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How do we probe the bulk”

 From a dual field theory localized on the boundary, we
see into the bulk.

 Some CFT quantities involve probes extending inward
from the boundary:

* Entanglement entropy, Wilson loops

* | ocal bulk operators however, are represented as
smeared operators on the boundary

 How does a smeared operator see into the bulk?
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Bulk Reconstruction

y

. Let ¢ be a free field in AdS —

¢:m2gb ~ vV

 The AdS/CFT dictionary relates
¢ to a boundary operator O - L

Pz, 7) ~ ZAO(@ A non-standard
Cauchy problem!
* How do we solve this boundary
value problem?
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Bulk Reconstruction

e Standard construction: bulk local operator

IS a smeared boundary operator —
[Bena 99; Hamilton, Kabat, Lifschytz, Lowe 05]

gb(z,x):/daz’K(x’|z,x)(’)($’) - v

* The smearing function Kis determined by
“brute force” from the bulk mode expansion

y

e SOome remaining questions:
* Extension to other geometries? A non-standard
(Causal vs Entanglement wedge?) Cauchy problem'
* How to write as an operator at one time? b = ngb
» Why does this see into the bulk? ¢(z, ) ~ ZAO(x)
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Bulk Reconstruction

e A detour through kinematic
space will provide insight!

Real Space Kinematic Space

— — 7t XX

Non-standard Standard
Cauchy problem Cauchy problem




Plan

» Bulk field reconstruction and integral geometry
 The X-Ray transform
e Structure of kinematic space
* Intertwining operators and kinematic fields
e (Geodesic operators and Local bulk operators

* The space of CFT bilocals

* (GGeneralizations and applications (work in progress):
e Bulk tensor operators and the modular Hamiltonian
* Higher dimensions
« MERA
 Beyond the vacuum
e Bulk interactions (1/N corrections)
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The X-Ray Transform

* Kinematic space K: the space of oriented spacelike
geodesics in a manifold M

A point in K corresponds to a geodesic in M

Real Space M Kinematic Space K
- =
— I —

o/
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The X-Ray Transform

* The X-Ray transform: maps a function on real space to a function
on kinematic space by integrating over geodesics

* |nversion formulas are known for some symmetric cases
(hyperbolic space, flat space)

M — — K
- ] —>
o )4
f(x) —» Rf(y) = / dsf(z)
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The X-Ray Transform

¢ Example: let M be Hs

« Parameterize geodesics by midpoint 8 and opening angle a

f(z) —> Rf(a,0) = dsf(x)

’Yoz@

9% K

o ™

M

g\
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The X-Ray Transform

* Definition of X-Ray Transform:

flx) —> Rf(a,e):/ ds f(z)

Yo ,6

* Inversion formula: [Helgason]

1 (> d d
fz)=—— /O . (average Rf (7)) Smfl 5
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Structure of Kinematic Space

« We want to find an equation of motion for Re(~)

* First, we must fix a metric on kinematic space - a distance
function on the space of geodesics

» Kinematic Space for AdSy or Hn is a highly symmetric
space

 No distinguished geodesics: all spacelike geodesics are
related by symmetry

* \We can fix a unigue metric on K using this symmetry
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Structure of Kinematic Space

* Fix a uniqgue metric on K using invariance under
conformal symmetry x+ax  y+dy
 Parameterize a geodesic by its endpoints > .-y
» The metric must be of the form ds® = f,,, dz"dy” - _
e Scaling and translation fix fu.. = ! 5 (a = y), (@ 2_ 2L + bmw>
(z —y) (z—y

e |nversion (f'?“ — ﬁ) fixesa=-2b

i ( 1 . (W NG —(y)u <a:)2— y>,,> Loty
Tr— r—Y
o \y+dy
oY
» Note to experts: These same requirements fix the

CFT two-point function of vector fields (O,, (x) O, (y))
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Structure of Kinematic Space

What is this metric? __ >
752 — 1 : (nMV_Q(Zl?y),u, (332:9)1/> dat dy” y
(z —y) (z —y)
X B%
It is (2d)-dimensional - d space, dtime
SN— ___—
1 durdu 1 dvrdv (ur,ve) = (xlgxo’:cl;xo)
For AdSs, it is dSz x dSz: ds” = 5 (URL_UL;Z +3 (URL_ULJ;Q
up_ur, vR—vL,
Left-moving dS Right-moving dS @
For Hyperbolic 2-space, it is the diagonal d&.

