⌘2

Surprisingly, the Quantum model is as solvable as

the Classical XY Model, with remarkable Properties.

And

Dissipation by Decay into FErmions,

Caldeira-Leggett form, in Fourier space:

↵
P

k,! |!| k2 |✓(k,!)|2

By Finding the Right Variables.

Model has a phase transition as a function of ↵.



Define a link variable m, which is

the di↵erence of ✓’s at adjacent sites.

The m field can be divided into solenoidal and irrotational:

m = m` +mt

long-range ordered phase. Nevertheless a phase transition
does occur at finite temperature where the correlation func-
tion of the order-parameter eı! changes from exponential to

power law. This is the Kosterlitz-Thouless-Berezinskii
transition.25,26 The quantum dissipative generalization of the
model includes two dynamical terms and is given by

Z =! D!i""#exp$− !
0

#

d"%&
i

C

2
"!"!ij

2 # − J &
'ij,kl(

cos"!ij − !kl#) + Sdiss* ,

Sdiss = !
−$

$

d"!
0

#

d"! &
'ij,kl(

%+ "!ij − !kl#""# − "!ij − !kl#""!#
" − "!

,2

, "2#

where C is the capacitance and %=RQ /R, where RQ=h /4e2.
The physics of this phase transition is better understood in terms of the topological defects of the system. To do so we

follow the standard procedure of using the Villain transform and integrating out the phase degrees of freedom.20 The Villain
transform involves expanding the periodic function in terms of a periodic Gaussian

exp$− #J &
'ij,kl(

-1 − cos"!ij − !kl#.* / &
mij;kl

exp%− #J &
'ij,kl(

"!ij − !kl − 2&mij;kl#2/2) , "3#

where mij;kl are integers that live on the links of the original
square lattice. We can combine the two link variables mi,j;i+1,j
and mi,j;ij+1 into one two-component vector mi,j that lives on
the site 0i , j1 of the lattice "see Fig. 1#. We expand the qua-
dratic term and transform to Fourier space. Keeping the lead-
ing quadratic term !i,j −!i+1,j /−a"x!xy, where a is the lattice
constant, x=ai and y=aj, we get

"!xy − !x+1,y − 2&mx,y
x #2 / a2"x

2!xy + 4&a"x!xymx,y
x + 4&2mx,y

x2 ,

"4#

where mx,y
x is the x component of the vector field given by

the integer mx,y;x+1,y. In the absence of dissipation, there is
competition between the kinetic-energy and the potential-
energy terms, the former minimized by a state where !ij is
disordered stabilizing an insulating phase while the latter
minimized by a fixed value of !ij stabilizing a supercon-
ductor. Since !’s are bosonic degrees of freedom, we need to
impose the boundary condition that !ij"##=!ij"0#. The peri-
odicity in the imaginary-time direction and the compactness
of the field !ij implies that there is an additional degree of
freedom that has to be accounted for which is the winding
number. At T=0, the "imaginary-# time direction becomes
infinite in extent, and the nondissipative model is in the
three-dimensional "3D# XY universality class. First we dis-
cretize the imaginary-time direction in units of '" and work
on a three-dimensional lattice. Introducing the variables m
which only live on the spatial links, the action is19,20

Z = &
m

exp%&
k,(

− 4&2J
Jc2k ) m22

"C/c#(n
2 + Jck2 + %2(n2k2

− 4&2J
(n

2m · m"C/c + %k2/2(n2#
"C/c#(n

2 + Jck2 + %2(n2k2) , "5#

where c=a /'", J→Ja2'", C→Ca2 /'", and m→m /a. We
have also redefined %→%a3. The last term in the denomina-
tor is unimportant and may be dropped. The action in Eq. "5#
has two possible phase transitions, depending on whether the
capacitance C or the dissipation term *% in the numerator of
the second term in Eq. "5# dominates in long wavelength and
low-frequency limit. The former corresponds a critical point
with the dynamic critical z=1, i.e., we recover the loop gas

i, j i+x, j
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mi-x, j; i, j

m
i,
j-
y;
i,
j

(a)
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FIG. 1. "Color online# The directed link variables are labeled as
shown in the "a#. "b# We define a two-component vector living on
the sites of the original lattice whose components are the two di-
rected links variables: m= "mi,j;i+x,j ,mi,j;i,j+x#.
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m is a discrete integer field which lives on links.

m

: Vortex

: Warp

Right Variables.

