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This subject is a fitting one for the occasion.

I first met Joe at TASI 1992, which
he was co-directing.

His lectures on “Effective field theory and the Fermi 
surface” were aimed at educating high energy theorists 

about the fun mysteries of high Tc.

(They are now a standard reference for the QFT
approach to Fermi liquid theory.)
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Much later, in 2001, I was lucky to collaborate with Joe (and 
Steve Giddings) on a paper about flux compactification of 

string theory and warped geometries.

This collaboration shaped the direction of my research for 5 
years and was a tremendous learning experience for me.
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1.  The basic problem and setup

Since this is a mixed audience, let me review the basic 
physics we’re trying to understand.  Many metals are

well described by adiabatic modifications of a free electron
model:

Non-Fermi liquids A. J. Schofield 2

can be obtained relatively simply using Fermi’s golden
rule (together with Maxwell’s equations) and I have in-
cluded these for readers who would like to see where
some of the properties are coming from.

The outline of this review is as follows. I begin with
a description of Fermi-liquid theory itself. This the-
ory tells us why one gets a very good description of a
metal by treating it as a gas of Fermi particles (i.e. that
obey Pauli’s exclusion principle) where the interactions
are weak and relatively unimportant. The reason is
that the particles one is really describing are not the
original electrons but electron-like quasiparticles that
emerge from the interacting gas of electrons. Despite its
recent failures which motivate the subject of non-Fermi
liquids, it is a remarkably successful theory at describ-
ing many metals including some, like UPt3, where the
interactions between the original electrons are very im-
portant. However, it is seen to fail in other materials
and these are not just exceptions to a general rule but
are some of the most interesting materials known. As
an example I discuss its failure in the metallic state of
the high temperature superconductors.

I then present four examples which, from a theo-
retical perspective, generate non-Fermi liquid metals.
These all show physical properties which can not be
understood in terms of weakly interacting electron-like
objects:

• Metals close to a quantum critical point. When a
phase transition happens at temperatures close to
absolute zero, the quasiparticles scatter so strongly
that they cease to behave in the way that Fermi-
liquid theory would predict.

• Metals in one dimension–the Luttinger liquid. In
one dimensional metals, electrons are unstable and
decay into two separate particles (spinons and
holons) that carry the electron’s spin and charge
respectively.

• Two-channel Kondo models. When two indepen-
dent electrons can scatter from a magnetic impu-
rity it leaves behind “half an electron”.

• Disordered Kondo models. Here the scattering
from disordered magnetic impurities is too strong
to allow the Fermi quasiparticles to form.

While some of these ideas have been used to try and un-
derstand the high temperature superconductors, I will
show that in many cases one can see the physics illus-
trated by these examples in other materials. I believe
that we are just seeing the tip of an iceberg of new types
of metal which will require a rather different starting
point from the simple electron picture to understand
their physical properties.

Figure 1: The ground state of the free Fermi gas in mo-
mentum space. All the states below the Fermi surface
are filled with both a spin-up and a spin-down elec-
tron. A particle-hole excitation is made by promoting
an electron from a state below the Fermi surface to an
empty one above it.

2. Fermi-Liquid Theory: the electron quasi-
particle

The need for a Fermi-liquid theory dates from the
first applications of quantum mechanics to the metallic
state. There were two key problems. Classically each
electron should contribute 3kB/2 to the specific heat
capacity of a metal—far more than is actually seen ex-
perimentally. In addition, as soon as it was realized
that the electron had a magnetic moment, there was
the puzzle of the magnetic susceptibility which did not
show the expected Curie temperature dependence for
free moments: χ ∼ 1/T .

These puzzles were unraveled at a stroke when
Pauli (Pauli 1927, Sommerfeld 1928) (apparently
reluctantly—see Hermann et al. 1979) adopted Fermi
statistics for the electron and in particular enforced the
exclusion principle which now carries his name: No two
electrons can occupy the same quantum state. In the
absence of interactions one finds the lowest energy state
of a gas of free electrons by minimizing the kinetic en-
ergy subject to Pauli’s constraint. The resulting ground
state consists of a filled Fermi sea of occupied states
in momentum space with a sharp demarcation at the
Fermi energy εF and momentum pF = h̄kF (the Fermi
surface) between these states and the higher energy un-
occupied states above. The low energy excited states
are obtained simply by promoting electrons from just
below the Fermi surface to just above it (see Fig. 1).
They are uniquely labelled by the momentum and spin
quantum numbers of the now empty state below the
Fermi energy (a hole) and the newly filled state above
it. These are known as particle-hole excitations.

This resolves these early puzzles since only a small
fraction of the total number of electrons can take part

CV ⇠ T

⇢ ⇠ T 2

Fairly robustly in the simplest
setting, fermions contribute:
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There are setting in modern materials, which many people 
in Santa Barbara understand better than me, where this 

breaks down:

This is hard to incorporate in the minimal effective
theory that e.g. Joe studied.  Lets start with his theory 
(i.e. Landau’s Fermi liquid, ala Polchinski and Shankar).

ρ

T Tc

Figure 6: Resistivity versus temperature in a typical high-Tc material: zero
below Tc, and linear above.

energy dependence governed by the lowest dimension operator that could

be responsible. For example the T 0 resistivity is from impurity scattering.10

The T 5 resistivity is from phonon scattering; the high power of temperature

is because we are below the Debye temperature, so only the long-wavelength

phonons remain, their contribution suppressed by phase space and the q

in the vertex. What can give T 1? Nothing. Write down the most general

possible effective Lagrangian and there is no operator or process that would

this power of the temperature. This is one of several related anomalies in

these materials. To steal a phrase from Mike Turner, figure 6 shows the

conductor from Hell.

To be precise, there is nothing of this magnitude in the generic Fermi

liquid theory, but in special cases the infrared divergences are enhanced and

new effects are possible. For example, consider free electrons on a square

lattice of side a, with amplitude t per unit time to hop to one of the nearest
10Incidentally, there is perhaps some indication that A is anomalously small, even zero,

in the best-prepared high-Tc materials.

26
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Figure 1: Fermi sea (shaded) with two low-lying excitations, an electron at
p1 and a hole at p2.

that something very different might emerge. All we can do here is to check

the guess for consistency (naturalness), and compare it with experiment.

Begin by examining the free action
∫

dt d3p
{

iψ†
σ(p)∂tψσ(p) − (ε(p) − εF)ψ†

σ(p)ψσ(p)
}

. (12)

Here σ is a spin index and εF is the Fermi energy. The single-electron energy

ε(p) would be p2/2m for a free electron, but in the spirit of writing down the

most general possible action we make no assumption about its form.5 The

ground state of this theory is the Fermi sea, with all states ε(p) < εF filled

and all states ε(p) > εF empty. The Fermi surface is defined by ε(p) = εF.

Low lying excitations are obtained by adding an electron just above the Fermi

surface, or removing one (producing a hole) just below, as shown in figure 1.

Now we need to ask how the fields behave as we scale all energies by a

factor s < 1. In the relativistic case, the momentum scaled with the energy,
5A possible p-dependent coefficient in the time-derivative term has been absorbed into

the normalization of ψσ(p).
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The free action governing these
basic quasiparticles is:
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What about interactions?  Lets study an RG and
see if this free theory is stable or not.

but here things are very different. As figure 1 makes clear, as the energy

scales to zero we must scale the momenta toward the Fermi surface. To do

this, write the electron momentum as

p = k + l, (13)

where k is vector on the Fermi surface and l is a vector orthogonal to the

Fermi surface. Then when E → sE, the momenta scale k → k and l → sl.

Expand the single particle energy

ε(p) − εF = lvF(k) + O(l2), (14)

where the Fermi velocity vF = ∂pε. Scaling

dt → s−1dt, dk → dk, dl → sdl, ∂t → s∂t, l → sl, (15)

each term in the action
∫

dt d2k dl
{

iψ†
σ(p)∂tψσ(p) − lvF(k)ψ†

σ(p)ψσ(p)
}

(16)

scales as s1 times the scaling of ψ†ψ. The fluctuations of ψ thus scale as

s−1/2.

Now we play the effective field theory game, writing down all terms al-

lowed by symmetry and seeing how they scale. If we find a relevant term we

lose: the theory is unnatural. The symmetries are

1. Electron number.

2. The discrete lattice symmetries. Actually, in the action (12), we have

treated translation invariance as a continuous symmetry, so that mo-

mentum is exactly conserved. Because the electrons are moving in a

periodic potential, they can exchange discrete amounts of momentum

with the lattice. Including these terms, the free action can be rediag-

onalized, with the result that the integral over momentum becomes a

14
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The RG is a bit unusual for high energy theorists.
One scales towards the Fermi surface:

qx

qy

qx

qy

(a) (b)

(c)

~k

~k + ~q

~q

empty states

filled states

empty states

filled states

FIG. 2. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rel-
evant Yukawa coupling (c) connects particle-hole states sep-
arated by small momenta near the Fermi surface; all other
couplings are irrelevant under the scaling.

k2
0 = c2k2 +m2

�, so that low energies correspond as usual
to low momentum, and their scaling is that of a standard
relativistic field theory where all components of momen-
tum scale the same way as k0. By contrast, the fermion
dispersion relation is k0 = ✏(k) � µ, so their low en-
ergy states occur close to the Fermi surface (Fig. 2).
Moreover, the Yukawa coupling between the two sets of
fields must conserve energy and momentum in a coarse-
graining procedure. These complications are easily cir-
cumvented by requiring tree-level scaling to reproduce
the behavior of a Landau Fermi liquid and a nearly-free
boson decoupled from one another when g = 0. Fur-
thermore, when m� is finite, we must recover Landau
Fermi liquid theory: this simple notion leads to a unique
scaling procedure. As the fields are coarse grained, only
the most relevant components of the Yukawa coupling
function are retained. The four fermion interaction � is
generally also a coupling function depending on the rel-
ative orientation of the fermion momenta, with di↵erent
scalings for di↵erent configurations5,6.

To be more explicit, we consider a rotationally invari-
ant Fermi surface, and following Polchinski5, we define a
fermion momentum k = kF + `, where kF is a point on
the Fermi surface that is closest to k; thus, ` is a perpen-
dicular displacement from the Fermi surface to k. As the
cuto↵ is lowered, energies and momenta must be rescaled,
and in the Fermi liquid theory, only ` are rescaled while
kF remain una↵ected. For the boson fields, by contrast,
all momenta components and energy must be rescaled as
the cuto↵ is lowered. We integrate out modes at tree-level
with energy ⇤e�t < E < ⇤, and rescale frequencies (de-

noted k0) and momenta so that the dispersion relations
remain invariant. To simplify the discussion of scaling,
we will focus on a spherically symmetric Fermi surface
✏(k) = 1

2mk2, so that our decomposition of the fermion
momentum is equivalent to parameterizing momenta by
a direction ⌦̂ and a perpendicular magnitude `:

k = ⌦̂(kF + `). (2)

The dispersion relation for ` ⌧ kF is then simply k0 ⇡
vF `, vF = kF /m. The natural fermion scaling is there-
fore to scale ` the same as k0, but not to scale any other
components of momentum. In this parameterization (2),
the components of momentum parallel to the Fermi sur-
face are more properly thought of as angles rather than
momenta. We therefore find it natural to think of the
Fermi surface as a continuous collection of e↵ectively
(1 + 1)-dimensional fermions coupled by forward scat-
tering and BCS interactions, as is true in an ordinary
Landau Fermi liquid.

We therefore obtain the following scalings

k0
0 = etk0, k0

F = kF , `0 = et` (3)

for the fermion states, whereas

k0
0 = etk0, k0 = etk (4)

is the scaling that we adopt for the boson fields. This
particular scaling reflects the fact that our boson has dy-
namical critical exponent z = 1 at tree-level since we
have not integrated out gapless fermions to generate a
Landau-damped boson. The fields are rescaled so that
the boson and fermion kinetic energies remain invariant,
which leads to the following scaling relations:

 0 = e�3t/2 , �0 = e� (d+3)
2 t� (5)

From this it follows that a generic fermion interaction
is irrelevant, whereas forward scattering and BCS inter-
actions always remain marginal at tree-level: �0

 = � 
for all d > 0. It also follows from these considerations
that the boson interactions must be rescaled as

�0
� = e(3�d)t�� (6)

which sets d = 3 as the upper-critical dimension for the
boson fields: thus, when g = 0 the quantum critical point
has the properties of a classical critical point in one higher
dimension, as is required when z = 1.

At first sight, scaling the momenta of the fermions dif-
ferently from those of the bosons may alarm the reader.
It implies, among other things, that scale transformations
in position space are non-local. However, this feature
is present even in ordinary Landau Fermi liquid theory:
the scaling procedure couples fermions at di↵erent points
in space. To see this explicitly, one can simply Fourier
transform the momentum space scaling

 (⌦̂, `) !  0(⌦̂, `) = e�3t/2 (⌦̂, e�t`), (7)

3

yielding a Fermi field that scales as 

 ! s�1/2 .
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So, what dangerous terms could arise to destabilize 
the Fermi liquid?

