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How do we probe the bulk?

• From a dual field theory localized on the boundary, we 
see into the bulk. 

• Some CFT quantities involve probes extending inward 
from the boundary: 

• Entanglement entropy, Wilson loops 

• Local bulk operators however, are represented as 
smeared operators on the boundary 

• How does a smeared operator see into the bulk?
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Bulk Reconstruction

• Let 𝜙 be a free field in AdS 

• The AdS/CFT dictionary relates 
𝜙 to a boundary operator O 

• How do we solve this boundary 
value problem?

⇤� = m2�

A non-standard
Cauchy problem!

�(z, x) ⇠ z

�O(x)
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Bulk Reconstruction
• Standard construction: bulk local operator 

is a smeared boundary operator  
[Bena 99;  Hamilton, Kabat, Lifschytz, Lowe 05] 

• The smearing function K is determined by 
“brute force” from the bulk mode expansion 

• Some remaining questions: 

• Extension to other geometries?  
(Causal vs Entanglement wedge?) 

• How to write as an operator at one time? 

• Why does this see into the bulk? 

⇤� = m2�

A non-standard 
Cauchy problem!

� (z, x) =

Z
dx

0
K (x0 | z, x)O (x0)

�(z, x) ⇠ z

�O(x)
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Bulk Reconstruction
• A detour through kinematic 

space will provide insight!

Non-standard 
Cauchy problem

Standard 
Cauchy problem

Real Space Kinematic Space
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Plan
• Bulk field reconstruction and integral geometry 

• The X-Ray transform 
• Structure of kinematic space 
• Intertwining operators and kinematic fields 
• Geodesic operators and Local bulk operators 
• The space of CFT bilocals 

• Generalizations and applications (work in progress): 
• Bulk tensor operators and the modular Hamiltonian 
• Higher dimensions 
• MERA 
• Beyond the vacuum 
• Bulk interactions (1/N corrections)
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The X-Ray Transform
• Kinematic space K: the space of oriented spacelike 

geodesics in a manifold M 

• A point in K corresponds to a geodesic in M

Real Space  M Kinematic Space  K

𝛾

𝛾
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The X-Ray Transform
• The X-Ray transform: maps a function on real space to a function 

on kinematic space by integrating over geodesics

• Inversion formulas are known for some symmetric cases 
(hyperbolic space, flat space)

𝛾

𝛾

f(x)
Rf(�) =

Z

�
dsf(x)

M K
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The X-Ray Transform
• Example: let M be  

• Parameterize geodesics by midpoint 𝜽 and opening angle 𝛼

f(x)

M K

H2

θ

α

θ

α

Rf(↵, ✓) =

Z

�↵,✓

dsf(x)
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The X-Ray Transform
• Definition of X-Ray Transform: 

• Inversion formula: [Helgason]

f(x)
Rf(↵, ✓) =

Z

�↵,✓

dsf(x)

f (x) = � 1

⇡

Z 1

0

d

dp

 
average
d(x,�)=p

Rf (�)

!
dp

sinh p

d(x, �)

10



/  32

Structure of Kinematic Space
• We want to find an equation of motion for  

• First, we must fix a metric on kinematic space - a distance 
function on the space of geodesics

• Kinematic Space for AdSn or Hn is a highly symmetric 
space 

• No distinguished geodesics: all spacelike geodesics are 
related by symmetry 

• We can fix a unique metric on K using this symmetry

R�(�)
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Structure of Kinematic Space
• Fix a unique metric on K using invariance under 

conformal symmetry 

• Parameterize a geodesic by its endpoints  

• The metric must be of the form 

• Scaling and translation fix  

• Inversion                 fixes a = –2 b 

• Note to experts: These same requirements fix the 
CFT two-point function of vector fields 

ds

2 = fµ⌫dx
µ
dy

⌫

fµ⌫ =
1

(x� y)2

 
a

(x� y)µ (x� y)⌫

(x� y)2
+ b⌘µ⌫

!