Define
r⇥mt = ⇢vẑ

@r·m`
@t = ⇢w



P
i mi = 2⇡

m1

m2

m3

m4

Vortex

CUT



tex moves from site 1 to site 2 in Fig. 3, leaving behind an
antivortex at site 1. The total vorticity before and after the
event is zero as is required by the condition of having a
neutral plasma. Over time !" a phase slip event occurs on the
link between sites 1 and 2 at time "i. If the lower end of the
bond is labeled by rxy = !x ,y", the event, in our notation, is
given as

m = − ŷ!#r − rxy$##" − "i$ . #13$

The vortex current generated by such an event is

JV = x̂!#r − rxy$!#" − "i$ . #14$

Thus a phase slip on a link is equivalent to a local in space
and time vortex current.

B. Local phase slips and warps

The periodic in time boundary condition allows for phase
slip events on a site. Such events change the winding sector
and dynamics of the vector field that is not captured by the
vortex current. Consider the effect of a change of 2$ at site
!i , j" so that %ij winds around to %ij +2$ over a time !". Then
the four spatial links connected to the site !i , j" experience
phase slips. As shown in Fig. 4, the corresponding link vari-

ables are: mi,j:i+x,1=1, mi,j:i,j+1=1, mi,j:i−1,j =−1, and mi,j:i,j−1
=−1.

The phase slip event at time "i and site rij has the follow-
ing representation in terms of the vector field m:

m#r,"$ = %#x̂ + ŷ$!#r − rij$ − x̂!#r − rij − ax̂$ − ŷ!#r − rij

− aŷ$&##" − "i$ . #15$

Such a vector field distribution has no curl and hence does
not affect the vorticity. On the other hand the divergence is
nonzero and phase slip events generate field configurations
that are orthogonal to those created by vortices. For a general
vector field one does expect two kinds of sources to generate
an arbitrary distribution. For the 2+1-dimensional quantum
model we have, besides the vortices, the additional topologi-
cal entity to describe the winding number sector in time.
Events that change the winding number sector, i.e., local
phase slips, acts as sources for a divergence in the vector
field. Just as a vortex is equivalent to an electric charge in the
dual language, the sources created by phase slips can be
shown to be a local distribution of monopoles #&m$. Given
the distribution in Eq. #15$, the corresponding configuration
of monopoles, which we term the charge of the phase slip is

&m#r,"$ = ! · m#r,"$

= %4!#r − rij$ − !#r − rij + ax̂$ − !#r − rij − ax̂$

− !#r − rij + aŷ$ − !#r − rij − aŷ$&##" − "i$ .

#16$

The monopole distribution equivalent to a phase slip is
shown in Fig. 5. The total monopole charge of the configu-
ration is zero. Since the distribution has azimuthal symmetry
all harmonics are zero. This is the two-dimensional lattice
realization of the configuration of a charge surrounded by an
equal but opposite charge distributed over a spherical shell of
radius a in three dimensions. The magnetic field due to the
charges is confined within one unit cell around the site of the
phase slip and is zero outside. Thus two phase slip events can
interact only if they are at most one lattice spacing apart; the
interaction is local in space. Although this is physically ob-
vious from this discussion, we will demonstrate this explic-
itly in the next section.

Phase slip events generate a local vortex current which is
divergenceless but has a finite curl.

1 2

δτ

Phase Slip event on a link

FIG. 3. #Color online$ A phase slip between nearest neighbors in
time produces a vortex and an antivortex on neighboring plaquettes.
In time one bond has acquired a nonzero value, represented by the
red bond. If the value on the bond is −1, the vorticity at site 1 is
negative and on site 2 is positive.

δτ

i,j

i,j
11-1

-1

FIG. 4. #Color online$ A phase-slip event in rime results in a
change in the link variables. For a change of 2$ at site !i , j", the
four links connected to it acquire the values shown in the figure.

4

-1

-1

-1

-1

FIG. 5. #Color online$ Warps are configurations of the field m
with finite divergence but no curl. For a warp of unit strength at site
!i , j", the divergence has a magnitude of 4 at the site and −1 at the
four nearest-neighbor sites. In general the magnitude of the diver-
gence at the site will equal to the number of nearest neighbors on
the lattice.
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What is a warp?