The causal structure is determined by
containment of boundary causal diamonds

? ;
The asymptotic past of Kis the boundary of AdS < y
Boundary of AdS



Intertwining Operators

» We want to find two equations of motion for R¢ ()

» We will find: R

® AlSO, ( dSp —

AdS, = —1gsxas

isp) Bf =0

— t X t X

Non-standard
Cauchy problem
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isxds R = —m? R¢

9
Ad53¢_ m ¢ — ( s, — dSR)R¢: 0
AdSs dSs x dS,
>

Standard
Cauchy problem



Intertwining Operators

e First step: write Rf(7) as an integral over all of space

Rf (7) Z/dsf(:v) =/ddxf(x) F(d(z,7))
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* [or Euclidean space: F(z) =

* [For Lorentzian space: r (z) =

d ()

zd-28,_,

5 (z) d(x,7) )

- z92]ogx Sy_3

Can show: (Hads; +Uasxas) F (d(z,7)) =0

 (Comes from relationship to conformal Casimir operator

* Integrating by parts proves the intertwinement relation:

R

AdSs P = —

dSxds o



Intertwining Operators

Rf (7) =/dsf<x> =/d%f<x> F(d(z,7))

e Can also show: (Has; —Uasg) £ (d(z,7v)) =0

« Directly implies (Jas, — Dasy) Bf =0 —
 Comes from a redundancy in the Radon transform
\-
« fis afunction of 3 variables, but
Rf i1s a function of 4 variables
SN——

 [he constraint reduces this dimensionality by 1

 E.g., can determine boosted geodesics in terms of
unboosted geodesics

o Similar result in flat space: “John’s equation”
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Geodesic Operators

* Now, solve the Cauchy problem to determine the
geodesic operators

(Ogs, + Oasy) Rp = —m*Re

(Has, —Uas,) Rp =0
A x +?J

Equations of Motion:  Hagg,¢ = m?*¢p ——»

Boundary Conditions: ¢(z,z) ~ 2°0(z) —» R (x,y) ~ ca (

ol - XK

* [he geodesic operator depends only on the boundary
values in the causal diamond it subtends!
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Geodesic Operators

* Now, solve the Cauchy problem to determine the
geodesic operators

E XX

* [he result: a smeared operator on the causal diamond
(see previous talk for details)

Rcb(v)zfydsgb(w):/od%’ (y‘m"'m"x’)me’)

ly —
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Geodesic Operators

 The result: a smeared operator on the causal diamond

(see previous talk for details)

R¢ () Zlds¢(w) =/<>d2x’ (‘y_‘j‘_‘i’_x‘>A20(x')

 Note: We have two choices for the causal diamond — two
representations of the geodesic operator

- 0L

X0 ‘<
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| ocal Bulk Operators

How can we obtain local bulk operators?

Invert the X-ray transform on a time-slice.

1 [ d d
f(x) = —;/O . (average Rf (fy)) sinﬁp

d(z,y)=p

We integrate over all geodesics on a slice

¢ (center) = —— // dadf tan o —Rgb (c, 0)

For each geodesic, choose a diamond

We only need to integrate over half of
kinematic space for the time-slice

Q

\IJ

14
A

\>€



| ocal Bulk Operators

* Choosing which half of kinematic space determines which
smearing representation of the bulk operator we obtain

Global smearing Poincaré smearing
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| ocal Bulk Operators

* |Let's obtain the global smearing function

1
¢ (center) = —— // dadf tan o quﬁ (c, 0)
halt K

T do

* In global coordinates, 2@ becomes

(1,¢+90)

(cosT — cos (¢ + ) (cos T — cos (¢ — a))]2/*7!
: 1

fg(a.0) = /dgde 1 — cos (2a)

<o

* [he result matches the HKLL result:

¢ (center) = / d*x [— (cos 7)™ 2 logcos T + (cos 7)™ % log e} O (x)
strip

| | L |
HKLL Result Divergent piece

 The divergent piece vanishes — its Fourier modes have no
overlap with the bulk mode expansion (see HKLL 2006)
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The Operator Product Expansion

e (Consider a CFT in d dimensions.

o A product of local primary operators can be written as a sum over the
primary operators in the theory:

O1 (2) Oz (y) = »  Chan (.1 + #0 + #0° + .. I) Oy, (x)
& Fixed by conformal invariance

=> (01 (z) Oz (y)),
k
 The coefficients look a lot like a Taylor expansion. Can we “undo” it?

