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My thinking about this subject has been shaped by
collaborators on three recent papers:

with Liam Fitzpatrick

arXiv 1307.0004 Jared Kaplan
arXiv 1312.3321 Sri Raghu

ArXiv 1402 xxxx and (most recent one)
' Steve Kivelson

Sunday, February 23, 14



This subject is a fitting one for the occasion.

A A A A

| first met Joe at TASI 1992, which
he was co-directing.

His lectures on “Effective field theory and the Fermi
surface” were aimed at educating high energy theorists
about the fun mysteries of high Tc.

(They are now a standard reference for the QFT
approach to Fermi liquid theory.)
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Much later; in 2001, | was lucky to collaborate with Joe (and
Steve Giddings) on a paper about flux compactification of
string theory and warped geometries.

warped throat

This collaboration shaped the direction of my research for 5
years and was a tremendous learning experience for me.
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|. The basic problem and setup

Since this is a mixed audience, let me review the basic
physics we're trying to understand. Many metals are
well described by adiabatic modifications of a free electron
model:

Fairly robustly in the simplest
setting, fermions contribute:

Cy ~T
Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface

are filled with both a spin-up and a spin-down elec- 2
tron. A particle-hole excitation is made by promoting IO mY Z

an electron from a state below the Fermi surface to an
empty one above it.
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There are setting in modern materials, which many people
in Santa Barbara understand better than me, where this
breaks down:

non-
Ferma-
liquad

magnetic
metal Fermi-

9 liquud T, T
- -~
tuning parameter

Figure 6: Resistivity versus temperature in a typical high-T, material: zero
below T, and linear above.

This is hard to incorporate in the minimal effective
theory that e.g. Joe studied. Lets start with his theory
(i.e. Landau’s Fermi liquid, ala Polchinski and Shankar).
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Figure 1: Fermi sea (shaded) with two low-lying excitations, an electron at
p1 and a hole at ps.

The free action governing these
basic quasiparticles is:

/ dt d*p { it} (p)0sbs(p) — (£(P) — er)tl(P)ts(P) |-
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What about interactions? Lets study an RG and
see if this free theory is stable or not.

The RG is a bit unusual for high energy theorists.
One scales towards the Fermi surface:

L empty states
p=k+1,

filled states

Az

e(p) —er = lop(k) + O(1?),

dt — s 'dt, dk — dk, dl — sdl, 0, — s0,, | — sl,

yielding a Fermi field that scales as

b — s 2.
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S0, what dangerous terms could arise to destabilize
the Fermi liquid?

* 11 could be shifted. No problem.

* The leading possible interactions are four-Fermi:

/ dt 4%k, dly d%ke, dly d%ks dls d?ky dl, V (ky, Ky, ks, k)

Ul (P1) e (P2)1), (P2) e (P4)8* (P1 + P2 — P3 — Pa).

Naively, these scale to zero ~ s.

This is too quick:
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a) b)

Figure 3: a) For two generic points near a two-dimensional Fermi surface, the
tangents dk; are linearly independent. b) For diametrically opposite points
on a parity-symmetric Fermi surface, the tangents are parallel.

For antipodal momenta, the delta function scales as
s~ ! yielding a marginal “BCS” operator.

This gives the only instability of the fixed point.
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Since the standard theory cannot explain the non-Fermi
liquid scalings, what can we add!?

These systems exhibit phase transitions (nematic order,
magnetic order,...). Natural to add a bosonic order
parameter field. So, we (and others) have tried to
find interesting behaviors in this theory:

S = /dT/ddx {[@ -+ [:qs + £¢,¢}
£¢ QEJ [87' =+ M E(ZV)] wa + Awiawa’ia’wa
mgd? + (0:¢)° + ¢ (%)2 + As(00)°

Ly

The bosons and fermions are coupled by a Yukawa
function:
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dd—l—lkdd—l—l
Sy, = / (QW)Q(dH)qg(k,q)%(k)%(k+Q)¢(Q)

g(kp) ~ cos(k%) — cos(k%)

Can the addition of the bosonic order parameter to the
story lead to interesting new (approximate) fixed points!?

ll. Basic conflict in the coupled system

The coupling leads to a titanic struggle between bosonic
and fermionic degrees of freedom:
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The fermions can damp the bosons (intuitively, a boson can
decay into a fermion pair):

ab ab

Meanwhile, the bosons can dress the fermions into a non-
Fermi liquid:

Sunday, February 23, 14



A standard approach builds on the venerable
“Hertz-Millis theory”:

—1
1 qr

> D(Q)N( ;q;+ +) |
Yy

FIG. 2: The one-loop boson self energy.

Extrapolating to very low energy, this gives a
=3" boson. Feeding this back into the fermion
self-energy:

can now Yyield a non-Fermi
m liquid, if one allows the
- correction to dominate at

low-energy
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A long line of work building in this direction exists:

Hertz, 1976
Millis, 1993
Polchinski, 1994
Nayak, Wilczek, 1994
Oganesyan, Kivelson, Fradkin 200
Chubukov et al, 2006
S5.S. Lee, 2009
Metlitski, Sachdev 2010
Mross, McGreevy, Liu, Senthil 2010

We go in a different direction.




We will only do systematic perturbation theory about the
UV, and look for non-Fermi liquid fixed points or
intermediate scaling regimes that we can reliably access

that way.

