Kinematic Space 2:
 Seeing into the bulk with Integral Geometry

Sam McCandlish
Stanford University

How do we probe the bulk?

- From a dual field theory localized on the boundary, we see into the bulk.
- Some CFT quantities involve probes extending inward from the boundary:
- Entanglement entropy, Wilson loops
- Local bulk operators however, are represented as smeared operators on the boundary
- How does a smeared operator see into the bulk?

Bulk Reconstruction

- Let ϕ be a free field in AdS

$$
\square \phi=m^{2} \phi
$$

- The AdS/CFT dictionary relates ϕ to a boundary operator O

$$
\phi(z, x) \sim z^{\Delta} \mathcal{O}(x)
$$

- How do we solve this boundary value problem?

Bulk Reconstruction

- Standard construction: bulk local operator is a smeared boundary operator [Bena 99; Hamilton, Kabat, Lifschytz, Lowe 05]

$$
\phi(z, x)=\int d x^{\prime} K\left(x^{\prime} \mid z, x\right) \mathcal{O}\left(x^{\prime}\right)
$$

- The smearing function K is determined by "brute force" from the bulk mode expansion
- Some remaining questions:
- Extension to other geometries? (Causal vs Entanglement wedge?)

A non-standard Cauchy problem!

- How to write as an operator at one time?
- Why does this see into the bulk?

$$
\begin{aligned}
\square \phi & =m^{2} \phi \\
\phi(z, x) & \sim z^{\Delta} \mathcal{O}(x)
\end{aligned}
$$

Bulk Reconstruction

- A detour through kinematic space will provide insight!

Real Space

Non-standard
Cauchy problem

Kinematic Space

Standard
Cauchy problem

Plan

- Bulk field reconstruction and integral geometry
- The X-Ray transform
- Structure of kinematic space
- Intertwining operators and kinematic fields
- Geodesic operators and Local bulk operators
- The space of CFT bilocals
- Generalizations and applications (work in progress):
- Bulk tensor operators and the modular Hamiltonian
- Higher dimensions
- MERA
- Beyond the vacuum
- Bulk interactions (1/N corrections)

The X-Ray Transform

- Kinematic space K : the space of oriented spacelike geodesics in a manifold M
- A point in K corresponds to a geodesic in M

Real Space M

Kinematic Space K

The X-Ray Transform

- The X-Ray transform: maps a function on real space to a function on kinematic space by integrating over geodesics
- Inversion formulas are known for some symmetric cases (hyperbolic space, flat space)

$f(x)$

The X-Ray Transform

- Example: let M be \mathbb{H}_{2}
- Parameterize geodesics by midpoint $\boldsymbol{\theta}$ and opening angle α

$$
f(x) \quad \longrightarrow \quad R f(\alpha, \theta)=\int_{\gamma_{\alpha, \theta}} d s f(x)
$$

The X-Ray Transform

- Definition of X-Ray Transform:

$$
f(x) \longrightarrow R f(\alpha, \theta)=\int_{\gamma_{\alpha, \theta}} d s f(x)
$$

- Inversion formula: [Helgason]

$$
f(x)=-\frac{1}{\pi} \int_{0}^{\infty} \frac{d}{d p}(\underset{d(x, \gamma)=p}{\operatorname{average}} R f(\gamma)) \frac{d p}{\sinh p}
$$

Structure of Kinematic Space

- We want to find an equation of motion for $R \phi(\gamma)$
- First, we must fix a metric on kinematic space - a distance function on the space of geodesics
- Kinematic Space for $\mathrm{AdS}_{\mathrm{n}}$ or H_{n} is a highly symmetric space
- No distinguished geodesics: all spacelike geodesics are related by symmetry
- We can fix a unique metric on K using this symmetry

Structure of Kinematic Space

- Fix a unique metric on K using invariance under conformal symmetry
- Parameterize a geodesic by its endpoints
- The metric must be of the form $d s^{2}=f_{\mu \nu} d x^{\mu} d y^{\nu}$