Change in m:

Change in r ·m:

Jump in Phase by 2⇡ at a point in space

between two time-slices,

Creates a monopole of charge 4

surrounded by 4 monopoles of charge -1.



S =
�

d⇤drdr�J⇥v(r, ⇤)⇥v(r�, t)ln |r� r�|+
�

drd⇤d⇤ ��⇥w(r, ⇤)⇥w(r, ⇤ �)ln |⇤ � ⇤ �|

Then one finds that the singular part of the action decouples as:

+
R
drdr0d⌧d⌧ 0⇢w(r, ⌧)⇢w(r0, ⌧ 0)

1p
(|r�r0|2+v2(⌧�⌧ 0)2

.

The last term is Coulomb interaction in 3 D, which by itself 
does not lead to any transition. 
The first two terms are orthogonal. 
So, at critical points, the problem is soluble. 
The last term determines cross-overs between the 
critical lines in parameter space.



Solution:

The Action can be transformed

(after integration of small amplitude fluctuations),

to a model for orthogonal topological excitations,

warps and vortices.

When warps dominate, the correlation function

of the order parameter in fluctuation regime,

hei✓(r,⌧)e�i✓(r0,⌧ 0) / �(r� r0) 1
⌧�⌧ 0

Fourier transform of this is

� tanh(

!
2T ),

with a cut-o↵ !c =
p
K⌧K

Local Criticality with !/T - scaling.

i ⌘ G✓(r� r0, ⌧ � ⌧ 0)

(Cross-over functions calculated, detailed q dependence ?)



Phase Diagram and Correlation functions by Qtm. Monte-Carlo Calcs.

Three parameters:

Moment of Inertia K⌧ , Coupling K, Dissipation ↵

In a large region of parameters,

Transition to ”ordered” state driven by ↵.

At this transition, change in the density of ’warps’

as a function of (↵� ↵c).

Di↵erent for (↵� ↵c) > 0, and < 0.

Correlation functions:

< e�i✓i,⌧ ei✓j,⌧0 > calculated.



Phase Diagram for a fixed K⌧ .
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Correlation in time.
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FIG. 8: Correlation functions from NOR to FSC, as shown in Fig. 7.
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FIG. 9: Warp correlation function Gw(x, τ0) along x-direction
for different temporal distance τ0. The parameters are Kτ =
0.01, K = 0.4 and α = 0.026, in the vicinity of the NOR to
FSC transition.

VII. THE EFFECT OF FOUR-FOLD
ANISOTROPY

In this section, we study the effect of the h4 field. A
large field h4 < 0 would prefer the angle to align along
the x, y axis. As a result, the XY-spin variable becomes

effectively two Ising variables.
We show the results for h4 = −5 below. In simulations,

the angles indeed take values around (0,π/2,π, 3π/2) +
n2π. Changing α can tune a phase transition. The static
properties are shown in Fig. 11. From the behaviors of
the vortices and warps, this transition is similar to the
one for h4 = 0. αc ≈ 0.0272, which is bigger than 0.0262
in h4 = 0 case. We compare the behaviors of χS and
m for h4 = −5 and h4 = 0 cases in Fig. 12. We find
that χS is much larger for h4 = −5. The asymptotic
behaviors of χS and m are also different near αc. This
implies that, when |h4| ≫ 1 and spins become essential
Ising variables, the university class changes and the crit-
ical exponents are different. Additional work is needed to
carefully determine the critical exponents.

VIII. PERIODIC DISSIPATIONS

In this section, we discuss another type of dissipation,

Sdis =
α′

2

∑

⟨x,x′⟩

∫∫

dτdτ ′
π2

β2

sin2(∆θx,x′,τ −∆θx,x′,τ ′)

sin2
(

π|τ−τ ′|
β

)

(18)
instead of α-term in Eq. (1). Here, when α′ is large,
this dissipation term can be minimized by (∆θx,x′,τ −
∆θx,x′,τ ′) = 0 + nπ. In comparison, in Eq. (1), when

1
⌧
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τ/ξτ ).

B. scaling Gθ(2, τ)

First, I tried to use the same scaling form as in Gθ(0, τ), as shown in the top panel of Fig.

4. Apparently, the slopes for different curves are different, indicating that we need to modify the

prefactor c of exp[−c(τ/ξτ )1/2], where c is also a function of α. A simple choice is to modify ξτ

to ξ′τ = b exp[a/
√

α′
c − α] with α′

c = 0.0254, as shown in the bottom panel of Fig. 4. However,

α = 0.025 deviates from other curves. I am still trying different forms of c(α) to get a better fitting.