01 ()03 (), = Niax [ % (01 (2) 02 (4) O (2)) O ... 2

» A “shadow operator” with A, =d — A, gives the correct conformal
transformation properties, but also includes unwanted pieces
[Simmons-Duffin 2014]

« What integration region? How to normalize” Is this a useful OPE?
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The Operator Product Expansion

* The fix: integrate over a causal diamond

01() 02 (] = Nize | @2 (01 () 02 (1) 0L (2)) O .. (2

&

* |sthis “projected OPE” related to the AdSs geodesic operator?
e This object obeys a conformal Casimir equation

(L1 + L2)” [O1 (z) O2 (y)],, = CX, [01 (z) O2 (y)],

* This Casimir equation is just a kinematic space wave equation if O; = O,

(— dSxdS — m2) O1(2)O1(y)], =0
* |t also obeys the constraint equation:

(Bas, — Oasy) [01 (2) O1 ()], = (b — h) [O1 (z) O2 (y)],
* |s has boundary conditions for small separation of the operators:

01 (2) O3 ()], ~ (y — )™ 2722 Oy (m J2r ?/)

m? = C’Zk
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The Operator Product Expansion

The projected OPE obeys the same equations of motion as the
geodesic operator for AdS3, with the same boundary conditions

They must be equall
1

01 () O1 (y)],, A, / ds ¢y

(z —y) gt

A product of boundary operators is [ocalized on a geodesic
b

r—1y

O1(z)O01(y) (x— )% Z Cl1x + tensors, local descendants

Y
A bulk local operator can be written as a projected smeared bilocal

s (87

¢r. (center) = 1 //half B dadf tan o di ((1 — cos (o — $1))*21 (01 (0 — @) O1 (0 + a)]k)



Work In Progress



Bulk Tensor Fields

* What do we do with tensor operators in the bulk?
01 (2) 02 ()], = Nm/dzz <01 () Oz (y) O (Z)> Ok pv... (2)

&

A hint from the modular Hamiltonian:

/ Pz (01 (20— R) Oy (20 + R) T (2)) Ty (2) = 2 / P G xgg — R @

&

* The modular Hamiltonian is a kinematic operator!
[Nozaki, Numasawa, Prudenziati, Takayanagi

]
- — Y V/eY % [de Boer, Myers, Heller, Neiman]
Hmod - 5A - / dS 5gll,LV/U v [Lashkari, McDermott, van Raamsdonk]
]
Y

[Swingle, van Raamsdonk

Entanglement equation of motion «—— Einstein’s equations

* Take the OPE of twist operators to derive the modular Hamiltonian

ol (z)op (y) = lc — (1 4+ (1 —n) Hpoa + other operators)
(y— )i () . |
Suppressed by (1-n) or
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Higher Dimensions

 What do we do in higher dimensions”
* Spacelike separated points correspond to geodesics

* Timelike separated points correspond to minimal surfaces

* Define the Radon transform of a function - its integral over
the minimal surface

* The previous discussion holds - a diamond-smeared /\
boundary operator is a bulk surface operator
 The (d-1) boosts provide (d-1) constraints v

* [he modular Hamiltonian is again a kinematic operator

 Timelike kinematic space for Hg is dSy

[deBoer, Heller, Myers, Neiman 2015]
28 | 32



lensor Networks

 The MERA tensor network for a 2D CFT ground state naturally

lives on dS,; — more generally, on 2D kinematic space
[Beny 2011; Czech, Lamprou, McCandlish, Sully 2015]

 Each tensor is associated with a boundary ball in its
asymptotic past

* Does kinematic space tell us how to generalize MERA to
higher dimensions, including time?
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Beyond the Vacuum

* The previous discussion holds if we
consider a quotient of AdS

* Kinematic space is also a quotient of
the AdS kinematic space

 Non-minimal "entwinement” geodesics
come from winding diamond operators
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INnteractions

 How do 1/N corrections appear in this description?

 The X-Ray (or Radon) transtform transtorms the free
equation of motion: (é — R¢)

(Ox —m*)p=0 = (- K—WLZ)QBZO

* |t we add local bulk interactions, we get a nonlocal

interaction in kinematic space (similar to momentum
space)

~S

Ox —m?)p=¢> = (- K—mz)qB:R(R—lqs)g

e Can we include Virasoro descendants in 2D?
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Entanglement Wedge

 (Geodesic operators are Rindler-wedge operators
« How can we get local Rindler-wedge operators?
« How can we invert the X-ray transtorm with limited data?

* |s the Ryu-Takayanagi transition a phase transition in the
imited data inversion formula for the X-ray transtform?

VS
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