- Scaling and translation fix $f_{\mu \nu}=\frac{1}{(x-y)^{2}}\left(a \frac{(x-y)_{\mu}(x-y)_{\nu}}{(x-y)^{2}}+b \eta_{\mu \nu}\right)$
- Inversion $\left(x^{\mu} \rightarrow \frac{x^{\mu}}{x^{2}}\right)$ fixes $a=-2$ b

$$
d s^{2}=\frac{1}{(x-y)^{2}}\left(\eta_{\mu \nu}-2 \frac{(x-y)_{\mu}(x-y)_{\nu}}{(x-y)^{2}}\right) d x^{\mu} d y^{\nu}
$$

- Note to experts: These same requirements fix the
 CFT two-point function of vector fields $\left\langle O_{\mu}(x) O_{\nu}(y)\right\rangle$

Structure of Kinematic Space

- What is this metric?

$$
d s^{2}=\frac{1}{(x-y)^{2}}\left(\eta_{\mu \nu}-2 \frac{(x-y)_{\mu}(x-y)_{\nu}}{(x-y)^{2}}\right) d x^{\mu} d y^{\nu}
$$

- It is (2d)-dimensional - d space, d time
- For $\begin{aligned} \mathbf{A d S}_{\mathbf{3}} \text {, it is } \boldsymbol{d} \boldsymbol{S}_{\mathbf{2}} \mathbf{x} \boldsymbol{d} \boldsymbol{S}_{\mathbf{2}}: d s^{2}=\frac{1}{2} \frac{d u_{L} d u_{R}}{\left(\frac{u_{R}-u_{L}}{2}\right)^{2}}+\frac{1}{2} \frac{d v_{L} d v_{R}}{\left(\frac{v_{R}-v_{L}}{2}\right)^{2}} \\ \text { Left-moving dS Right-moving }\end{aligned}$
- For Hyperbolic 2-space, it is the diagonal $d S_{2}$
- The causal structure is determined by containment of boundary causal diamonds
- The asymptotic past of K is the boundary of AdS

$\left(u_{L}, v_{L}\right)=\left(\frac{x^{1}-x^{0}}{2}, \frac{x^{1}-x^{0}}{2}\right)$

Boundary of AdS

Intertwining Operators

- We want to find two equations of motion for $R \phi(\gamma)$
- We will find: $R \square_{A d S_{3}}=-\square_{d S \times d S} R$
- Also, $\left(\square_{d S_{L}}-\square_{d S_{R}}\right) R f=0$

$$
\square_{A d S_{3} \phi=m^{2} \phi} \longrightarrow \begin{gathered}
\square_{d S \times d S} R \phi=-m^{2} R \phi \\
\left(\square_{d S_{L}}-\square_{d S_{R}}\right) R \phi=0
\end{gathered}
$$

Intertwining Operators

- First step: write $R f(\gamma)$ as an integral over all of space

$$
R f(\gamma)=\int_{\gamma} d s f(x)=\int d^{d} x f(x) F(d(x, \gamma))
$$

- For Euclidean space: $F(x)=\frac{\delta(x)}{x^{d-2} S_{d-2}}$
- For Lorentzian space: $F(x)=\frac{\delta(x)}{x^{d-2} \log x S_{d-3}}$

- Can show: $\left(\square_{A d S_{3}}+\square_{d S \times d S}\right) F(d(x, \gamma))=0$
- Comes from relationship to conformal Casimir operator
- Integrating by parts proves the intertwinement relation:

$$
R \square_{A d S_{3}} \phi=-\square_{d S \times d S} R \phi
$$

Intertwining Operators

$$
R f(\gamma)=\int_{\gamma} d s f(x)=\int d^{d} x f(x) F(d(x, \gamma))
$$

- Can also show: $\left(\square_{d S_{L}}-\square_{d S_{R}}\right) F(d(x, \gamma))=0$
- Directly implies $\left(\square_{d S_{L}}-\square_{d S_{R}}\right) R f=0$
- Comes from a redundancy in the Radon transform
- f is a function of 3 variables, but $R f$ is a function of 4 variables