✓
x

µ ! x

µ

x

2

◆

hOµ (x)O⌫ (y)i

ds

2 =
1

(x� y)2

 
⌘µ⌫ � 2

(x� y)µ (x� y)⌫

(x� y)2

!
dx

µ
dy

⌫

x y

x+dx y+dy

𝛾
𝛾+d𝛾
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Structure of Kinematic Space
• What is this metric? 

• It is (2d)-dimensional - d space, d time 

• For AdS3, it is dS2 x dS2: 

• For Hyperbolic 2-space, it is the diagonal dS2 

• The causal structure is determined by  
containment of boundary causal diamonds 

• The asymptotic past of K is the boundary of AdS

𝛾

x y

ds

2 =
1

(x� y)2

 
⌘µ⌫ � 2

(x� y)µ (x� y)⌫

(x� y)2

!
dx

µ
dy

⌫

(uL, vL) =

✓
x

1 � x

0

2
,

x

1 � x

0

2

◆

ds2 =
1

2

duLduR�
uR�uL

2

�2 +
1

2

dvLdvR�
vR�vL

2

�2

Left-moving dS Right-moving dS

Boundary of AdS13
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Intertwining Operators
• We want to find two equations of motion for  

• We will find:                                      

• Also,                                    

R�(�)

R⇤AdS3 = �⇤dS⇥dSR

⇤AdS3� = m2�

Non-standard 
Cauchy problem

Standard 
Cauchy problem

AdS3 dS2 x dS2

(⇤dSL �⇤dSR)Rf = 0

⇤dS⇥dS R� = �m2 R�

(⇤dSL �⇤dSR)R� = 0
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Intertwining Operators
• First step: write              as an integral over all of space 

• For Euclidean space:  

• For Lorentzian space: 

• Can show:  

• Comes from relationship to conformal Casimir operator 

• Integrating by parts proves the intertwinement relation: 

d(x, �)

Rf(�)

(⇤AdS3 +⇤dS⇥dS)F (d (x, �)) = 0

R⇤AdS3� = �⇤dS⇥dSR�

Rf (�) =

Z

�
ds f (x) =

Z
d

d
x f (x) F (d (x, �))

F (x) =
� (x)

x

d�2
Sd�2

F (x) =

� (x)

x

d�2
log xSd�3
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Intertwining Operators

• Can also show: 

• Directly implies  

• Comes from a redundancy in the Radon transform 

• f  is a function of 3 variables, but 
Rf  is a function of 4 variables 

• The constraint reduces this dimensionality by 1 

• E.g., can determine boosted geodesics in terms of 
unboosted geodesics 

• Similar result in flat space: “John’s equation”

(⇤dSL �⇤dSR)F (d (x, �)) = 0

Rf (�) =

Z

�
ds f (x) =

Z
d

d
x f (x) F (d (x, �))

(⇤dSL �⇤dSR)Rf = 0
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Geodesic Operators
• Now, solve the Cauchy problem to determine the 

geodesic operators 

• The geodesic operator depends only on the boundary 
values in the causal diamond it subtends!

x y

�(z, x) ⇠ z

�O(x)

⇤AdS3� = m2�

(⇤dSL �⇤dSR)R� = 0

R� (x, y) ⇠ c� (y � x)� O
✓
x+ y

2

◆

(⇤dSL +⇤dSR)R� = �m2R�Equations of Motion:

Boundary Conditions:
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Geodesic Operators
• Now, solve the Cauchy problem to determine the 

geodesic operators 

• The result: a smeared operator on the causal diamond  
(see previous talk for details)

x y

R� (�) =

Z

�
ds� (x) =

Z

⇧
d

2
x

0
✓ |y � x

0| |x0 � x|
|y � x|

◆��2

O (x0)

𝛾
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• The result: a smeared operator on the causal diamond 
(see previous talk for details) 

• Note: We have two choices for the causal diamond – two 
representations of the geodesic operator

Geodesic Operators

R� (�) =

Z

�
ds� (x) =

Z

⇧
d

2
x

0
✓ |y � x

0| |x0 � x|
|y � x|

◆��2

O (x0)

x

y
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• How can we obtain local bulk operators?  
Invert the X-ray transform on a time-slice. 