As a function of energy, we will

e e estimate scales where corrections
become so large that our analysis
g e breaks down. Sometimes these

. can be pushed to zero.

But in a problem with IR “domes,” finding an intermediate
scaling regime governed by an approximate fixed point is

just fine.
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lIl. Our analysis: small v/c (and/or large N)

The theory we are perturbing by the Yukawa interaction
(including the Yukawa itself)

S = /dT/dd:I: {£¢ + £¢ + £¢,¢}
L@D QEJ [87' + M E(ZV)] wa + Awiawa”‘;a’wa
36+ (0:0)° + (V) + Ao(00)

Ly

has an upper critical dimension of d=3+1.

So, we study it in the epsilon expansion, and in

€¢ %)

perturbation theory in “g”, with two
additional handles to control it:
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a) We can consider a matrix large N boson coupled to
flavors of fermions (with boson self-interactions treated in
such a way that they give an O(N?) Wilson-Fisher like
model)

b) The system is non-relativistic, and characterized by a
fermion velocity v and a boson velocity c. We will
see that the ratio v/c can serve as a small parameter

allowing us to see what happens at N=1.

| will focus on b), simply mentioning what N does when
relevant .
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The boson self-energy can be evaluated in a standard way:

FIG. 1: The one-loop diagram contributing to Landau damp-
ing.

9k D 1, 90—V
2720 20¢ Jo + vq

a=3(q0,q) =

When the bosons are fast -- v <c¢ --itis purely real.

This reflects the kinematics that bosons cannot decay
to fermions in this limit.
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In fact, in the small v/c limit, the leading behavior is

9’k ¢’
2712 qf

- O(v?),

H(QO7 Q) ~ U

indicating that small v should broaden an energy range
where the bosonic “dressing” of the fermions dominates
over Landau damping.

Matrix large N will only help any such statement - the
Landau damping is a |/N effect relative to the fermion self-
energy - so we will simply analyze the theory at N=1,
with this in mind.
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Now, we do a basic RG about the two decoupled UV fixed
points. This fixes our scaling to be as in the picture:

empty states

filled states qx
(C) q !: empty states
. _ filled states

ik
i

(b)

FIG. 2. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rel-
evant Yukawa coupling (c) connects particle-hole states sep-
arated by small momenta near the Fermi surface; all other
couplings are irrelevant under the scaling.
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RG equations can be derived by decimating in energies and
momenta in a Wilsonian manner. The resulting system of
equations is as follows. First off:
3A2
1672

de _
dt

dAg _

0, —— = —B, = €Ap

| 3

The bosons flow to a Wilson-Fisher fixed point, with g
not perturbing the flow at this order.

The other parameters flow in an interesting way:

dv g’ 2 2

— = —0, = — S ”U,’U},... ,_|_O )\ ’ 9

dt o (27c)? ( ) A 97)

dg € 92 2 2
N () O(A

i g(z 4w2c2(c+lv\>> + O 9%

dw

== —ul1+0(g) (7
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Here, w is 2 new parameter we introduced:

e(k)—pu=vl+wl“+. ..

for reasons to become apparent shortly.

First, let us set w=0 and analyze the RG flow.

e=0.1 e=0
T 7777 T
AN A S
s U s
’ ) : Yyyya
oo/'/’//{/// oo////'/////
2/////{_/’:‘,:‘\\ 2///////// 4
SN\ /22
1\\\ \\\\\\\\ﬁ* 1/22§;ﬁggij/jj’

FIG. 2: Graphic depiction of RG flow for the parameters
g and v when A, is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).
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Important point: v/c flows towards zero. As small v
acts in some sense as a control parameter to
prevent boson decay from being important, this
is physically interesting.

But, is the analysis under control? A reasonably
conservative control criterion would be to say

that the analysis breaks down at a scale
which is defined by:

22T, prp/cx)]

2 (1 > l.e. one-loop
“LD( T ) correction competes
in size with tree

T = qo/cq propagator
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The natural thing to do would be to say x=1 (on-shell), but
we are more conservative and choose x to maximize the
ratio at any point along the flow.

Result:
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FIG. 3: The shaded region shows values of the UV fermion
velocity vg for which v(¢) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

Matrix “large” N
rescales the
correction by |/N,
the contours
quickly become
space-filling.
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However, in the shaded region where v hits zero before
we ever encounter “‘large” damping corrections, there is
eventually a very low energy scale where

re-introducing the

2
U ~ W™ . “irrelevant” w...

A simple computation reveals:

paw ~ A exp[—voc? /bg?]

Above this scale, one is governed by the approximate fixed
point of our RG equations. It is characterized by Wilson-
Fisher bosons and a non-Fermi liquid with:

1 scaling function f =1

W
GF — 1 f(z) at large N

£
) 2
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By the end, this talk has devolved into some
complicated figures. Therefore, | summarize
the take-away messages:

|. Either small v/c or large (matrix) N allow one
to access novel (intermediate!?) fixed points in the
natural field theory for quantum critical metals.

2. Because of the nature of the perturbative flows
starting from the UV decoupled fixed point, small v
becomes increasingly good in the IR.

3. At very low energy, the “irrelevant” w operator
causes some new behavior. (Lifshitz transition?)
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