- The constraint reduces this dimensionality by 1
- E.g., can determine boosted geodesics in terms of unboosted geodesics
- Similar result in flat space: "John’s equation"

Geodesic Operators

- Now, solve the Cauchy problem to determine the geodesic operators

$$
\text { Equations of Motion: } \square_{A d S_{3}} \phi=m^{2} \phi \longrightarrow \begin{aligned}
& \left(\square_{d S_{L}}+\square_{d S_{R}}\right) R \phi=-m^{2} R \phi \\
& \\
& \left(\square_{d S_{L}}-\square_{d S_{R}}\right) R \phi=0
\end{aligned}
$$

Boundary Conditions: $\phi(z, x) \sim z^{\Delta} \mathcal{O}(x) \longrightarrow R \phi(x, y) \sim c_{\Delta}(y-x)^{\Delta} \mathcal{O}\left(\frac{x+y}{2}\right)$

- The geodesic operator depends only on the boundary values in the causal diamond it subtends!

Geodesic Operators

- Now, solve the Cauchy problem to determine the geodesic operators

- The result: a smeared operator on the causal diamond (see previous talk for details)

$$
R \phi(\gamma)=\int_{\gamma} d s \phi(x)=\int_{\diamond} d^{2} x^{\prime}\left(\frac{\left|y-x^{\prime}\right|\left|x^{\prime}-x\right|}{|y-x|}\right)^{\Delta-2} \mathcal{O}\left(x^{\prime}\right)
$$

Geodesic Operators

- The result: a smeared operator on the causal diamond (see previous talk for details)

$$
R \phi(\gamma)=\int_{\gamma} d s \phi(x)=\int_{\diamond} d^{2} x^{\prime}\left(\frac{\left|y-x^{\prime}\right|\left|x^{\prime}-x\right|}{|y-x|}\right)^{\Delta-2} \mathcal{O}\left(x^{\prime}\right)
$$

- Note: We have two choices for the causal diamond - two representations of the geodesic operator

Local Bulk Operators

- How can we obtain local bulk operators? Invert the X-ray transform on a time-slice.

$$
f(x)=-\frac{1}{\pi} \int_{0}^{\infty} \frac{d}{d p}(\underset{d(x, \gamma)=p}{\underset{d v e r a g e}{ }} R f(\gamma)) \frac{d p}{\sinh p}
$$

- We integrate over all geodesics on a slice

$$
\phi(\text { center })=-\frac{1}{2 \pi} \iint d \alpha d \theta \tan \alpha \frac{d}{d \alpha} R \phi(\alpha, \theta)
$$

- For each geodesic, choose a diamond
- We only need to integrate over half of kinematic space for the time-slice

Local Bulk Operators

- Choosing which half of kinematic space determines which smearing representation of the bulk operator we obtain

Global smearing

Poincaré smearing

Local Bulk Operators

- Let's obtain the global smearing function

$$
\phi(\text { center })=-\frac{1}{\pi} \iint_{\text {half } K} d \alpha d \theta \tan \alpha \frac{d}{d \alpha} R \phi(\alpha, \theta)
$$

- In global coordinates, $R \phi$ becomes

$$
R \phi(\alpha, \theta)=\int_{\Delta} d \phi d \tau\left[2 \frac{(\cos \tau-\cos (\phi+\alpha))(\cos \tau-\cos (\phi-\alpha))}{1-\cos (2 \alpha)}\right]^{\Delta / 2-1} \mathcal{O}(\tau, \phi+\theta)
$$

- The result matches the HKLL result:

$$
\phi(\text { center })=\int_{\text {strip }} d^{2} x[\underbrace{\left[-(\cos \tau)^{\Delta-2} \log \cos \tau\right.}_{\text {HKLL Result }}+\underbrace{\left.(\cos \tau)^{\Delta-2} \log \epsilon\right]}_{\text {Divergent piece }} \mathcal{O}(x)
$$