*        could be shifted.  No problem. µ

sum over bands and an integral over a fundamental region (Brillouin

zone) for each band. This does not affect the analysis in any essential

way, so for simplicity we will treat momentum as exactly conserved. In

addition, the action is constrained by any discrete point symmetries of

the crystal.

3. Spin SU(2). In the c → ∞ limit, physics is invariant under independent

rotations of space and spin, so spin SU(2) acts as an internal symmetry.

Starting with terms quadratic in the fields, we have first
∫

dt d2k dlµ(k)ψ†
σ(p)ψσ(p). (17)

Combining the scaling of the various factors, this goes as s−1+1−2/2 = s−1.

This resembles a mass term, and it is relevant. Notice, though, that it can

be absorbed into the definition of ε(p). We should expand around the Fermi

surface appropriate to the full ε(p). Thus, the existence of a Fermi surface

is natural, but it is unnatural to assume it to have any very precise shape

beyond the constraints of symmetry. Adding one time derivative or one factor

of l makes the operator marginal, scaling as s0; these are the terms already

included in the action (16). Adding additional time derivatives or factors of

l makes an irrelevant operator.

Turning to quartic interactions, the first is
∫

dt d2k1 dl1 d2k2 dl2 d2k3 dl3 d2k4 dl4 V (k1,k2,k3,k4) (18)

ψ†
σ(p1)ψσ(p3)ψ

†
σ′(p2)ψσ′(p4)δ

3(p1 + p2 − p3 − p4).

This scales as s−1+4−4/2 = s, times the scaling of the delta-function. Let us

first be glib, and argue that

δ3(p1 + p2 − p3 − p4) = δ3(k1 + k2 − k3 − k4 + l1 + l2 − l3 − l4)

∼ δ3(k1 + k2 − k3 − k4). (19)

15

*  The leading possible interactions are four-Fermi:

Naively, these scale to zero       . ⇠ s

This is too quick:
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Figure 3: a) For two generic points near a two-dimensional Fermi surface, the
tangents δki are linearly independent. b) For diametrically opposite points
on a parity-symmetric Fermi surface, the tangents are parallel.

p1,2 scatter into momenta p3,4. Expand

p3 = p1 + δk3 + δl3, p4 = p2 + δk4 + δl4. (23)

The momentum delta-function in ds space dimensions is then

δds(δk3 + δk4 + δl3 + δl4). (24)

Now, for generic momenta, shown in figure 3a, δk3 and δk4 are linearly inde-

pendent and our neglect of δl3 and δl4 is justified. An electron of momentum

p1 absorbs a phonon of large momentum q but remains near the Fermi sur-

face. Incidentally, while the picture is two-dimensional, it is easy to see that

this argument applies equally for all ds ≥ 2: the possible variations δk3, δk4

span the full ds-space. However, if p1 = −p2, so that the total momentum is

zero, then δds(δk3 + δk4) is degenerate, since one component of the argument

vanishes automatically. In this case, one component of the delta-function

19

For antipodal momenta, the delta function scales as
s�1 yielding a marginal “BCS” operator.

This gives the only instability of the fixed point.
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Since the standard theory cannot explain the non-Fermi 
liquid scalings, what can we add?

These systems exhibit phase transitions (nematic order, 
magnetic order, ...).  Natural to add a bosonic order 
parameter field.  So, we (and others) have tried to

find interesting behaviors in this theory:

Slow Fermions in Quantum Critical Metals

A. Liam Fitzpatrick
¯

 , , Shamit Kachru
¯

 , , Jared Kaplan�, Steven A. Kivelson
¯

 , S. Raghu
¯

 , 

 ̄Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 and
�Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

(Dated: February 12, 2014)

We study the low-energy behavior of metals coupled to gapless bosons. This problem arises
in several contexts in modern condensed matter physics; we focus on the theory of metals near
continuous quantum phase transitions (where the boson is the order parameter). In the vicinity of
d = 3 spatial dimensions, the upper critical dimension of the theory, the ratio of fermion and boson
speeds, v/c, acts as an additional control parameter, enabling us to access IR fixed points. Exact
fixed points occur where this ratio vanishes. This limit corresponds to a non-Fermi liquid coupled
to bosons with critical exponents governed by the Wilson-Fisher fixed point.

Theories of quantum critical points in metals form a
central pillar of the broader study of non-Fermi-liquid
behavior in quantum materials1? ? –3. Specifically, near
a quantum phase transition to a broken symmetry state
that preserves translational symmetry (e.g. a ferromag-
netic or electron nematic state), the integrity of quasi-
particle excitations on the entire Fermi surface is de-
stroyed due to the scattering of electrons o↵ the soft
bosonic fluctuations4? ? ? ? –17 associated with the order
parameter. However, the ultimate low energy behavior
of such systems remains a matter of debate, following the
demonstration18 that the standard approach19,20 breaks
down, even in a suitable large N limit where it was pre-
viously thought to be exact.

In the present paper we study this problem using a
Wilsonian renormalization group (RG) procedure in spa-
tial dimension d = 3 � ✏ and in the limit in which the
collective mode velocity, c, is larger than the Fermi ve-
locity, v. In the context of Fermi liquid theory, there is a
sharp distinction between collective modes with c/v > 1
(e.g. zero sound), which lie outside the particle-hole con-
tinuum and so are undamped, and those with c/v < 1,
which are typically overdamped21. This same distinction
applies to the initial RG flows in quantum critical metals.
Moreover, (as we will see) since under renormalization,
v decrease rapidly with decreasing energy, if c/v > 1 in
the ultraviolet (UV), this inequality is increasingly well
satisfied at lower energies.

For small ✏, we find a perturbatively accessible fixed-
point in which the critical exponents are governed by
the usual Wilson-Fisher fixed-point, but the Fermi liquid
is destroyed and the Fermi velocity tends to zero (the
e↵ective mass diverges). Identical fixed-point properties
were obtained previously in a particular large N limit of
the problem in which the order parameter field of the
present analysis is replaced by an N ⇥ N matrix field
coupled toN flavors of fermions14,15. However, this fixed-
point is distinct from the more usual (and still unsolved)
large N limit in which a single scalar field is coupled
to N flavors of fermions. Here, we will not need to take
either largeN limit, though such a parameter can provide
additional control to our calculations.

If the bare coupling to the collective modes is not too

strong, for c/v > 1 this fixed point governs the behavior
of the system over a range of energies and temperatures.
We identify several possible instabilities that might alter
the RG flows away from the fixed point. Nevertheless,
as stressed in Ref. 13, a broad intermediate asymptotic
regime governed by a fixed point that is ultimately unsta-
ble in the deep IR is likely su�cient to account for most
of the known phenomenology. This is especially relevant
to the class of metallic quantum critical points that are
unstable to the formation of ordered phases below a finite
temperature “dome”.
The Model: We treat the problem of a finite den-

sity of fermions,  , coupled to a critical scalar field, �,
through a Yukawa interaction:

S =

Z
d⌧

Z
d

d
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The first line above represents a Landau Fermi liquid
with weak residual self-interactions (�

 

); the second line
is the Landau-Ginsburg-Wilson action for critical order
parameter fluctuations. The quasiparticle dispersion,
"(k) � µ, vanishes on a closed Fermi surface, k = k

F

which, for simplicity we will take to be spherical, but
more generally needs only to respect the symmetries of
the host crystal and to enclose a fixed k�space volume
equal to the electron density. The dispersion can be ex-
panded in powers of distance from the Fermi surface as
"(k)�µ = v`+w`

2+ . . . where k = k
F

+k̂
F

` and the UV
cuto↵ which limits our focus to states “near” the Fermi
surface is ⇤ . E

F

, the Fermi energy or bandwidth. Ex-
cept where otherwise stated, we will consider only the
first order approximation to ", i.e. we will take w = 0.
The coupling between the two fields is a generalized

Yukawa interaction, best written in momentum space as

S

 ,�

=

Z
d

d+1

kd

d+1

q

(2⇡)2(d+1)

g(k, q) ̄
�

(k) 
�

(k + q)�(q)(2)

where the measure dd+1

k includes both frequency and d-
dimensional momenta, and repeated spin indices � are

The bosons and fermions are coupled by a Yukawa
function:
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We study the low-energy behavior of metals coupled to gapless bosons. This problem arises
in several contexts in modern condensed matter physics; we focus on the theory of metals near
continuous quantum phase transitions (where the boson is the order parameter). In the vicinity of
d = 3 spatial dimensions, the upper critical dimension of the theory, the ratio of fermion and boson
speeds, v/c, acts as an additional control parameter, enabling us to access IR fixed points. Exact
fixed points occur where this ratio vanishes. This limit corresponds to a non-Fermi liquid coupled
to bosons with critical exponents governed by the Wilson-Fisher fixed point.

Theories of quantum critical points in metals form a
central pillar of the broader study of non-Fermi-liquid
behavior in quantum materials1? ? –3. Specifically, near
a quantum phase transition to a broken symmetry state
that preserves translational symmetry (e.g. a ferromag-
netic or electron nematic state), the integrity of quasi-
particle excitations on the entire Fermi surface is de-
stroyed due to the scattering of electrons o↵ the soft
bosonic fluctuations4? ? ? ? –17 associated with the order
parameter. However, the ultimate low energy behavior
of such systems remains a matter of debate, following the
demonstration18 that the standard approach19,20 breaks
down, even in a suitable large N limit where it was pre-
viously thought to be exact.

In the present paper we study this problem using a
Wilsonian renormalization group (RG) procedure in spa-
tial dimension d = 3 � ✏ and in the limit in which the
collective mode velocity, c, is larger than the Fermi ve-
locity, v. In the context of Fermi liquid theory, there is a
sharp distinction between collective modes with c/v > 1
(e.g. zero sound), which lie outside the particle-hole con-
tinuum and so are undamped, and those with c/v < 1,
which are typically overdamped21. This same distinction
applies to the initial RG flows in quantum critical metals.
Moreover, (as we will see) since under renormalization,
v decrease rapidly with decreasing energy, if c/v > 1 in
the ultraviolet (UV), this inequality is increasingly well
satisfied at lower energies.

For small ✏, we find a perturbatively accessible fixed-
point in which the critical exponents are governed by
the usual Wilson-Fisher fixed-point, but the Fermi liquid
is destroyed and the Fermi velocity tends to zero (the
e↵ective mass diverges). Identical fixed-point properties
were obtained previously in a particular large N limit of
the problem in which the order parameter field of the
present analysis is replaced by an N ⇥ N matrix field
coupled toN flavors of fermions14,15. However, this fixed-
point is distinct from the more usual (and still unsolved)
large N limit in which a single scalar field is coupled
to N flavors of fermions. Here, we will not need to take
either largeN limit, though such a parameter can provide
additional control to our calculations.

If the bare coupling to the collective modes is not too

strong, for c/v > 1 this fixed point governs the behavior
of the system over a range of energies and temperatures.
We identify several possible instabilities that might alter
the RG flows away from the fixed point. Nevertheless,
as stressed in Ref. 13, a broad intermediate asymptotic
regime governed by a fixed point that is ultimately unsta-
ble in the deep IR is likely su�cient to account for most
of the known phenomenology. This is especially relevant
to the class of metallic quantum critical points that are
unstable to the formation of ordered phases below a finite
temperature “dome”.
The Model: We treat the problem of a finite den-

sity of fermions,  , coupled to a critical scalar field, �,
through a Yukawa interaction:
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The first line above represents a Landau Fermi liquid
with weak residual self-interactions (�

 

); the second line
is the Landau-Ginsburg-Wilson action for critical order
parameter fluctuations. The quasiparticle dispersion,
"(k) � µ, vanishes on a closed Fermi surface, k = k

F

which, for simplicity we will take to be spherical, but
more generally needs only to respect the symmetries of
the host crystal and to enclose a fixed k�space volume
equal to the electron density. The dispersion can be ex-
panded in powers of distance from the Fermi surface as
"(k)�µ = v`+w`

2+ . . . where k = k
F

+k̂
F

` and the UV
cuto↵ which limits our focus to states “near” the Fermi
surface is ⇤ . E

F

, the Fermi energy or bandwidth. Ex-
cept where otherwise stated, we will consider only the
first order approximation to ", i.e. we will take w = 0.
The coupling between the two fields is a generalized

Yukawa interaction, best written in momentum space as

S

 ,�

=

Z
d

d+1

kd

d+1

q

(2⇡)2(d+1)

g(k, q) ̄
�

(k) 
�

(k + q)�(q)(2)

where the measure dd+1

k includes both frequency and d-
dimensional momenta, and repeated spin indices � are

summed. The contraction  ̄ implicitly includes any
spin matrices that should be included if e.g. � is a fer-
romagnetic order parameter. Note that the Yukawa cou-
pling is parametrized both by the momentum state of the
initial fermion k as well as the momentum transfer q. At
low energies, the Yukawa coupling takes the form

g(k, q) = g(k
F

, 0) + · · · (3)

where the ellipsis denotes irrelevant corrections. The
symmetries of g depend on the particular form of bro-
ken symmetry that characterizes the proximate ordered
state (in which h�i 6= 0). An example of considerable
interest22 is that of Ising nematic order in a tetragonal
crystal, where �, and hence g as well, are odd under ro-
tation by ⇡/2: g(k

F

) ⇠ cos(kx
F

) � cos(ky
F

). Therefore,
there are “cold spots” on the Fermi surface where g ! 0
and the fermions do not couple to the order parameter.