• We integrate over all geodesics on a slice 

• For each geodesic, choose a diamond 

• We only need to integrate over half of 
kinematic space for the time-slice

Local Bulk Operators

f (x) = � 1

⇡

Z 1

0

d

dp

 
average
d(x,�)=p

Rf (�)

!
dp

sinh p

θ

α

� (center) = � 1

2⇡

ZZ
d↵d✓ tan↵

d

d↵
R� (↵, ✓)

θ

α
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• Choosing which half of kinematic space determines which 
smearing representation of the bulk operator we obtain

Local Bulk Operators

Global smearing Poincaré smearing

21
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• Let’s obtain the global smearing function

• In global coordinates,       becomes 

• The result matches the HKLL result: 

• The divergent piece vanishes – its Fourier modes have no 
overlap with the bulk mode expansion    (see HKLL 2006)

Local Bulk Operators

� (center) = � 1

⇡

ZZ

half K
d↵d✓ tan↵

d

d↵
R� (↵, ✓)

R�

R� (↵, ✓) =

Z

⇧
d�d⌧


2

(cos ⌧ � cos (�+ ↵)) (cos ⌧ � cos (�� ↵))

1� cos (2↵)

��/2�1

O (⌧,�+ ✓)

� (center) =

Z

strip
d

2
x

h
� (cos ⌧)

��2
log cos ⌧ + (cos ⌧)

��2
log ✏

i
O (x)

HKLL Result Divergent piece
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The Operator Product Expansion
• Consider a CFT in d dimensions. 

• A product of local primary operators can be written as a sum over the 
primary operators in the theory: 

• The coefficients look a lot like a Taylor expansion. Can we “undo” it? 

• A “shadow operator” with                     gives the correct conformal 
transformation properties, but also includes unwanted pieces 
 [Simmons-Duffin 2014] 

• What integration region? How to normalize?  Is this a useful OPE?

O1 (x)O2 (y) =
X

k

C12k

�
1 + #@ +#@2 + . . .

�
Ok (x)

Fixed by conformal invariance

[O1 (x)O2 (y)]k = N12k

Z
ddz

D
O1 (x)O2 (y) Õ

µ⌫...
k (z)

E
Ok µ⌫... (z)

�̃k = d��k

⌘
X

k

[O1 (x)O2 (y)]k
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The Operator Product Expansion
• The fix: integrate over a causal diamond

• Is this “projected OPE” related to the AdS3 geodesic operator?

• This object obeys a conformal Casimir equation

• This Casimir equation is just a kinematic space wave equation if

• It also obeys the constraint equation: 

• Is has boundary conditions for small separation of the operators:

(L1 + L2)
2 [O1 (x)O2 (y)]k = C2

�k
[O1 (x)O2 (y)]k

m2 = C2
�k

[O1 (x)O2 (y)]k = N12k

Z

⇧
d2z

D
O1 (x)O2 (y) Õ

µ⌫...
k (z)

E
Ok µ⌫... (z)

(⇤dSL �⇤dSR) [O1 (x)O1 (y)]k =
�
h� h̄

�
[O1 (x)O2 (y)]k

�
�⇤dS⇥dS �m2

�
[O1 (x)O1 (y)]k = 0

O1 = O2

[O1 (x)O2 (y)]k ⇠ (y � x)�k��1��2 Ok

✓
x+ y

2

◆
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The Operator Product Expansion
• The projected OPE obeys the same equations of motion as the 

geodesic operator for AdS3, with the same boundary conditions 

• They must be equal! 