C. scaling Gθ(x, 0)

I plot Gθ(x, 0) for various α in Fig. 5. I tried many ξ(α) until finally realize this does not

depend on α at all (maybe a little, but not as Gθ(0, τ) which has significant dependence on α). So,

Gθ(x, 0) = exp(−x/ξ0), with ξ0 a constant.

III. RESULTS ON NEW METHOD OF WARPS

So I adopted Method 3 for new definition of warps.

Method 3: define mx
i,j,τ = θi+1,j,τ − θi,j,τ and my

i,j,τ = θi,j+1,τ − θi,j,τ . The divergence of m can
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FIG. 2: Gθ(x, 0) for various values of α. Here, Kτ = 0.01 andK = 0.4. The system size is N = 50, Nτ = 200.

We find that, Gθ(x, 0) barely varies in the disordered side. It can be fitted as Gθ(x, 0) = exp(−x/ξ0) where

ξ0 ≈ 0.8. ξ0 is expected to depend on Kc −K. Where Kc is the classic transition value.
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Correlation as a function of space.

! Spatially Local Criticality.



We further show the scaling results of the spin correlation functions for h4 = 5 in Fig.

10. We find similar behaviors as in h4 = 0 case, which indicates that the transition is also

of the local critical type.
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FIG. 10: Spin correlation functions for h4 = 5. The left panel show scaling analysis of the x = 0 spin

correlation function Gθ(0, τ) from the disordered side of the transition. . The fitting curve is similar

to that in h4 = 0 case, Gθ(0, τ) = (τ0/τ) exp[−
√

τ/ξτ ] with τ0 ≈ 0.08. The inset shows ξτ/τ0 as a

function of
√

αc/(αc − α). The fitting curve is different, ξτ (α)/τ0 = 0.5 exp[
√

αc/(αc − α)], with

αc = 0.0272. The right panel shows equal-time spin correlation functions Gθ(x, 0) as functions of x

(y is set to 0). For x ! 10, they have also the same form as in h4 = 0 case Gθ(x, 0) = exp(−x/ξx)

with ξx ≈ 0.8 .

VIII. CONCLUSIONS
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Summary:

1. Quantum-Criticality of some models in 2D,

with appropriate dissipation, can only be described

by topological excitatations.

2. In XY Models with 4-fold or higher anisotropy,

proliferation of a new class of topological excs.- ’warps’

leads to spatial locality and !/T scaling.

3. Model appears soluble in a controlled way.

4. Solution directly applicable to Cuprate

and planar AFM Quantum-criticality.

5. Detailed applications to Heavy Fermions and Fe-compounds?
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Figure 14. On the left: thermopower [87] in K-doped FeAs2 indicating a possible T ln T electronic entropy near the doping for highest Tc,
indicating possible quantum criticality; on the right: resistivity [82] in Co-doped FeAs2 for various concentration, showing a possible linear
in T resistivity near the doping of highest Tc, indicating scattering from a singular fluctuations spectra consistent with that which gives
T ln T for the electronic entropy. Both are charaterisitic of marginal Fermi liquids.

figure 13 where an AFM/structural transition temperature → 0
with change in doping. The mystery of the cuprates: the
nature of the ordered phase on one side of the critical point
is absent. Moreover, the anisotropy in resistivity of these
compound is less than an order of magnitude—they are
properly considered three-dimensional. The Fermi surface
has five sheets, most prominently a pair of electron pockets
centered at the zone center and a pair of electron pockets at the
zone-faces. At this point, the symmetry of superconductivity is
not unambiguously known. ARPES experiments indicate that
there is a gap everywhere on the Fermi surface. This may well
be an extended s-wave form of pairing, as has been suggested
[84–86]. As discussed earlier, AFM fluctuations would favor
such a symmetry of pairing for an appropriate Fermi surface;
the form of the Fermi surface in this class of compounds is the
right kind. Given the phase diagram, it is also reasonable to
infer that the AFM/structural quantum criticality is responsible
for the high transition temperatures. The important question
therefore is the nature of the qcfs. Only a limited set of
experiments are at present available on good single crystals
to answer this question and no conclusive statements can be
made yet.