Perturbative considerations: Below d = 3 spatial
dimensions, the scalar self-coupling and the Yukawa in-
teractions are relevant; even weak interactions produce a
large e↵ect on the low energy physics. Conversely, this
means that the theory (neglecting the weak four-Fermi
interactions, whose e↵ects are already well-known) en-
joys a weakly-coupled UV fixed point: the theory at high
energies is just a Landau Fermi liquid nearly decoupled
from a free, critical scalar field, and the interactions can
be treated perturbatively. As one moves from the UV
into the IR, the couplings flow toward non-trivial values.
Since d = 3 is the upper critical dimension for all cou-
plings, at small ✏ one can follow this flow by computing
the logarithmic divergences of the theory in d = 3 and
thereby obtaining the RG equations. However, the e↵ect
of Landau damping could present an obstacle to contin-
uing this flow arbitrarily in the IR because in diagrams
with closed fermion loops, the Yukawa coupling can e↵ec-
tively act like a relevant coupling even in d = 3. The one-
loop boson self-energy of Fig. 1 generates a contribution
to the boson self-energy which in the long-wavelength
limit, and for real frequencies is?

⇧
d=3

(q
0

, q) =
g

2

k

2

F

2⇡2

v


1 +

q

0

2vq
log

q

0

� vq

q

0

+ vq

�
(4)

When |qv/q
0

|  1 the self-energy is real, while in the
opposite limit it has an imaginary part. Physically, this
follows from kinematic constraints on the boson decay
into fermion pairs, and so it is true in any d. (Note
that in the generalized theory with an N ⇥ N matrix
boson coupled to N fermions (as in Ref. 15), the Landau
damping is 1/N suppressed, i.e., Eq. 4 is multipled by 1

N

;
in this way complete parametric control can be obtained.)

One can think of Eq. 4 as a non-local “mass-like” term
in the limit |qv/q

0

|  1. In particular, it takes the form
⇧(q

0

, q) = g

2

k

2

F

F (q
0

/vq), where F is a real dimension-
less function. At su�ciently low energy, this therefore
becomes a large e↵ect. If F were just a constant, the
physics of this term would be well-understood: ⇧(q

0

, q)
would be just a mass term that, at criticality, would be

FIG. 1: The one-loop diagram contributing to Landau damp-
ing.

cancelled by a local counterterm. For the actual function
F in Eq. 4, its implication for the IR dynamics of the
boson is less clear.
Our primary observation is that at v ⌧ c, a great sim-

plification occurs, because F ! 0 as v ! 0. There is
a simple diagrammatic argument why this occurs. Con-
sider the Feynman integral corresponding to Figure 1:

⇧(q
0

, q) =
g

2

(2⇡)4

Z
d!d`k

2

d cos ✓

(i! � v`)[i(! + q

0

)� v(`+ q cos ✓)]
.

We can change variables ` ! `/|v| and pull the 1/|v|
from the integration measure out front. Then, it is easy
to see that at v ! 0, all poles in ! are always on the
same side of the real axis, and therefore the integral van-
ishes. Moreover, the rescaled integral is invariant under
v ! �v, since this can be compensated for by chang-
ing integration variables cos ✓ ! � cos ✓. This argument
holds in any d, since the integration measure always takes
the form given above, multiplifed by an even function
of cos ✓. Therefore ⇧(q

0

, q) vanishes like O(v) at small
v. Furthermore, it is clear that this argument applies
equally well to any diagram with a single closed fermion
loop and any number of scalar external legs.
This demonstrates that when v/c ! 0, Landau damp-

ing vanishes and there is no obstacle in this case to using
the RG to study the deep IR of the theory. One must ask,
though, what happens when v/c is merely small but not
vanishing. In this limit, the leading small v contribution
to ⇧(q

0

, q) is the non-local term

⇧(q
0

, q) ⇠ v

g

2

k

2

F

2⇡2

q

2

q

2

0

+O(v2), (5)

so one might worry that the treatment of Landau damp-
ing simplifies only when v is finely tuned to be identically
zero. Fortunately, as we describe below, the renormaliza-
tion group flow of the theory drives the velocity to a fixed
point at v/c = 0, so that all one needs is for the theory
in the UV to start out in the basin of attraction of this
fixed point.
RG Flows: The one-loop logarithmic divergences and

resulting � functions of the theory were computed in
Refs. 14,15, where one sees that v ! 0 at low ener-
gies. Here we will focus on the parameters g and v since
the other couplings of the theory do not appear in their
one-loop � functions.

2

Can the addition of the bosonic order parameter to the 
story lead to interesting new (approximate) fixed points?

II.  Basic conflict in the coupled system

The coupling leads to a titanic struggle between bosonic 
and fermionic degrees of freedom:
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between the bosons and fermions begins to alter the low
energy behavior of the system. As we discuss, the highest
energy scale where non-perturbative corrections begin to
dominate will be set by the scale at which the bosons get
Landau damped.

The three leading one-loop Feynman diagrams are
shown in Fig. 1. The first corresponds to the boson
self-energy and has several e↵ects. Firstly, it generates
smooth O(g2) corrections to the boson mass and veloc-
ity which are negligible in the small g limit, and in which
⇤IR can be set to zero. More importantly, it generates a
non-analytic self-energy correction to the boson action,
representing the overdamping of the boson from fermions
near the Fermi surface. We ignore perturbative correc-
tions to c and mB and focus on the Landau damping
term:

⇧(q, q0) = ig

2m
2
F

2⇡

q0

q

(3)

This correction occurs in the limit where q ! 0, q0 ! 0
with fixed x ⌘ q0/q, |x| < 118. In Hertz’s theory, this
correction enters the bare boson kinetic term. By con-
trast, in a perturbative treatment, the overdamping is
a correction that occurs at O(g2) and is subdominant
compared to the bare boson kinetic term. However, the
breakdown of perturbation theory from these diagrams
occurs below an energy scale where the self-energy above
is of the order of the bare inverse boson propagator:

g

2m
2
F

2⇡
x

1

!

2
Ld

= 1, !Ld ⇠ gmF (4)

where we have made use of the fact that x ⇠ O(1). Above
this scale, Landau damping is a negligible perturbative
correction and the theory consists of undamped bosons.

The fermion self-energy (Fig. 1(b))

⌃(p) = ig

2

Z
d

4
k

(2⇡)4
D(p� k)G(k) (5)

is evaluated in explicit detail below, where

D

�1(q) = q

2
0 � c

2
q

2 �m

2
B + i�

G

�1(q) = q0 � ✏(q) + i⌘sgn [✏(q)] (6)

are the inverses of the bare boson and fermion propa-
gators respectively, and both ⌘, � are positive infinitesi-
mals. In the analytic treatment that follows, we make

two approximations. First, we set the boson velocity to
be much less than the Fermi velocity, c ⌧ kF /mF . In this
case, the e↵ective “Debye frequency”, !D = 2ckF ⌧ EF .
Then, the boson imparts large momentum transfers, but
low energy transfer. Secondly, we neglect the variation of
the density of states away from the Fermi energy, treat-
ing the density of states as a constant: ⇢(✏) ' ⇢ =
mF kF /(2⇡2). With these approximations, the measure
of the momentum integrals is approximated by19

Z
d

3
k

(2⇡)3
' ⇢

(2⇡)2k2F

Z 2kF

0
qdq

Z 1

�1
d✏ (7)

(a)
ab

a

ab

b

(b)
a b

ab

a

(c)
ab

a

a

b

ab

b

FIG. 1. The three one-loop Feynman diagrams relevant in
our analysis. a and b are flavor indices in the large N version
of the theory. These indices can be ignored in section IIIA.

where q = p � k. Under these approximations, the self-
energy
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In the first line above, the elementary integral over ✏ resulted in �i⇡sgn(k0), and in the last line, we made use

3

The fermions can damp the bosons (intuitively, a boson can 
decay into a fermion pair):

Meanwhile, the bosons can dress the fermions into a non-
Fermi liquid:

between the bosons and fermions begins to alter the low
energy behavior of the system. As we discuss, the highest
energy scale where non-perturbative corrections begin to
dominate will be set by the scale at which the bosons get
Landau damped.

The three leading one-loop Feynman diagrams are
shown in Fig. 1. The first corresponds to the boson
self-energy and has several e↵ects. Firstly, it generates
smooth O(g2) corrections to the boson mass and veloc-
ity which are negligible in the small g limit, and in which
⇤IR can be set to zero. More importantly, it generates a
non-analytic self-energy correction to the boson action,
representing the overdamping of the boson from fermions
near the Fermi surface. We ignore perturbative correc-
tions to c and mB and focus on the Landau damping
term:
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with fixed x ⌘ q0/q, |x| < 118. In Hertz’s theory, this
correction enters the bare boson kinetic term. By con-
trast, in a perturbative treatment, the overdamping is
a correction that occurs at O(g2) and is subdominant
compared to the bare boson kinetic term. However, the
breakdown of perturbation theory from these diagrams
occurs below an energy scale where the self-energy above
is of the order of the bare inverse boson propagator:
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gators respectively, and both ⌘, � are positive infinitesi-
mals. In the analytic treatment that follows, we make

two approximations. First, we set the boson velocity to
be much less than the Fermi velocity, c ⌧ kF /mF . In this
case, the e↵ective “Debye frequency”, !D = 2ckF ⌧ EF .
Then, the boson imparts large momentum transfers, but
low energy transfer. Secondly, we neglect the variation of
the density of states away from the Fermi energy, treat-
ing the density of states as a constant: ⇢(✏) ' ⇢ =
mF kF /(2⇡2). With these approximations, the measure
of the momentum integrals is approximated by19
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FIG. 1. The three one-loop Feynman diagrams relevant in
our analysis. a and b are flavor indices in the large N version
of the theory. These indices can be ignored in section IIIA.
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A standard approach builds on the venerable  
“Hertz-Millis theory”:

3

FIG. 2: The one-loop boson self energy.

FIG. 3: The one-loop fermion self energy. Here the boson propaga-
tor is a dressed propagator which include the one-loop self energy
correction in Fig. 2.

of the Fermi surface. The Fermi surface is on vxkx+vyk2
y = 0

as is shown in Fig. 1. This is a ‘chiral Fermi surface’ where
the x-component of Fermi velocity is always positive. a is the
transverse component of an emergent U(1) gauge boson in
the Coulomb gauge∇ · a = 0. We ignore the temporal com-
ponent of the gauge field which is screened to a short range
interaction. The transverse gauge field is massless without a
fine tuning due to an emergent U(1) symmetry associated with
the dynamical suppression of instantons21,22. e is the coupling
between fermions and the critical boson.
In the one-loop order, singular self energies are generated

from the diagrams in Figs. 2 and 3, and the quantum effective
action becomes

Γ =
∑

j

∫

dk
[

i
c

N
sgn(k0)|k0|2/3 + ik0

+ vxkx + vyk2
y

]

ψ∗
j (k)ψj(k)

+

∫

dk

[

γ
|k0|
|ky |

+ k2
0 + k2

x + k2
y

]

a∗(k)a(k)

+
e√
N

∑

j

∫

dkdq a(q)ψ∗
j (k + q)ψj(k), (2)

where c and γ are constants of the order of 1. To compute the

fermion self energy, the dressed boson propagator has been
used because the boson self energy is of the order of 1. In the
low energy limit, the leading terms of the quantum effective
action are invariant under the scale transformation,

k0 = b−1k
′

0,

kx = b−2/3k
′

x,

ky = b−1/3k
′

y,

ψa(b−1k
′

0, b
−2/3k

′

x, b−1/3k
′

y) = b4/3ψ
′

a(k
′

0, k
′

x, k
′

y),

a(b−1k
′

0, b
−2/3k

′

x, b−1/3k
′

y) = b4/3a(k
′

0, k
′

x, k
′

y). (3)

The singular self energies render the terms,

ik0ψ
∗
j (k)ψj(k),

[

k2
0 + k2

x

]

a∗(k)a(k) (4)

irrelevant in the low energy limit. Usually, it is expected that
one restores the same low energy quantum effective action if
one drops the irrelevant terms from the beginning. However,
this is not true in this case. If one drops the irrelevant terms in
the bare action, then the resulting theory becomes completely
localized in time and one can not have a propagating mode. If
there is no frequency dependence in the bare action, the fre-
quency dependent singular self energies can not be generated
either. Therefore, to restore the full low energy dynamics, one
has to keep a minimal information that the theory is not com-
pletely localized in time. It turns out that the following action
given by

L =
∑

j

ψ∗
j (η∂τ − ivx∂x − vy∂

2
y)ψj

+
e√
N

∑

j

aψ∗
jψj + a(−∂2

y)a, (5)

is the minimal local theory which restores the one-loop quan-
tum effective action (2). Here η is a parameter which has the
dimension−1/3 according to the scaling (3).
Since the time derivative term is irrelevant, η will flow to

zero in the low energy limit, and the bare value of η does not
affect any low energy physics as far as it is nonzero. The role
of the nonzero η is to give a non-trivial frequency dependent
dynamics by maintaining the minimal causal structure of the
theory before it dies off in the low energy limit. For example,
in the computation of the one-loop boson self energy (Fig. 2)
in

Π(q) = e2

∫

d3k
1

iη(k0 + q0) + vx(kx + qx) + vy(ky + qy)2
1

iηk0 + vxkx + vyk2
y

= γ
|q0|
|qy|

, (6)

the sign of η contains the information on whether the pole is on the upper or lower side in the complex plane for the kx

The fermion correction to the boson propagator:

III. ONE LOOP PROPAGATORS

To gain some insight into the low energy properties of the theory (2.7), it is useful to

compute the one loop boson and fermion self-energies.