• A product of boundary operators is localized on a geodesic

• A bulk local operator can be written as a projected smeared bilocal

[O1 (x)O1 (y)]k / 1

(x� y)2�1

Z

�
x!y

ds�k

x

y

+ tensors, local descendants
�k

O1(x)O1(y) =
1

(x� y)2�1

X

k

C11k

�k (center) = � 1

⇡

ZZ

half K
d↵d✓ tan↵

d

d↵

⇣
(1� cos (�2 � �1))

2�1
[O1 (✓ � ↵)O1 (✓ + ↵)]k

⌘
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Work in Progress
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Bulk Tensor Fields
• What do we do with tensor operators in the bulk? 

• A hint from the modular Hamiltonian: 

• The modular Hamiltonian is a kinematic operator! 

• Take the OPE of twist operators to derive the modular Hamiltonian

[O1 (x)O2 (y)]k = N12k

Z

⇧
d2z

D
O1 (x)O2 (y) Õ

µ⌫...
k (z)

E
Ok µ⌫... (z)

Z

⇧
d2x

D
O1 (x0 �R)O1 (x0 +R) T̃µ⌫ (x)

E
Tµ⌫ (x) = 2⇡

Z
dx

(x� x0)
2 �R2

2R
T00 (x)

H
mod

= �A =

Z

�
ds �gµ⌫ v̂

µv̂⌫

27

�†
n (x)�n (y) =

1

(y � x)
c
6 (n�

1
n )

(1 + (1� n)H
mod

+ other operators)

Suppressed by (1–n) or 
supported on multiple orbifold sheets

Entanglement equation of motion Einstein’s equations

[Nozaki, Numasawa, Prudenziati, Takayanagi] 
[de Boer, Myers, Heller, Neiman] 

[Lashkari, McDermott, van Raamsdonk] 
[Swingle, van Raamsdonk] 



/  32

Higher Dimensions
• What do we do in higher dimensions? 

• Spacelike separated points correspond to geodesics 

• Timelike separated points correspond to minimal surfaces

• Define the Radon transform of a function - its integral over 
the minimal surface 

• The previous discussion holds - a diamond-smeared 
boundary operator is a bulk surface operator 

• The (d-1) boosts provide (d-1) constraints 

• The modular Hamiltonian is again a kinematic operator 

• Timelike kinematic space for       is  
[deBoer, Heller, Myers, Neiman  2015]

Hd dSd
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Tensor Networks
• The MERA tensor network for a 2D CFT ground state naturally 

lives on dS2 – more generally,  on 2D kinematic space       
[Beny 2011;   Czech, Lamprou, McCandlish, Sully 2015] 

• Each tensor is associated with a boundary ball in its 
asymptotic past 

• Does kinematic space tell us how to generalize MERA to 
higher dimensions, including time?
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Beyond the Vacuum

• The previous discussion holds if we 
consider a quotient of AdS 

• Kinematic space is also a quotient of 
the AdS kinematic space

• Non-minimal “entwinement” geodesics 
come from winding diamond operators
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Interactions
• How do 1/N corrections appear in this description? 

• The X-Ray (or Radon) transform transforms the free 
equation of motion: 

• If we add local bulk interactions, we get a nonlocal 
interaction in kinematic space (similar to momentum 
space) 

• Can we include Virasoro descendants in 2D?

�
⇤X �m2

�
� = 0 =)

�
�⇤K �m2

�
�̃ = 0

(�̃ = R�)

�
⇤X �m2

�
� = �3 =)

�
�⇤K �m2

�
�̃ = R

⇣
R�1�̃

⌘3
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Entanglement Wedge
• Geodesic operators are Rindler-wedge operators 

• How can we get local Rindler-wedge operators? 

• How can we invert the X-ray transform with limited data?

• Is the Ryu-Takayanagi transition a phase transition in the 
limited data inversion formula for the X-ray transform?

vs
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