Two experiments suggest that quantum criticality may
be in the same universality class as the cuprates, i.e. the
fluctuations have a weak low frequency singularity and a
broad nearly constant distribution in frequency. One is
the measurement of thermopower for hole-doped compound

to deduce the electronic contribution to entropy in the
normal state, see figure 14 and the other is the resistivity
measurements, also shown in the same figure but for the
hole-doped compound. The thermopower measurements are
consistent with an entropy ∝T ln(T ) down to Tc from an upper
cut-off of about the room temperature in a region close to the
highest Tc. Similarly, the resistivity is linear in temperature
down to Tc in a similar region. Neither of these properties are
characteristic of fluctuations around a Gaussian qcp, especially
in 3D systems [22].

More experiments are needed to investigate whether
the Fe pnictides have the same class of quantum criticality
as the cuprates. Experiments which would be helpful are
measurements of the Raman and inelastic neutron scattering
spectra, measurements of single-particle scattering rates by
ARPES measurements and of transport scattering rate through
optical conductivity measurements. Also analysis of ARPES
spectra in the superconducting and normal state following such
experiments to decipher the spectrum of the pairing glue will
undoubtedly be forthcoming. Inelastic scattering in the normal
state to indicate the variation of the spectra with (q, ω) to see
whether the bulk of it has very slow q-dependence and a high
energy cut-off as well as ω/T scaling would be especially
helpful.

On the theoretical side, there is much discussion of
whether weak-coupling theories relying on nesting represent
the physics or whether strong coupling theories are required.
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Normal state near x for highest Tc is not a Fermi-liquid.

Thursday, May 17, 12
Also (|B|/T) scaling of the resistivity (Analytis 2014)
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Fig. 40. The speci!c heat C=T of CeCu6−xAux versus log T . From L"ohneysen et al. [282–284].

Fig. 41. Susceptibility data for CeCu5:9Au0:1. From L"ohneysen et al. [285].

over a temperature range of almost two decades. At the same composition, the resistivity shows
a linear temperature dependence, and the susceptibility data in Fig. 41 which have been !tted
to a deviation from a constant as T → 0 varying as a

√
T cusp. The anomalous behavior is

replaced by Fermi-liquid properties by both a magnetic !eld and increasing the substitution
of copper by gold or by application of pressure [44,281]. The compound YbRh2S2 seems to
have similar properties [258]. Related properties have also been found in U2Pt2In [88,89] and
in UPt3−xPdx [75], UBe13, CeCu2Si2, CeNi2Ge2 [250]. The SFL properties observed at the
Mott insulator-to-metal transition in BaVS3 [99] are also of related interest. A good example
of an antiferromagnetic QCP in itinerant electrons is in the alloy series Cr1−xVx for which the
magnetic correlations have been measured [122].

None of the quantum critical properties of the CeCuAu compounds is consistent with any
of the models that we have discussed. Information on the magnetic #uctuation spectra for
CeCu5:9Au0:1 is available through neutron scattering experiments [229,251]. The data shown in
Fig. 43 show rod-like peaks, indicating that the spin #uctuations are almost two-dimensional
at this composition. The neutron scattering data can be !tted by an expression for the spin
susceptibility of the form

!−1(k; !) =C[f("k) + (−i! + aT )#] (187)

with a function f which is consistent with an e$ectively two-dimensional scattering

f("k) = b("k⊥)2 + c("k∥)4 : (188)

quasiparticle scattering for T→0. This has been ob-
served before for CeCu6 !Amato et al., 1987". For x
=0.1 a linear T dependence of ! is observed between
20 mK and 0.6 K !see Fig. 9", signaling NFL behavior.
The anisotropic !!T" dependence of magnetically or-
dered alloys can be qualitatively interpreted in terms of
the observed magnetic order: !!T" for all alloys except
x=1 increases below TN for current directions with a
nonzero projection of the magnetic ordering vector Q
determined from elastic neutron scattering !Löhneysen,
Neubert, et al., 1998". An increase of !!T" below TN has
been observed before in other HFSs, for example, in
CeRu2−xRhxSi2 as will be discussed below !Miyako et al.,
1997".