(a)

(b)

FIG. 2. One loop contributions to the (a) boson, and (a) fermion self-energies.

The one-loop boson polarization in Fig. 2 a) is given by,

Π0(q) = N

∫

dlτd2!l

(2π)3
G0

s(l)G
0
s(l + q) (3.1)

We first evaluate this diagram with a bare fermion propagator,

G0
s(k) =

1

−iηkτ + skx + k2
y

(3.2)

The resulting polarization function takes on a characteristic Landau-damped form,

Π0(q) = N

∫

dlτdly
(2π)2

i [θ(lτ )− θ(lτ + qτ )]

−iηqτ + 2qyly + qx + q2y
+ (!q → −!q)
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Nqτ
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∫

dly
2π

(−i)
−iηqτ + 2qyly + qx + q2y

+ (!q → −!q) = cbN
|qτ |
|qy|

, cb =
1

4π
. (3.3)

Note that η has dropped out of the final result. We are interested above only in the singular

contribution to Π0, and this is insensitive to orders of integration: so unlike the conventional

order, we have integrated over lx before lτ . We include the RPA polarization bubble (3.3)

into the bosonic propagator to obtain

D(q) =
1

N

(

cb
|qτ |
|qy|

+
q2y
e2

+ r

)−1

. (3.4)
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yields a theory with z=3 dynamical scaling.

Feeding this back in to the fermionic sector 
yields a non-Fermi liquid.

3

FIG. 2: The one-loop boson self energy.

FIG. 3: The one-loop fermion self energy. Here the boson propaga-
tor is a dressed propagator which include the one-loop self energy
correction in Fig. 2.
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y = 0

as is shown in Fig. 1. This is a ‘chiral Fermi surface’ where
the x-component of Fermi velocity is always positive. a is the
transverse component of an emergent U(1) gauge boson in
the Coulomb gauge∇ · a = 0. We ignore the temporal com-
ponent of the gauge field which is screened to a short range
interaction. The transverse gauge field is massless without a
fine tuning due to an emergent U(1) symmetry associated with
the dynamical suppression of instantons21,22. e is the coupling
between fermions and the critical boson.
In the one-loop order, singular self energies are generated

from the diagrams in Figs. 2 and 3, and the quantum effective
action becomes
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where c and γ are constants of the order of 1. To compute the

fermion self energy, the dressed boson propagator has been
used because the boson self energy is of the order of 1. In the
low energy limit, the leading terms of the quantum effective
action are invariant under the scale transformation,

k0 = b−1k
′

0,

kx = b−2/3k
′

x,

ky = b−1/3k
′

y,

ψa(b−1k
′

0, b
−2/3k

′

x, b−1/3k
′

y) = b4/3ψ
′

a(k
′

0, k
′

x, k
′

y),

a(b−1k
′

0, b
−2/3k

′

x, b−1/3k
′

y) = b4/3a(k
′

0, k
′

x, k
′

y). (3)

The singular self energies render the terms,

ik0ψ
∗
j (k)ψj(k),

[

k2
0 + k2

x

]

a∗(k)a(k) (4)

irrelevant in the low energy limit. Usually, it is expected that
one restores the same low energy quantum effective action if
one drops the irrelevant terms from the beginning. However,
this is not true in this case. If one drops the irrelevant terms in
the bare action, then the resulting theory becomes completely
localized in time and one can not have a propagating mode. If
there is no frequency dependence in the bare action, the fre-
quency dependent singular self energies can not be generated
either. Therefore, to restore the full low energy dynamics, one
has to keep a minimal information that the theory is not com-
pletely localized in time. It turns out that the following action
given by

L =
∑

j

ψ∗
j (η∂τ − ivx∂x − vy∂

2
y)ψj

+
e√
N

∑

j

aψ∗
jψj + a(−∂2

y)a, (5)

is the minimal local theory which restores the one-loop quan-
tum effective action (2). Here η is a parameter which has the
dimension−1/3 according to the scaling (3).
Since the time derivative term is irrelevant, η will flow to

zero in the low energy limit, and the bare value of η does not
affect any low energy physics as far as it is nonzero. The role
of the nonzero η is to give a non-trivial frequency dependent
dynamics by maintaining the minimal causal structure of the
theory before it dies off in the low energy limit. For example,
in the computation of the one-loop boson self energy (Fig. 2)
in

Π(q) = e2

∫

d3k
1

iη(k0 + q0) + vx(kx + qx) + vy(ky + qy)2
1

iηk0 + vxkx + vyk2
y

= γ
|q0|
|qy|

, (6)

the sign of η contains the information on whether the pole is on the upper or lower side in the complex plane for the kx
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Extrapolating to very low energy, this gives a 
“z=3” boson.  Feeding this back into the fermion

self-energy:

3

FIG. 2: The one-loop boson self energy.

FIG. 3: The one-loop fermion self energy. Here the boson propaga-
tor is a dressed propagator which include the one-loop self energy
correction in Fig. 2.

of the Fermi surface. The Fermi surface is on vxkx+vyk2
y = 0

as is shown in Fig. 1. This is a ‘chiral Fermi surface’ where
the x-component of Fermi velocity is always positive. a is the
transverse component of an emergent U(1) gauge boson in
the Coulomb gauge∇ · a = 0. We ignore the temporal com-
ponent of the gauge field which is screened to a short range
interaction. The transverse gauge field is massless without a
fine tuning due to an emergent U(1) symmetry associated with
the dynamical suppression of instantons21,22. e is the coupling
between fermions and the critical boson.
In the one-loop order, singular self energies are generated

from the diagrams in Figs. 2 and 3, and the quantum effective
action becomes

Γ =
∑
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∫

dk
[

i
c

N
sgn(k0)|k0|2/3 + ik0
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+
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]
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+
e√
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∑

j

∫

dkdq a(q)ψ∗
j (k + q)ψj(k), (2)

where c and γ are constants of the order of 1. To compute the

fermion self energy, the dressed boson propagator has been
used because the boson self energy is of the order of 1. In the
low energy limit, the leading terms of the quantum effective
action are invariant under the scale transformation,

k0 = b−1k
′

0,

kx = b−2/3k
′

x,

ky = b−1/3k
′

y,

ψa(b−1k
′

0, b
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′

x, b−1/3k
′

y) = b4/3ψ
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′
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′

0, b
−2/3k

′

x, b−1/3k
′
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′
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y). (3)

The singular self energies render the terms,

ik0ψ
∗
j (k)ψj(k),

[
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0 + k2
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]

a∗(k)a(k) (4)

irrelevant in the low energy limit. Usually, it is expected that
one restores the same low energy quantum effective action if
one drops the irrelevant terms from the beginning. However,
this is not true in this case. If one drops the irrelevant terms in
the bare action, then the resulting theory becomes completely
localized in time and one can not have a propagating mode. If
there is no frequency dependence in the bare action, the fre-
quency dependent singular self energies can not be generated
either. Therefore, to restore the full low energy dynamics, one
has to keep a minimal information that the theory is not com-
pletely localized in time. It turns out that the following action
given by

L =
∑

j

ψ∗
j (η∂τ − ivx∂x − vy∂

2
y)ψj

+
e√
N

∑

j

aψ∗
jψj + a(−∂2

y)a, (5)

is the minimal local theory which restores the one-loop quan-
tum effective action (2). Here η is a parameter which has the
dimension−1/3 according to the scaling (3).
Since the time derivative term is irrelevant, η will flow to

zero in the low energy limit, and the bare value of η does not
affect any low energy physics as far as it is nonzero. The role
of the nonzero η is to give a non-trivial frequency dependent
dynamics by maintaining the minimal causal structure of the
theory before it dies off in the low energy limit. For example,
in the computation of the one-loop boson self energy (Fig. 2)
in

Π(q) = e2

∫

d3k
1

iη(k0 + q0) + vx(kx + qx) + vy(ky + qy)2
1

iηk0 + vxkx + vyk2
y

= γ
|q0|
|qy|

, (6)

the sign of η contains the information on whether the pole is on the upper or lower side in the complex plane for the kx

The fermion correction to the boson propagator:

III. ONE LOOP PROPAGATORS

To gain some insight into the low energy properties of the theory (2.7), it is useful to

compute the one loop boson and fermion self-energies.

(a)

(b)

FIG. 2. One loop contributions to the (a) boson, and (a) fermion self-energies.

The one-loop boson polarization in Fig. 2 a) is given by,

Π0(q) = N

∫

dlτd2!l

(2π)3
G0

s(l)G
0
s(l + q) (3.1)

We first evaluate this diagram with a bare fermion propagator,

G0
s(k) =

1

−iηkτ + skx + k2
y

(3.2)

The resulting polarization function takes on a characteristic Landau-damped form,

Π0(q) = N

∫

dlτdly
(2π)2

i [θ(lτ )− θ(lτ + qτ )]

−iηqτ + 2qyly + qx + q2y
+ (!q → −!q)

=
Nqτ
2π

∫

dly
2π

(−i)
−iηqτ + 2qyly + qx + q2y

+ (!q → −!q) = cbN
|qτ |
|qy|

, cb =
1

4π
. (3.3)

Note that η has dropped out of the final result. We are interested above only in the singular

contribution to Π0, and this is insensitive to orders of integration: so unlike the conventional

order, we have integrated over lx before lτ . We include the RPA polarization bubble (3.3)

into the bosonic propagator to obtain

D(q) =
1

N

(

cb
|qτ |
|qy|

+
q2y
e2

+ r

)−1

. (3.4)
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yields a theory with z=3 dynamical scaling.

Feeding this back in to the fermionic sector 
yields a non-Fermi liquid.

3

FIG. 2: The one-loop boson self energy.

FIG. 3: The one-loop fermion self energy. Here the boson propaga-
tor is a dressed propagator which include the one-loop self energy
correction in Fig. 2.

of the Fermi surface. The Fermi surface is on vxkx+vyk2
y = 0

as is shown in Fig. 1. This is a ‘chiral Fermi surface’ where
the x-component of Fermi velocity is always positive. a is the
transverse component of an emergent U(1) gauge boson in
the Coulomb gauge∇ · a = 0. We ignore the temporal com-
ponent of the gauge field which is screened to a short range
interaction. The transverse gauge field is massless without a
fine tuning due to an emergent U(1) symmetry associated with
the dynamical suppression of instantons21,22. e is the coupling
between fermions and the critical boson.
In the one-loop order, singular self energies are generated

from the diagrams in Figs. 2 and 3, and the quantum effective
action becomes

Γ =
∑

j

∫

dk
[

i
c

N
sgn(k0)|k0|2/3 + ik0

+ vxkx + vyk2
y

]

ψ∗
j (k)ψj(k)

+

∫

dk

[

γ
|k0|
|ky |

+ k2
0 + k2

x + k2
y

]

a∗(k)a(k)

+
e√
N

∑

j

∫

dkdq a(q)ψ∗
j (k + q)ψj(k), (2)

where c and γ are constants of the order of 1. To compute the

fermion self energy, the dressed boson propagator has been
used because the boson self energy is of the order of 1. In the
low energy limit, the leading terms of the quantum effective
action are invariant under the scale transformation,

k0 = b−1k
′

0,

kx = b−2/3k
′

x,

ky = b−1/3k
′

y,

ψa(b−1k
′

0, b
−2/3k
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x, b−1/3k
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y) = b4/3a(k
′

0, k
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x, k
′

y). (3)

The singular self energies render the terms,

ik0ψ
∗
j (k)ψj(k),

[

k2
0 + k2

x

]

a∗(k)a(k) (4)

irrelevant in the low energy limit. Usually, it is expected that
one restores the same low energy quantum effective action if
one drops the irrelevant terms from the beginning. However,
this is not true in this case. If one drops the irrelevant terms in
the bare action, then the resulting theory becomes completely
localized in time and one can not have a propagating mode. If
there is no frequency dependence in the bare action, the fre-
quency dependent singular self energies can not be generated
either. Therefore, to restore the full low energy dynamics, one
has to keep a minimal information that the theory is not com-
pletely localized in time. It turns out that the following action
given by

L =
∑

j

ψ∗
j (η∂τ − ivx∂x − vy∂

2
y)ψj

+
e√
N

∑

j

aψ∗
jψj + a(−∂2

y)a, (5)

is the minimal local theory which restores the one-loop quan-
tum effective action (2). Here η is a parameter which has the
dimension−1/3 according to the scaling (3).
Since the time derivative term is irrelevant, η will flow to

zero in the low energy limit, and the bare value of η does not
affect any low energy physics as far as it is nonzero. The role
of the nonzero η is to give a non-trivial frequency dependent
dynamics by maintaining the minimal causal structure of the
theory before it dies off in the low energy limit. For example,
in the computation of the one-loop boson self energy (Fig. 2)
in

Π(q) = e2

∫

d3k
1

iη(k0 + q0) + vx(kx + qx) + vy(ky + qy)2
1

iηk0 + vxkx + vyk2
y

= γ
|q0|
|qy|

, (6)

the sign of η contains the information on whether the pole is on the upper or lower side in the complex plane for the kx
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can now yield a non-Fermi
liquid, if one allows the 

correction to dominate at
low-energy
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A long line of work building in this direction exists:

Hertz, 1976
Millis, 1993

Polchinski, 1994
Nayak, Wilczek, 1994

Oganesyan, Kivelson, Fradkin 2001
Chubukov et al, 2006

S.S. Lee, 2009
Metlitski, Sachdev 2010

Mross, McGreevy, Liu, Senthil 2010
............