- The divergent piece vanishes - its Fourier modes have no overlap with the bulk mode expansion (see HKLL 2006)

The Operator Product Expansion

- Consider a CFT in d dimensions.
- A product of local primary operators can be written as a sum over the primary operators in the theory:

$$
\begin{aligned}
O_{1}(x) O_{2}(y) & =\sum_{k} C_{12 k}(\underbrace{\left(1+\# \partial+\# \partial^{2}+\ldots\right)}_{\text {Fixed by conformal invariance }} O_{k}(x) \\
& \equiv \sum_{k}\left[O_{1}(x) O_{2}(y)\right]_{k}
\end{aligned}
$$

- The coefficients look a lot like a Taylor expansion. Can we "undo" it?

$$
\left[O_{1}(x) O_{2}(y)\right]_{k}=N_{12 k} \int d^{d} z\left\langle O_{1}(x) O_{2}(y) \tilde{O}_{k}^{\mu \nu \ldots}(z)\right\rangle O_{k \mu \nu \ldots}(z)
$$

- A "shadow operator" with $\tilde{\Delta}_{k}=d-\Delta_{k}$ gives the correct conformal transformation properties, but also includes unwanted pieces
[Simmons-Duffin 2014]
- What integration region? How to normalize? Is this a useful OPE?

The Operator Product Expansion

- The fix: integrate over a causal diamond

$$
\left[O_{1}(x) O_{2}(y)\right]_{k}=N_{12 k} \int_{\diamond} d^{2} z\left\langle O_{1}(x) O_{2}(y) \tilde{O}_{k}^{\mu \nu \ldots}(z)\right\rangle O_{k \mu \nu \ldots}(z)
$$

- Is this "projected OPE" related to the AdS_{3} geodesic operator?
- This object obeys a conformal Casimir equation

$$
\left(L_{1}+L_{2}\right)^{2}\left[O_{1}(x) O_{2}(y)\right]_{k}=C_{\Delta_{k}}^{2}\left[O_{1}(x) O_{2}(y)\right]_{k}
$$

- This Casimir equation is just a kinematic space wave equation if $O_{1}=O_{2}$

$$
\left(-\square_{d S \times d S}-m^{2}\right)\left[O_{1}(x) O_{1}(y)\right]_{k}=0
$$

- It also obeys the constraint equation:

$$
m^{2}=C_{\Delta_{k}}^{2}
$$

$$
\left(\square_{d S_{L}}-\square_{d S_{R}}\right)\left[O_{1}(x) O_{1}(y)\right]_{k}=(h-\bar{h})\left[O_{1}(x) O_{2}(y)\right]_{k}
$$

- Is has boundary conditions for small separation of the operators:

$$
\left[O_{1}(x) O_{2}(y)\right]_{k} \sim(y-x)^{\Delta_{k}-\Delta_{1}-\Delta_{2}} O_{k}\left(\frac{x+y}{2}\right)
$$

The Operator Product Expansion

- The projected OPE obeys the same equations of motion as the geodesic operator for AdS3, with the same boundary conditions
- They must be equal!

$$
\left[O_{1}(x) O_{1}(y)\right]_{k} \propto \frac{1}{(x-y)^{2 \Delta_{1}}} \int_{\gamma_{x \rightarrow y}} d s \phi_{k}
$$

- A product of boundary operators is localized on a geodesic

$$
O_{1}(x) O_{1}(y)=\frac{1}{(x-y)^{2 \Delta_{1}}} \sum_{k} C_{11 k} \underbrace{\phi_{k}}_{y}+\text { tensors, local descendants }
$$

- A bulk local operator can be written as a projected smeared bilocal

$$
\phi_{k}(\text { center })=-\frac{1}{\pi} \iint_{\text {half } K} d \alpha d \theta \tan \alpha \frac{d}{d \alpha}\left(\left(1-\cos \left(\phi_{2}-\phi_{1}\right)\right)^{2 \Delta_{1}}\left[O_{1}(\theta-\alpha) O_{1}(\theta+\alpha)\right]_{k}\right)
$$