The abundance of low-energy magnetic excitations as
TN→0 has been suggested to cause the NFL behavior at
the magnetic instability !Löhneysen et al., 1994". This is
supported by the recovery of FL behavior in high mag-
netic fields B !Löhneysen et al., 1994; Finsterbusch et al.,
1996". A negative deviation from the C /T# ln!T0 /T" di-
vergence is seen for B"0.2 T, with a crossover tempera-
ture roughly obeying Tcr#B. A similar systematic recov-
ery of FL behavior of a quantum critical system upon
application of a magnetic field has been observed in
many other systems. We add that the high-field specific
heat of all CeCu6−xAux alloys including x=0.1 can be
reasonably well described !Schlager et al., 1993; Löhney-
sen et al., 1996" within a single-ion Kondo model.

The ln!T0 /T" dependence of C /T and the linear T
dependence of ! in CeCu6−xAux at the magnetic insta-

bility have constituted a major puzzle ever since they
were first reported. The LGW theories for 3D itinerant
fermion systems predict C /T=#0−$$T and %!#T3/2 for
antiferromagnets !z=2", while C /T=ln!T0 /T" and %!
#T5/3 are expected for ferromagnets !z=3" !see Secs.
III.C–III.F". In addition, TN should depend on the con-
trol parameter rx=x−xc or rp=p−pc as TN#%r%& with &
=z / !d+z−2"=z / !z+1", Eq. !91", for d=3, while for
CeCu6−xAux &=1 for both rx and rp. Rosch et al. !1997"
showed in an analysis similar in spirit to that of Millis
!1993" that 2D critical fluctuations coupled to quasipar-
ticles with 3D dynamics lead to the observed behavior
C /T# ln!T0 /T", %!#T, and TN#%r%.

We now discuss the question of 2D vs 3D magnetism
in CeCu6−xAux. CeCu6−xAux does exhibit 3D antiferro-
magnetic ordering, and the anisotropy of the electrical
resistivity along different crystallographic directions
does not exceed a factor of 2. Therefore CeCu6−xAux
looks like a 3D antiferromagnetic metal. The magnetic
structure of CeCu6−xAux !0.15'x'1" has been investi-
gated with elastic neutron scattering !Löhneysen, Neu-
bert, et al., 1998; Okumura et al., 1998". An example of
resolution-limited magnetic Bragg reflections is shown
in Fig. 10. The magnetic ordering vector is Q
= !0.625 0 0.253" for x=0.2 and remains almost constant
up to x=0.4. For larger x it jumps onto the a* axis, Q
= !0.56 0 0" for x=0.5 and !0.59 0 0" for x=1.

A detailed investigation of critical fluctuations at xc
=0.1 using inelastic neutron scattering !Stockert et al.,
1998" showed that the critical fluctuations are strongly
anisotropic and extend into the a*-c* plane. This is in-
ferred from a large number of l scans in the a*-c* plane,
some of which are shown in Fig. 11. Hence the dynami-
cal structure factor S!q ,()=0.15 meV" has the form of
rods !see Fig. 10". Since a quasi-1D feature in reciprocal
space corresponds to quasi-2D fluctuations in real space,
the 2D LGW scenario !Rosch et al., 1997" appears to be
applicable. The width of S!q ,)" perpendicular to the
rods is roughly a factor of 5 smaller than along the rods.
It is an issue of current debate whether this anisotropy
of the correlation length is enough to qualify the fluctua-
tions as being 2D. The 3D ordering peaks for x=0.2 and
0.3 fall on the rods for x=0.1, which therefore can be
viewed as a precursor to 3D ordering !Fig. 10". Figure 11
demonstrates the essentially similar, albeit broader,
S!q ,()=const" dependence for samples away from the
critical concentration, i.e., for x=0 and 0.2 !Löhneysen et
al., 2002".

The dynamical structure factor S!q=const,()" of
CeCu6−xAux was investigated around Q= !0.8 0 0", i.e.,
on the rods !Fig. 10", by Schröder et al. !1998". They
found a scaling of the dynamical susceptibility of the
form

*−1!q,E,T" = c−1&f!q" + !− iE + aT"+' !149"

with an anomalous scaling exponent +=0.74 !a Lorentz-
ian fluctuation spectrum would be described by +=1".
This translates to

FIG. 9. Electrical resistivity ! of CeCu6−xAux vs temperature
T, with current applied to the a direction. Arrows indicate the
Néel temperature. Inset: Data for x=0.1 along the b direction.
For all directions, !=!0+A!T is observed. From Löhneysen,
Mock, et al., 1998.
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Heavy-Fermions: CeCu(6-x) Au(x)
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