We go in a different direction.
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We will only do systematic perturbation theory about the 
UV, and look for non-Fermi liquid fixed points or 

intermediate scaling regimes that we can reliably access
that way.

EF

!LD ⇠ gEF
1p
N

Wilson-Fisher
+ dressed non-Fermi liquid

Scale where Landau 
damping sets in

???

FIG. 1. This figure depicts the regime of energy scales over
which our description is controlled. The physics below the
parametrically low scale of Landau damping remains to be
understood.

rotational symmetry is broken whereas translation sym-
metry remains preserved. In the case of continuous
Pomeranchuk transitions, the bosons condense at zero
momentum and therefore couple to fermions at every
point of the Fermi surface. There is growing experimen-
tal evidence that such transitions have been observed in
several families of highly correlated materials including
the cuprate superconductors as well as in heavy fermion
compounds26. A similar treatment can be applied to the
case of quantum critical phenomena associated with the
density wave orders. We will consider these transitions
in a separate publication.

The paper is organized as follows. In section 2, we
construct a scaling theory that treats both low energy
bosons and fermions on an equal footing, which manages
to capture the correct behavior of both the fermion and
boson degrees of freedom when they are decoupled from
one another. In section 3, we describe our renormal-
ization group strategy and construct a non-Fermi liquid
fixed point that governs the theory in absence of four-
Fermi interactions. We describe the correlation functions
of both the boson and fermion degrees of freedom at the
non-Fermi liquid fixed point; they di↵er from the results
obtained in alternative treatments. In §4, we re-introduce
the four-Fermi interactions and describe subtleties asso-
ciated with log-squared divergences that arise in their
presence. In §5, we discuss controlled large N theories
where the subtleties of §4 do not arise, and we find fixed
points which generalize those of §3 to include four-Fermi
interactions. We show that these fixed points have no
superconducting instabilities. We close with a discussion
of open issues in §6. Explicit calculations which we refer
to in the main body are presented in several appendices.

II. EFFECTIVE ACTION AND SCALING
ANALYSIS

In the standard description of quantum critical points
in metals1, one starts with a theory involving fermion

fields  � with spin � =", # interacting at short dis-
tances with strong repulsive forces. These interactions
are decoupled by an auxiliary boson field � representing
a fermion bilinear, and the partition function is obtained
by averaging over all possible values of both the fermion
and boson fields. Initially, the auxiliary field has no dy-
namics and is massive. However, as high energy modes
of the material of interest are integrated out, radiative
corrections induce dynamics for the bosons.

In a Wilsonian theory, the dynamics are encapsulated
only in local, analytic corrections to the bare action. This
mode elimination is continued until eventually, the UV
cuto↵ ⇤ ⌧ EF represents the scale up to which the
quasiparticle kinetic energy ✏(k) can be linearized about
the Fermi level. At these low energies, and in the vicin-
ity of the quantum critical point where the field � con-
denses, it is legitimate to view � as an independent,
emergent fluctuating field. The resulting e↵ective low
energy Euclidean action consists of a purely fermionic
term, a purely bosonic term and a Yukawa coupling be-
tween bosons and fermions:

S =

Z
d⌧

Z
ddx L = S + S� + S ��

L =  ̄� [@⌧ + µ � ✏(ir)] � + �  ̄� ̄�0 �0 �

L� = m2
��

2 + (@⌧�)2 + c2
⇣
~r�

⌘2

+
��
4!
�4

S ,� =

Z
dd+1kdd+1q

(2⇡)2(d+1)
g(k, q) ̄(k) (k + q)�(q), (1)

where repeated spin indices are summed. The first term,
L , represents a Landau Fermi liquid, with weak residual
self-interactions incorporated in forward and BCS scat-
tering amplitudes. The second term represents an in-
teracting scalar boson field with speed c and mass m�

(which corresponds to the inverse correlation length that
vanishes as the system is tuned to the quantum criti-
cal point). The third term is the Yukawa coupling be-
tween the fermion and boson fields and is more naturally
described in momentum space. The quantity g(k, q) is
a generic coupling function that depends both on the
fermion momentum k, as well as the momentum trans-
fer q (we have suppressed spin indices for clarity). For a
spherically symmetric Fermi system, the angular depen-
dence of g(k, q) for |k| = kF can be decomposed into dis-
tinct angular momentum channels, each of which marks
a di↵erent broken symmetry. Familiar examples include
ferromagnetism (angular momentum zero) and nematic
order (angular momentum 2). More generally, the cou-
pling can be labelled by the irreducible representation of
the crystal point group and it respects symmetry trans-
formations under which � and  ̄ both change sign. The
e↵ective action in Eq. 1 will be the point of departure of
our analysis below.

We first describe a consistent scaling procedure for the
action in Eq. 1. The key challenge stems from the
fact that the boson and fermion fields have vastly dif-
ferent kinematics. Our bosons have dispersion relation

2

As a function of energy, we will
estimate scales where corrections
become so large that our analysis
breaks down.   Sometimes these

can be pushed to zero.

But in a problem with IR “domes,” finding an intermediate 
scaling regime governed by an approximate fixed point is 

just fine.
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III.  Our analysis: small v/c (and/or large N)

Slow Fermions in Quantum Critical Metals

A. Liam Fitzpatrick
¯

 , , Shamit Kachru
¯

 , , Jared Kaplan�, Steven A. Kivelson
¯

 , S. Raghu
¯

 , 

 ̄Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 and
�Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

(Dated: February 12, 2014)

We study the low-energy behavior of metals coupled to gapless bosons. This problem arises
in several contexts in modern condensed matter physics; we focus on the theory of metals near
continuous quantum phase transitions (where the boson is the order parameter). In the vicinity of
d = 3 spatial dimensions, the upper critical dimension of the theory, the ratio of fermion and boson
speeds, v/c, acts as an additional control parameter, enabling us to access IR fixed points. Exact
fixed points occur where this ratio vanishes. This limit corresponds to a non-Fermi liquid coupled
to bosons with critical exponents governed by the Wilson-Fisher fixed point.

Theories of quantum critical points in metals form a
central pillar of the broader study of non-Fermi-liquid
behavior in quantum materials1? ? –3. Specifically, near
a quantum phase transition to a broken symmetry state
that preserves translational symmetry (e.g. a ferromag-
netic or electron nematic state), the integrity of quasi-
particle excitations on the entire Fermi surface is de-
stroyed due to the scattering of electrons o↵ the soft
bosonic fluctuations4? ? ? ? –17 associated with the order
parameter. However, the ultimate low energy behavior
of such systems remains a matter of debate, following the
demonstration18 that the standard approach19,20 breaks
down, even in a suitable large N limit where it was pre-
viously thought to be exact.

In the present paper we study this problem using a
Wilsonian renormalization group (RG) procedure in spa-
tial dimension d = 3 � ✏ and in the limit in which the
collective mode velocity, c, is larger than the Fermi ve-
locity, v. In the context of Fermi liquid theory, there is a
sharp distinction between collective modes with c/v > 1
(e.g. zero sound), which lie outside the particle-hole con-
tinuum and so are undamped, and those with c/v < 1,
which are typically overdamped21. This same distinction
applies to the initial RG flows in quantum critical metals.
Moreover, (as we will see) since under renormalization,
v decrease rapidly with decreasing energy, if c/v > 1 in
the ultraviolet (UV), this inequality is increasingly well
satisfied at lower energies.

For small ✏, we find a perturbatively accessible fixed-
point in which the critical exponents are governed by
the usual Wilson-Fisher fixed-point, but the Fermi liquid
is destroyed and the Fermi velocity tends to zero (the
e↵ective mass diverges). Identical fixed-point properties
were obtained previously in a particular large N limit of
the problem in which the order parameter field of the
present analysis is replaced by an N ⇥ N matrix field
coupled toN flavors of fermions14,15. However, this fixed-
point is distinct from the more usual (and still unsolved)
large N limit in which a single scalar field is coupled
to N flavors of fermions. Here, we will not need to take
either largeN limit, though such a parameter can provide
additional control to our calculations.

If the bare coupling to the collective modes is not too

strong, for c/v > 1 this fixed point governs the behavior
of the system over a range of energies and temperatures.
We identify several possible instabilities that might alter
the RG flows away from the fixed point. Nevertheless,
as stressed in Ref. 13, a broad intermediate asymptotic
regime governed by a fixed point that is ultimately unsta-
ble in the deep IR is likely su�cient to account for most
of the known phenomenology. This is especially relevant
to the class of metallic quantum critical points that are
unstable to the formation of ordered phases below a finite
temperature “dome”.
The Model: We treat the problem of a finite den-

sity of fermions,  , coupled to a critical scalar field, �,
through a Yukawa interaction:

S =

Z
d⌧

Z
d

d

x

�L
 

+ L
�

+ L
 ,�

 
(1)

L
 

=  ̄

�

[@
⌧

+ µ� "(ir)] 
�

+ �

 

 ̄

�

 

�

0
 ̄

�

0
 

�

L
�

= m

2

�

�

2 + (@
⌧

�)2 + c

2

⇣
~r�

⌘
2

+ �

�

(��)2

The first line above represents a Landau Fermi liquid
with weak residual self-interactions (�

 

); the second line
is the Landau-Ginsburg-Wilson action for critical order
parameter fluctuations. The quasiparticle dispersion,
"(k) � µ, vanishes on a closed Fermi surface, k = k

F

which, for simplicity we will take to be spherical, but
more generally needs only to respect the symmetries of
the host crystal and to enclose a fixed k�space volume
equal to the electron density. The dispersion can be ex-
panded in powers of distance from the Fermi surface as
"(k)�µ = v`+w`

2+ . . . where k = k
F

+k̂
F

` and the UV
cuto↵ which limits our focus to states “near” the Fermi
surface is ⇤ . E

F

, the Fermi energy or bandwidth. Ex-
cept where otherwise stated, we will consider only the
first order approximation to ", i.e. we will take w = 0.
The coupling between the two fields is a generalized

Yukawa interaction, best written in momentum space as

S

 ,�

=

Z
d

d+1

kd

d+1

q

(2⇡)2(d+1)

g(k, q) ̄
�

(k) 
�

(k + q)�(q)(2)

where the measure dd+1

k includes both frequency and d-
dimensional momenta, and repeated spin indices � are

The theory we are perturbing by the Yukawa interaction
(including the Yukawa itself) 

has an upper critical dimension of d=3+1.

So, we study it in the epsilon expansion, and in
perturbation theory in “g”, with two

additional handles to control it:
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a)  We can consider a matrix large N boson coupled to 
flavors of fermions (with boson self-interactions treated in 

such a way that they give an             Wilson-Fisher like 
model)

O(N2)

b)  The system is non-relativistic, and characterized by a 
fermion velocity v and a boson velocity c.  We will

see that the ratio        can serve as a small parameterv/c

allowing us to see what happens at N=1.

I will focus on b), simply mentioning what N does when
relevant .
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summed. The contraction  ̄ implicitly includes any
spin matrices that should be included if e.g. � is a fer-
romagnetic order parameter. Note that the Yukawa cou-
pling is parametrized both by the momentum state of the
initial fermion k as well as the momentum transfer q. At
low energies, the Yukawa coupling takes the form

g(k, q) = g(k
F

, 0) + · · · (3)

where the ellipsis denotes irrelevant corrections. The
symmetries of g depend on the particular form of bro-
ken symmetry that characterizes the proximate ordered
state (in which h�i 6= 0). An example of considerable
interest22 is that of Ising nematic order in a tetragonal
crystal, where �, and hence g as well, are odd under ro-
tation by ⇡/2: g(k

F

) ⇠ cos(kx
F

) � cos(ky
F

). Therefore,
there are “cold spots” on the Fermi surface where g ! 0
and the fermions do not couple to the order parameter.