Work in Progress

Bulk Tensor Fields

- What do we do with tensor operators in the bulk?

$$
\left[O_{1}(x) O_{2}(y)\right]_{k}=N_{12 k} \int_{\diamond} d^{2} z\left\langle O_{1}(x) O_{2}(y) \tilde{O}_{k}^{\mu \nu \ldots}(z)\right\rangle O_{k \mu \nu \ldots}(z)
$$

- A hint from the modular Hamiltonian:
$\int_{\diamond} d^{2} x\left\langle O_{1}\left(x_{0}-R\right) O_{1}\left(x_{0}+R\right) \tilde{T}^{\mu \nu}(x)\right\rangle T_{\mu \nu}(x)=2 \pi \int d x \frac{\left(x-x_{0}\right)^{2}-R^{2}}{2 R} T_{00}(x)$
- The modular Hamiltonian is a kinematic operator!

$$
H_{\mathrm{mod}}=\delta A=\int_{\gamma} d s \delta g_{\mu \nu} \hat{v}^{\mu} \hat{v}^{\nu}
$$

Entanglement equation of motion \longleftrightarrow Einstein's equations

- Take the OPE of twist operators to derive the modular Hamiltonian

$$
\sigma_{n}^{\dagger}(x) \sigma_{n}(y)=\frac{1}{(y-x)^{\frac{c}{6}\left(n-\frac{1}{n}\right)}}(1+(1-n) H_{\mathrm{mod}}+\underbrace{\text { other operators })}_{\text {Suppressed by }(1-n) \text { or }}
$$

Higher Dimensions

- What do we do in higher dimensions?
- Spacelike separated points correspond to geodesics
- Timelike separated points correspond to minimal surfaces
- Define the Radon transform of a function - its integral over the minimal surface
- The previous discussion holds - a diamond-smeared boundary operator is a bulk surface operator
- The ($\mathrm{d}-1$) boosts provide ($\mathrm{d}-1$) constraints
- The modular Hamiltonian is again a kinematic operator
- Timelike kinematic space for \mathbb{H}_{d} is dS_{d}

Tensor Networks

- The MERA tensor network for a 2D CFT ground state naturally lives on $\mathbf{d S}_{\mathbf{2}}$ - more generally, on 2D kinematic space [Beny 2011; Czech, Lamprou, McCandlish, Sully 2015]
- Each tensor is associated with a boundary ball in its asymptotic past
- Does kinematic space tell us how to generalize MERA to higher dimensions, including time?

Beyond the Vacuum

- The previous discussion holds if we consider a quotient of AdS
- Kinematic space is also a quotient of the AdS kinematic space
- Non-minimal "entwinement" geodesics come from winding diamond operators

Interactions

- How do $1 / \mathrm{N}$ corrections appear in this description?
- The X-Ray (or Radon) transform transforms the free equation of motion:
$(\tilde{\phi}=R \phi)$
$\left(\square_{X}-m^{2}\right) \phi=0 \quad \Longrightarrow \quad\left(-\square_{K}-m^{2}\right) \tilde{\phi}=0$
- If we add local bulk interactions, we get a nonlocal interaction in kinematic space (similar to momentum space)

$$
\left(\square_{X}-m^{2}\right) \phi=\phi^{3} \quad \Longrightarrow \quad\left(-\square_{K}-m^{2}\right) \tilde{\phi}=R\left(R^{-1} \tilde{\phi}\right)^{3}
$$

- Can we include Virasoro descendants in 2D?

Entanglement Wedge

- Geodesic operators are Rindler-wedge operators
- How can we get local Rindler-wedge operators?
- How can we invert the X -ray transform with limited data?
- Is the Ryu-Takayanagi transition a phase transition in the limited data inversion formula for the X-ray transform?