Perturbative considerations: Below d = 3 spatial
dimensions, the scalar self-coupling and the Yukawa in-
teractions are relevant; even weak interactions produce a
large e↵ect on the low energy physics. Conversely, this
means that the theory (neglecting the weak four-Fermi
interactions, whose e↵ects are already well-known) en-
joys a weakly-coupled UV fixed point: the theory at high
energies is just a Landau Fermi liquid nearly decoupled
from a free, critical scalar field, and the interactions can
be treated perturbatively. As one moves from the UV
into the IR, the couplings flow toward non-trivial values.
Since d = 3 is the upper critical dimension for all cou-
plings, at small ✏ one can follow this flow by computing
the logarithmic divergences of the theory in d = 3 and
thereby obtaining the RG equations. However, the e↵ect
of Landau damping could present an obstacle to contin-
uing this flow arbitrarily in the IR because in diagrams
with closed fermion loops, the Yukawa coupling can e↵ec-
tively act like a relevant coupling even in d = 3. The one-
loop boson self-energy of Fig. 1 generates a contribution
to the boson self-energy which in the long-wavelength
limit, and for real frequencies is?
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When |qv/q
0

|  1 the self-energy is real, while in the
opposite limit it has an imaginary part. Physically, this
follows from kinematic constraints on the boson decay
into fermion pairs, and so it is true in any d. (Note
that in the generalized theory with an N ⇥ N matrix
boson coupled to N fermions (as in Ref. 15), the Landau
damping is 1/N suppressed, i.e., Eq. 4 is multipled by 1
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;
in this way complete parametric control can be obtained.)

One can think of Eq. 4 as a non-local “mass-like” term
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physics of this term would be well-understood: ⇧(q
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would be just a mass term that, at criticality, would be
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cancelled by a local counterterm. For the actual function
F in Eq. 4, its implication for the IR dynamics of the
boson is less clear.
Our primary observation is that at v ⌧ c, a great sim-

plification occurs, because F ! 0 as v ! 0. There is
a simple diagrammatic argument why this occurs. Con-
sider the Feynman integral corresponding to Figure 1:
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We can change variables ` ! `/|v| and pull the 1/|v|
from the integration measure out front. Then, it is easy
to see that at v ! 0, all poles in ! are always on the
same side of the real axis, and therefore the integral van-
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holds in any d, since the integration measure always takes
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, q) vanishes like O(v) at small
v. Furthermore, it is clear that this argument applies
equally well to any diagram with a single closed fermion
loop and any number of scalar external legs.
This demonstrates that when v/c ! 0, Landau damp-

ing vanishes and there is no obstacle in this case to using
the RG to study the deep IR of the theory. One must ask,
though, what happens when v/c is merely small but not
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so one might worry that the treatment of Landau damp-
ing simplifies only when v is finely tuned to be identically
zero. Fortunately, as we describe below, the renormaliza-
tion group flow of the theory drives the velocity to a fixed
point at v/c = 0, so that all one needs is for the theory
in the UV to start out in the basin of attraction of this
fixed point.
RG Flows: The one-loop logarithmic divergences and

resulting � functions of the theory were computed in
Refs. 14,15, where one sees that v ! 0 at low ener-
gies. Here we will focus on the parameters g and v since
the other couplings of the theory do not appear in their
one-loop � functions.
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joys a weakly-coupled UV fixed point: the theory at high
energies is just a Landau Fermi liquid nearly decoupled
from a free, critical scalar field, and the interactions can
be treated perturbatively. As one moves from the UV
into the IR, the couplings flow toward non-trivial values.
Since d = 3 is the upper critical dimension for all cou-
plings, at small ✏ one can follow this flow by computing
the logarithmic divergences of the theory in d = 3 and
thereby obtaining the RG equations. However, the e↵ect
of Landau damping could present an obstacle to contin-
uing this flow arbitrarily in the IR because in diagrams
with closed fermion loops, the Yukawa coupling can e↵ec-
tively act like a relevant coupling even in d = 3. The one-
loop boson self-energy of Fig. 1 generates a contribution
to the boson self-energy which in the long-wavelength
limit, and for real frequencies is?
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When |qv/q
0

|  1 the self-energy is real, while in the
opposite limit it has an imaginary part. Physically, this
follows from kinematic constraints on the boson decay
into fermion pairs, and so it is true in any d. (Note
that in the generalized theory with an N ⇥ N matrix
boson coupled to N fermions (as in Ref. 15), the Landau
damping is 1/N suppressed, i.e., Eq. 4 is multipled by 1
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in this way complete parametric control can be obtained.)
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F in Eq. 4, its implication for the IR dynamics of the
boson is less clear.
Our primary observation is that at v ⌧ c, a great sim-

plification occurs, because F ! 0 as v ! 0. There is
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We can change variables ` ! `/|v| and pull the 1/|v|
from the integration measure out front. Then, it is easy
to see that at v ! 0, all poles in ! are always on the
same side of the real axis, and therefore the integral van-
ishes. Moreover, the rescaled integral is invariant under
v ! �v, since this can be compensated for by chang-
ing integration variables cos ✓ ! � cos ✓. This argument
holds in any d, since the integration measure always takes
the form given above, multiplifed by an even function
of cos ✓. Therefore ⇧(q
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, q) vanishes like O(v) at small
v. Furthermore, it is clear that this argument applies
equally well to any diagram with a single closed fermion
loop and any number of scalar external legs.
This demonstrates that when v/c ! 0, Landau damp-

ing vanishes and there is no obstacle in this case to using
the RG to study the deep IR of the theory. One must ask,
though, what happens when v/c is merely small but not
vanishing. In this limit, the leading small v contribution
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so one might worry that the treatment of Landau damp-
ing simplifies only when v is finely tuned to be identically
zero. Fortunately, as we describe below, the renormaliza-
tion group flow of the theory drives the velocity to a fixed
point at v/c = 0, so that all one needs is for the theory
in the UV to start out in the basin of attraction of this
fixed point.
RG Flows: The one-loop logarithmic divergences and

resulting � functions of the theory were computed in
Refs. 14,15, where one sees that v ! 0 at low ener-
gies. Here we will focus on the parameters g and v since
the other couplings of the theory do not appear in their
one-loop � functions.
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The boson self-energy can be evaluated in a standard way:

When the bosons are fast --           -- it is purely real.
This reflects the kinematics that bosons cannot decay

to fermions in this limit. 

v < c
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and the fermions do not couple to the order parameter.
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teractions are relevant; even weak interactions produce a
large e↵ect on the low energy physics. Conversely, this
means that the theory (neglecting the weak four-Fermi
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from a free, critical scalar field, and the interactions can
be treated perturbatively. As one moves from the UV
into the IR, the couplings flow toward non-trivial values.
Since d = 3 is the upper critical dimension for all cou-
plings, at small ✏ one can follow this flow by computing
the logarithmic divergences of the theory in d = 3 and
thereby obtaining the RG equations. However, the e↵ect
of Landau damping could present an obstacle to contin-
uing this flow arbitrarily in the IR because in diagrams
with closed fermion loops, the Yukawa coupling can e↵ec-
tively act like a relevant coupling even in d = 3. The one-
loop boson self-energy of Fig. 1 generates a contribution
to the boson self-energy which in the long-wavelength
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opposite limit it has an imaginary part. Physically, this
follows from kinematic constraints on the boson decay
into fermion pairs, and so it is true in any d. (Note
that in the generalized theory with an N ⇥ N matrix
boson coupled to N fermions (as in Ref. 15), the Landau
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cancelled by a local counterterm. For the actual function
F in Eq. 4, its implication for the IR dynamics of the
boson is less clear.
Our primary observation is that at v ⌧ c, a great sim-

plification occurs, because F ! 0 as v ! 0. There is
a simple diagrammatic argument why this occurs. Con-
sider the Feynman integral corresponding to Figure 1:
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We can change variables ` ! `/|v| and pull the 1/|v|
from the integration measure out front. Then, it is easy
to see that at v ! 0, all poles in ! are always on the
same side of the real axis, and therefore the integral van-
ishes. Moreover, the rescaled integral is invariant under
v ! �v, since this can be compensated for by chang-
ing integration variables cos ✓ ! � cos ✓. This argument
holds in any d, since the integration measure always takes
the form given above, multiplifed by an even function
of cos ✓. Therefore ⇧(q

0

, q) vanishes like O(v) at small
v. Furthermore, it is clear that this argument applies
equally well to any diagram with a single closed fermion
loop and any number of scalar external legs.
This demonstrates that when v/c ! 0, Landau damp-

ing vanishes and there is no obstacle in this case to using
the RG to study the deep IR of the theory. One must ask,
though, what happens when v/c is merely small but not
vanishing. In this limit, the leading small v contribution
to ⇧(q
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so one might worry that the treatment of Landau damp-
ing simplifies only when v is finely tuned to be identically
zero. Fortunately, as we describe below, the renormaliza-
tion group flow of the theory drives the velocity to a fixed
point at v/c = 0, so that all one needs is for the theory
in the UV to start out in the basin of attraction of this
fixed point.
RG Flows: The one-loop logarithmic divergences and

resulting � functions of the theory were computed in
Refs. 14,15, where one sees that v ! 0 at low ener-
gies. Here we will focus on the parameters g and v since
the other couplings of the theory do not appear in their
one-loop � functions.

2

indicating that small v should broaden an energy range 
where the bosonic “dressing” of the fermions dominates 

over Landau damping.

Matrix large N will only help any such statement - the 
Landau damping is a 1/N effect relative to the fermion self-

energy - so we will simply analyze the theory at N=1,
with this in mind.
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Now, we do a basic RG about the two decoupled UV fixed 
points.  This fixes our scaling to be as in the picture:

qx

qy

qx

qy

(a) (b)

(c)

~k

~k + ~q

~q

empty states

filled states

empty states

filled states

FIG. 2. Summary of tree-level scaling. High energy modes
(blue) are integrated out at tree level and remaining low en-
ergy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low
energy locus at a point whereas the fermion modes (b) have
their low energy locus on the Fermi surface. The most rel-
evant Yukawa coupling (c) connects particle-hole states sep-
arated by small momenta near the Fermi surface; all other
couplings are irrelevant under the scaling.

k2
0 = c2k2 +m2

�, so that low energies correspond as usual
to low momentum, and their scaling is that of a standard
relativistic field theory where all components of momen-
tum scale the same way as k0. By contrast, the fermion
dispersion relation is k0 = ✏(k) � µ, so their low en-
ergy states occur close to the Fermi surface (Fig. 2).
Moreover, the Yukawa coupling between the two sets of
fields must conserve energy and momentum in a coarse-
graining procedure. These complications are easily cir-
cumvented by requiring tree-level scaling to reproduce
the behavior of a Landau Fermi liquid and a nearly-free
boson decoupled from one another when g = 0. Fur-
thermore, when m� is finite, we must recover Landau
Fermi liquid theory: this simple notion leads to a unique
scaling procedure. As the fields are coarse grained, only
the most relevant components of the Yukawa coupling
function are retained. The four fermion interaction � is
generally also a coupling function depending on the rel-
ative orientation of the fermion momenta, with di↵erent
scalings for di↵erent configurations5,6.

To be more explicit, we consider a rotationally invari-
ant Fermi surface, and following Polchinski5, we define a
fermion momentum k = kF + `, where kF is a point on
the Fermi surface that is closest to k; thus, ` is a perpen-
dicular displacement from the Fermi surface to k. As the
cuto↵ is lowered, energies and momenta must be rescaled,
and in the Fermi liquid theory, only ` are rescaled while
kF remain una↵ected. For the boson fields, by contrast,
all momenta components and energy must be rescaled as
the cuto↵ is lowered. We integrate out modes at tree-level
with energy ⇤e�t < E < ⇤, and rescale frequencies (de-

noted k0) and momenta so that the dispersion relations
remain invariant. To simplify the discussion of scaling,
we will focus on a spherically symmetric Fermi surface
✏(k) = 1

2mk2, so that our decomposition of the fermion
momentum is equivalent to parameterizing momenta by
a direction ⌦̂ and a perpendicular magnitude `:

k = ⌦̂(kF + `). (2)

The dispersion relation for ` ⌧ kF is then simply k0 ⇡
vF `, vF = kF /m. The natural fermion scaling is there-
fore to scale ` the same as k0, but not to scale any other
components of momentum. In this parameterization (2),
the components of momentum parallel to the Fermi sur-
face are more properly thought of as angles rather than
momenta. We therefore find it natural to think of the
Fermi surface as a continuous collection of e↵ectively
(1 + 1)-dimensional fermions coupled by forward scat-
tering and BCS interactions, as is true in an ordinary
Landau Fermi liquid.

We therefore obtain the following scalings

k0
0 = etk0, k0

F = kF , `0 = et` (3)

for the fermion states, whereas

k0
0 = etk0, k0 = etk (4)

is the scaling that we adopt for the boson fields. This
particular scaling reflects the fact that our boson has dy-
namical critical exponent z = 1 at tree-level since we
have not integrated out gapless fermions to generate a
Landau-damped boson. The fields are rescaled so that
the boson and fermion kinetic energies remain invariant,
which leads to the following scaling relations:

 0 = e�3t/2 , �0 = e� (d+3)
2 t� (5)

From this it follows that a generic fermion interaction
is irrelevant, whereas forward scattering and BCS inter-
actions always remain marginal at tree-level: �0

 = � 
for all d > 0. It also follows from these considerations
that the boson interactions must be rescaled as

�0
� = e(3�d)t�� (6)

which sets d = 3 as the upper-critical dimension for the
boson fields: thus, when g = 0 the quantum critical point
has the properties of a classical critical point in one higher
dimension, as is required when z = 1.

At first sight, scaling the momenta of the fermions dif-
ferently from those of the bosons may alarm the reader.
It implies, among other things, that scale transformations
in position space are non-local. However, this feature
is present even in ordinary Landau Fermi liquid theory:
the scaling procedure couples fermions at di↵erent points
in space. To see this explicitly, one can simply Fourier
transform the momentum space scaling

 (⌦̂, `) !  0(⌦̂, `) = e�3t/2 (⌦̂, e�t`), (7)

3
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RG equations can be derived by decimating in energies and 
momenta in a Wilsonian manner.  The resulting system of 

equations is as follows.  First off:

0 1 2 3 4 5 60

1

2

3

4

5

v

g

e = 0.1

0 1 2 3 4 5 60

1

2

3

4

5

v

g

e = 0

FIG. 2: Graphic depiction of RG flow for the parameters
g and v when � is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).

the other couplings of the theory do not appear in their
one-loop � functions.

Let us write the renormalization scale µ of the theory
in terms of an initial UV scale ⇤ as µ ⌘ e

�t⇤. The
fermions do not a↵ect the RG equations for the purely
bosonic part of the Lagrangian, L

�

, so they run exactly
as in the Wilson-Fisher model:

dc

dt

= 0,
d�

�

dt

= ��

�� = ✏�

�

� 3�2

�

16⇡2

+O(�3

�

). (6)

The RG equations for the fermion velocity v and the
Yukawa coupling g then take the form

dv

dt

= ��

v

= � g

2

(2⇡c)2
S(v, w, ...),+O(�2

�

, g

2),

dg

dt

= ��

g

= g

✓
✏

2
� 2

g

2

4⇡2

c

2(c+ |v|)
◆
+O(�2

�

, g

2),

dw

dt

= �w[1 +O(g2)] (7)

So long as v is large enough that the higher order terms in
the fermion dispersion can be ignored (i.e. for v � wµ),
we can replace S(v, w, ...) ⇡ S(v, 0, ...) = sign(v). How-
ever, the exact beta function must be analytic; as v tends
to 0, we eventually reach a scale at which the higher order
(dangerously irrelevant) terms in the dispersion cannot
be neglected, with the result that �

v

! 0 as v ! 0.
For small ✏, these RG equations have a fixed point in

the perturbative regime at which the higher order terms
in the beta functions are negligible: �

?

�

= ✏(16⇡2

/3),

g

? =
p
✏

p
2⇡2

c

3, and v

? = w

? = 0. In the idealized model
with w = 0, the fixed point describes the properties of the
transition down to the deep IR, as long as v flows to zero
at a scale higher than the scale µ

LD

where Landau damp-
ing becomes important. We will define µ

LD

as the scale
where the self-energy ⇧(q

0

, q) becomes larger than the
tree-level kinetic term q

2

0

+ c

2

q

2. This statement is some-
what ambiguous since it depends on the ratio x ⌘ q

0

/cq.
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FIG. 3: The shaded region shows values of the UV fermion
velocity v0 for which v(t) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

If we look “on-shell” where x ⇠ 1, the self-energy correc-
tion is increasingly unimportant the further we proceed
into the IR in a large region of parameter space. To be
more precise, we can define µ

LD

to be the solution of the
implicit equation

x

2|⇧(µ
LD

, µ

LD

/cx)|
µ

2

LD

(1 + x

2)
= 1, (8)

with x = 1, i.e. µ

LD

is the highest scale where the loop
correction to the boson propagator is as large as the tree-
level propagator. In practice, we will adopt a strictly
more conservative definition of µ

LD

, which chooses x to
maximize the ratio in (8). It is important to note that
we use the running value of the fermion velocity. With
this definition, we find that v flows to zero at a scale
µ⇤ > µ

LD

for a wide range of modestly small values of
v

0

/c, and at perturbatively small values of the coupling
g

0

, where we have defined the bare parameters v
0

⌘ v(0)
and g

0

⌘ g(0). Since both µ⇤ and µ

LD

depend on g

0

and v

0

, this condition is satisfied only for some range of
parameters, as shown in Fig. 3. In general, for fixed g

0

,
we expect this condition to be satisfied for small enough
v

0

/c, as shown by the upper diagonal boundary-line in
the figure. In computing this line we have taken the
cuto↵, i.e. the Fermi energy, to be ⇤ = v

0

k

F

, which
is problematic for very small v

0

: if the Fermi energy is
proportional to v

0

, we do not know what happens when
v

0

is small, because with such a low Fermi energy the
Landau damping term is dominant already at the UV
cut-o↵. If the Fermi energy is independent of v

0

, then
the small v

0

region is not a problem.
At the fixed point, the fermions are formally disper-

sionless, which is a singular situation in which the for-
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FIG. 2: Graphic depiction of RG flow for the parameters
g and v when � is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).

the other couplings of the theory do not appear in their
one-loop � functions.

Let us write the renormalization scale µ of the theory
in terms of an initial UV scale ⇤ as µ ⌘ e

�t⇤. The
fermions do not a↵ect the RG equations for the purely
bosonic part of the Lagrangian, L

�

, so they run exactly
as in the Wilson-Fisher model:
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The RG equations for the fermion velocity v and the
Yukawa coupling g then take the form
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So long as v is large enough that the higher order terms in
the fermion dispersion can be ignored (i.e. for v � wµ),
we can replace S(v, w, ...) ⇡ S(v, 0, ...) = sign(v). How-
ever, the exact beta function must be analytic; as v tends
to 0, we eventually reach a scale at which the higher order
(dangerously irrelevant) terms in the dispersion cannot
be neglected, with the result that �

v

! 0 as v ! 0.
For small ✏, these RG equations have a fixed point in

the perturbative regime at which the higher order terms
in the beta functions are negligible: �

?
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= ✏(16⇡2

/3),

g

? =
p
✏

p
2⇡2

c

3, and v

? = w

? = 0. In the idealized model
with w = 0, the fixed point describes the properties of the
transition down to the deep IR, as long as v flows to zero
at a scale higher than the scale µ

LD

where Landau damp-
ing becomes important. We will define µ

LD

as the scale
where the self-energy ⇧(q

0

, q) becomes larger than the
tree-level kinetic term q

2

0

+ c

2

q

2. This statement is some-
what ambiguous since it depends on the ratio x ⌘ q

0

/cq.
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FIG. 3: The shaded region shows values of the UV fermion
velocity v0 for which v(t) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

If we look “on-shell” where x ⇠ 1, the self-energy correc-
tion is increasingly unimportant the further we proceed
into the IR in a large region of parameter space. To be
more precise, we can define µ

LD

to be the solution of the
implicit equation

x

2|⇧(µ
LD

, µ

LD

/cx)|
µ

2

LD

(1 + x

2)
= 1, (8)

with x = 1, i.e. µ

LD

is the highest scale where the loop
correction to the boson propagator is as large as the tree-
level propagator. In practice, we will adopt a strictly
more conservative definition of µ

LD

, which chooses x to
maximize the ratio in (8). It is important to note that
we use the running value of the fermion velocity. With
this definition, we find that v flows to zero at a scale
µ⇤ > µ

LD

for a wide range of modestly small values of
v

0

/c, and at perturbatively small values of the coupling
g

0

, where we have defined the bare parameters v
0

⌘ v(0)
and g

0

⌘ g(0). Since both µ⇤ and µ

LD

depend on g

0

and v

0

, this condition is satisfied only for some range of
parameters, as shown in Fig. 3. In general, for fixed g

0

,
we expect this condition to be satisfied for small enough
v

0

/c, as shown by the upper diagonal boundary-line in
the figure. In computing this line we have taken the
cuto↵, i.e. the Fermi energy, to be ⇤ = v

0

k

F

, which
is problematic for very small v

0

: if the Fermi energy is
proportional to v

0

, we do not know what happens when
v

0

is small, because with such a low Fermi energy the
Landau damping term is dominant already at the UV
cut-o↵. If the Fermi energy is independent of v

0

, then
the small v

0

region is not a problem.
At the fixed point, the fermions are formally disper-

sionless, which is a singular situation in which the for-

3

The bosons flow to a Wilson-Fisher fixed point, with g 
not perturbing the flow at this order.

The other parameters flow in an interesting way:

Sunday, February 23, 14



Here, w is a new parameter we introduced:
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We study the low-energy behavior of metals coupled to gapless bosons. This problem arises
in several contexts in modern condensed matter physics; we focus on the theory of metals near
continuous quantum phase transitions (where the boson is the order parameter). In the vicinity of
d = 3 spatial dimensions, the upper critical dimension of the theory, the ratio of fermion and boson
speeds, v/c, acts as an additional control parameter, enabling us to access IR fixed points where
this ratio vanishes. This limit corresponds to a non-Fermi liquid coupled to bosons with critical
exponents governed by the Wilson-Fisher fixed point.

Theories of quantum critical points in metals form a
central pillar of the broader study of non-Fermi-liquid
behavior in quantum materials1–5. Specifically, near a
quantum phase transition to a broken symmetry state
that preserves translational symmetry (e.g. a ferromag-
netic or electron nematic state), the integrity of quasi-
particle excitations on the entire Fermi surface is de-
stroyed due to the scattering of electrons o↵ the soft
bosonic fluctuations6–23 associated with the order pa-
rameter. However, the ultimate low energy behavior of
such systems remains a matter of debate, following the
demonstration24 that the standard approach25,26 breaks
down, even in a suitable large N limit where it was pre-
viously thought to be exact.

In the present paper we study this problem using a
Wilsonian renormalization group (RG) procedure in spa-
tial dimension d = 3 � ✏ and in the limit in which the
collective mode velocity, c, is larger than the Fermi ve-
locity, v. In the context of Fermi liquid theory, there is a
sharp distinction between collective modes with c/v > 1
(e.g. zero sound), which lie outside the particle-hole con-
tinuum and so are undamped, and those with c/v < 1,
which are typically overdamped27. This same distinction
applies to the initial RG flows in quantum critical metals.
Moreover, (as we will see) since under renormalization,
v decrease rapidly with decreasing energy, if c/v > 1 in
the ultraviolet (UV), this inequality is increasingly well
satisfied at lower energies.

For small ✏, we find a perturbatively accessible fixed-
point in which the critical exponents are governed by
the usual Wilson-Fisher fixed-point, but the Fermi liquid
is destroyed and the Fermi velocity tends to zero (the
e↵ective mass diverges). Identical fixed-point properties
were obtained previously in a particular large N limit of
the problem in which the order parameter field of the
present analysis is replaced by an N ⇥ N matrix field
coupled toN flavors of fermions20,21. However, this fixed-
point is distinct from the more usual (and still unsolved)
large N limit in which a single scalar field is coupled
to N flavors of fermions. Here, we will not need to take
either largeN limit, though such a parameter can provide
additional control to our calculations.

If the bare coupling to the collective modes is not too

strong, for c/v > 1 this fixed point governs the behavior
of the system over a range of energies and temperatures.
We identify several possible instabilities that might alter
the RG flows away from the fixed point. Nevertheless,
as stressed in Ref. 19, a broad intermediate asymptotic
regime governed by a fixed point that is ultimately unsta-
ble in the deep IR is likely su�cient to account for most
of the known phenomenology. This is especially relevant
to the class of metallic quantum critical points that are
unstable to the formation of ordered phases below a finite
temperature “dome”.
The Model: We treat the problem of a finite den-

sity of fermions,  , coupled to a critical scalar field, �,
through a Yukawa interaction:
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The first line above represents a Landau Fermi liquid
with weak residual self-interactions (�

 

); the second line
is the Landau-Ginsburg-Wilson action for critical order
parameter fluctuations. The quasiparticle dispersion,
"(k) � µ, vanishes on a closed Fermi surface, k = k

F

which, for simplicity we will take to be spherical, but
more generally needs only to respect the symmetries of
the host crystal and to enclose a fixed k�space volume
equal to the electron density. The dispersion can be ex-
panded in powers of distance from the Fermi surface as
"(k)�µ = v`+w`

2+ . . . where k = k
F

+k̂
F

` and the UV
cuto↵ which limits our focus to states “near” the Fermi
surface is ⇤ . E

F

, the Fermi energy or bandwidth. Ex-
cept where otherwise stated, we will consider only the
first order approximation to ", i.e. we will take w = 0.
The coupling between the two fields is a generalized

Yukawa interaction, best written in momentum space as

S

 ,�
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g(k, q) ̄
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where the measure dd+1

k includes both frequency and d-
dimensional momenta, and repeated spin indices � are
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for reasons to become apparent shortly.

First, let us set w=0 and analyze the RG flow.  
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FIG. 2: Graphic depiction of RG flow for the parameters
g and v when � is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).

the other couplings of the theory do not appear in their
one-loop � functions.

Let us write the renormalization scale µ of the theory
in terms of an initial UV scale ⇤ as µ ⌘ e

�t⇤. The
fermions do not a↵ect the RG equations for the purely
bosonic part of the Lagrangian, L

�

, so they run exactly
as in the Wilson-Fisher model:
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�� = ✏�
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� 3�2
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16⇡2
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The RG equations for the fermion velocity v and the
Yukawa coupling g then take the form
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dw
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= �w[1 +O(g2)] (7)

So long as v is large enough that the higher order terms in
the fermion dispersion can be ignored (i.e. for v � wµ),
we can replace S(v, w, ...) ⇡ S(v, 0, ...) = sign(v). How-
ever, the exact beta function must be analytic; as v tends
to 0, we eventually reach a scale at which the higher order
(dangerously irrelevant) terms in the dispersion cannot
be neglected, with the result that �

v

! 0 as v ! 0.
For small ✏, these RG equations have a fixed point in

the perturbative regime at which the higher order terms
in the beta functions are negligible: �

?

�

= ✏(16⇡2

/3),

g

? =
p
✏

p
2⇡2

c

3, and v

? = w

? = 0. In the idealized model
with w = 0, the fixed point describes the properties of the
transition down to the deep IR, as long as v flows to zero
at a scale higher than the scale µ

LD

where Landau damp-
ing becomes important. We will define µ

LD

as the scale
where the self-energy ⇧(q

0

, q) becomes larger than the
tree-level kinetic term q

2

0

+ c

2

q

2. This statement is some-
what ambiguous since it depends on the ratio x ⌘ q

0

/cq.
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FIG. 3: The shaded region shows values of the UV fermion
velocity v0 for which v(t) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

If we look “on-shell” where x ⇠ 1, the self-energy correc-
tion is increasingly unimportant the further we proceed
into the IR in a large region of parameter space. To be
more precise, we can define µ

LD

to be the solution of the
implicit equation

x

2|⇧(µ
LD

, µ

LD

/cx)|
µ

2

LD

(1 + x

2)
= 1, (8)

with x = 1, i.e. µ

LD

is the highest scale where the loop
correction to the boson propagator is as large as the tree-
level propagator. In practice, we will adopt a strictly
more conservative definition of µ

LD

, which chooses x to
maximize the ratio in (8). It is important to note that
we use the running value of the fermion velocity. With
this definition, we find that v flows to zero at a scale
µ⇤ > µ

LD

for a wide range of modestly small values of
v

0

/c, and at perturbatively small values of the coupling
g

0

, where we have defined the bare parameters v
0

⌘ v(0)
and g

0

⌘ g(0). Since both µ⇤ and µ

LD

depend on g

0

and v

0

, this condition is satisfied only for some range of
parameters, as shown in Fig. 3. In general, for fixed g

0

,
we expect this condition to be satisfied for small enough
v

0

/c, as shown by the upper diagonal boundary-line in
the figure. In computing this line we have taken the
cuto↵, i.e. the Fermi energy, to be ⇤ = v

0

k

F

, which
is problematic for very small v

0

: if the Fermi energy is
proportional to v

0

, we do not know what happens when
v

0

is small, because with such a low Fermi energy the
Landau damping term is dominant already at the UV
cut-o↵. If the Fermi energy is independent of v

0

, then
the small v

0

region is not a problem.
At the fixed point, the fermions are formally disper-

sionless, which is a singular situation in which the for-

3
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Important point: v/c flows towards zero.  As small v
acts in some sense as a control parameter to

prevent boson decay from being important, this
is physically interesting.

But, is the analysis under control?  A reasonably
conservative control criterion would be to say

that the analysis breaks down at a scale    
which is defined by:

x = q0/cq
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FIG. 2: Graphic depiction of RG flow for the parameters
g and v when � is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).

the other couplings of the theory do not appear in their
one-loop � functions.

Let us write the renormalization scale µ of the theory
in terms of an initial UV scale ⇤ as µ ⌘ e

�t⇤. The
fermions do not a↵ect the RG equations for the purely
bosonic part of the Lagrangian, L

�

, so they run exactly
as in the Wilson-Fisher model:
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The RG equations for the fermion velocity v and the
Yukawa coupling g then take the form
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So long as v is large enough that the higher order terms in
the fermion dispersion can be ignored (i.e. for v � wµ),
we can replace S(v, w, ...) ⇡ S(v, 0, ...) = sign(v). How-
ever, the exact beta function must be analytic; as v tends
to 0, we eventually reach a scale at which the higher order
(dangerously irrelevant) terms in the dispersion cannot
be neglected, with the result that �

v

! 0 as v ! 0.
For small ✏, these RG equations have a fixed point in

the perturbative regime at which the higher order terms
in the beta functions are negligible: �
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3, and v
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? = 0. In the idealized model
with w = 0, the fixed point describes the properties of the
transition down to the deep IR, as long as v flows to zero
at a scale higher than the scale µ

LD

where Landau damp-
ing becomes important. We will define µ

LD

as the scale
where the self-energy ⇧(q

0

, q) becomes larger than the
tree-level kinetic term q

2
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2. This statement is some-
what ambiguous since it depends on the ratio x ⌘ q
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/cq.
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FIG. 3: The shaded region shows values of the UV fermion
velocity v0 for which v(t) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

If we look “on-shell” where x ⇠ 1, the self-energy correc-
tion is increasingly unimportant the further we proceed
into the IR in a large region of parameter space. To be
more precise, we can define µ

LD

to be the solution of the
implicit equation

x

2|⇧(µ
LD

, µ

LD

/cx)|
µ

2

LD

(1 + x

2)
= 1, (8)

with x = 1, i.e. µ

LD

is the highest scale where the loop
correction to the boson propagator is as large as the tree-
level propagator. In practice, we will adopt a strictly
more conservative definition of µ

LD

, which chooses x to
maximize the ratio in (8). It is important to note that
we use the running value of the fermion velocity. With
this definition, we find that v flows to zero at a scale
µ⇤ > µ

LD

for a wide range of modestly small values of
v

0

/c, and at perturbatively small values of the coupling
g

0

, where we have defined the bare parameters v
0

⌘ v(0)
and g

0

⌘ g(0). Since both µ⇤ and µ

LD

depend on g

0

and v

0

, this condition is satisfied only for some range of
parameters, as shown in Fig. 3. In general, for fixed g

0

,
we expect this condition to be satisfied for small enough
v

0

/c, as shown by the upper diagonal boundary-line in
the figure. In computing this line we have taken the
cuto↵, i.e. the Fermi energy, to be ⇤ = v

0

k

F

, which
is problematic for very small v

0

: if the Fermi energy is
proportional to v

0

, we do not know what happens when
v

0

is small, because with such a low Fermi energy the
Landau damping term is dominant already at the UV
cut-o↵. If the Fermi energy is independent of v

0

, then
the small v

0

region is not a problem.
At the fixed point, the fermions are formally disper-

sionless, which is a singular situation in which the for-

3

i.e. one-loop
correction competes

in size with tree
propagator
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The natural thing to do would be to say x=1 (on-shell), but 
we are more conservative and choose x to maximize the

ratio at any point along the flow. 

Result:
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FIG. 2: Graphic depiction of RG flow for the parameters
g and v when � is (artificially) set to zero. The plot takes
d = 2.9 (d = 3) on the left (right) plot, and units of c = 1. All
flows point to v = 0, and g runs toward its fixed point value.
Red (blue) indicates slower (faster) flow (color online).

the other couplings of the theory do not appear in their
one-loop � functions.

Let us write the renormalization scale µ of the theory
in terms of an initial UV scale ⇤ as µ ⌘ e

�t⇤. The
fermions do not a↵ect the RG equations for the purely
bosonic part of the Lagrangian, L
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, so they run exactly
as in the Wilson-Fisher model:
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The RG equations for the fermion velocity v and the
Yukawa coupling g then take the form
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So long as v is large enough that the higher order terms in
the fermion dispersion can be ignored (i.e. for v � wµ),
we can replace S(v, w, ...) ⇡ S(v, 0, ...) = sign(v). How-
ever, the exact beta function must be analytic; as v tends
to 0, we eventually reach a scale at which the higher order
(dangerously irrelevant) terms in the dispersion cannot
be neglected, with the result that �

v

! 0 as v ! 0.
For small ✏, these RG equations have a fixed point in

the perturbative regime at which the higher order terms
in the beta functions are negligible: �
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3, and v
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? = 0. In the idealized model
with w = 0, the fixed point describes the properties of the
transition down to the deep IR, as long as v flows to zero
at a scale higher than the scale µ

LD

where Landau damp-
ing becomes important. We will define µ

LD

as the scale
where the self-energy ⇧(q

0

, q) becomes larger than the
tree-level kinetic term q
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2. This statement is some-
what ambiguous since it depends on the ratio x ⌘ q
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FIG. 3: The shaded region shows values of the UV fermion
velocity v0 for which v(t) reaches zero before Landau damping
would become important in d = 3. The light (dark) shaded
gray region inside the solid (dashed) contour shows where the
size of Landau damping is at most equal to (half of) the bare
propagator along the RG trajectory into the IR.

If we look “on-shell” where x ⇠ 1, the self-energy correc-
tion is increasingly unimportant the further we proceed
into the IR in a large region of parameter space. To be
more precise, we can define µ

LD

to be the solution of the
implicit equation
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(1 + x

2)
= 1, (8)

with x = 1, i.e. µ

LD

is the highest scale where the loop
correction to the boson propagator is as large as the tree-
level propagator. In practice, we will adopt a strictly
more conservative definition of µ

LD

, which chooses x to
maximize the ratio in (8). It is important to note that
we use the running value of the fermion velocity. With
this definition, we find that v flows to zero at a scale
µ⇤ > µ

LD

for a wide range of modestly small values of
v

0

/c, and at perturbatively small values of the coupling
g

0

, where we have defined the bare parameters v
0

⌘ v(0)
and g

0

⌘ g(0). Since both µ⇤ and µ

LD

depend on g

0

and v

0

, this condition is satisfied only for some range of
parameters, as shown in Fig. 3. In general, for fixed g

0

,
we expect this condition to be satisfied for small enough
v

0

/c, as shown by the upper diagonal boundary-line in
the figure. In computing this line we have taken the
cuto↵, i.e. the Fermi energy, to be ⇤ = v

0

k

F

, which
is problematic for very small v

0

: if the Fermi energy is
proportional to v

0

, we do not know what happens when
v

0

is small, because with such a low Fermi energy the
Landau damping term is dominant already at the UV
cut-o↵. If the Fermi energy is independent of v

0

, then
the small v

0

region is not a problem.
At the fixed point, the fermions are formally disper-

sionless, which is a singular situation in which the for-

3

Matrix “large” N
rescales the

correction by 1/N,
the contours

quickly become
space-filling.

Sunday, February 23, 14



However, in the shaded region where v hits zero before
we ever encounter “large” damping corrections, there is

eventually a very low energy scale where

vµ ⇠ wµ2 .

mally irrelevant terms (including v and w and higher
power terms in the dispersion) cannot be safely neglected
upon approach to the fixed point. So long as v � wµ,
the leading irrelevant operator is v, and it is thus possible
to ignore the e↵ects of w and all higher order terms in
the fermion dispersion. However, it is a peculiar feature
of this problem that v ultimately flows toward zero so
fast that there is always an emergent low energy scale,
µ

w

= ⇤e�tw , at which the higher order terms become im-
portant, i.e. where v(t

w

) = w(t
w

)µ
w

. We can estimate
µ

w

by adopting the approximation S(v) = sign(v) (valid
where µ � µ

w

) and computing the scale at which v ! 0;
this gives µ

w

⇠ ⇤ exp[�v

0

c

2

/bḡ

2] where ḡ

2 is an appro-
priate average value of g which depends on both v

0

/c and
g

0

, but always lies between g

0

and g

?. In the weak cou-
pling limit µ

w

is exponentially small. New physics can
emerge at energy scales less than µ

w

; one likely implica-
tion is the existence of a Lifshitz transition (i.e. a change
in the topology of the Fermi surface) close enough to crit-
icality that energy scales smaller than µ

w

are significant.
We will explore the fermonic properties in this regime in
a future study.

Higher-Point Correlators: So far, we have analyzed
the requirement that there is no breakdown of perturba-
tion theory due to non-local terms in the boson two-point
function, but it is important to make sure that there is
no earlier breakdown due to higher-point functions. For
instance, the local term �

�

�

4 is marginal, so the four-
point diagram with a fermion loop becomes essentially a
relevant e↵ect and will indeed create a scale where per-
turbation theory breaks down. We already presented a
diagrammatic argument above eqn. (5) that all such di-
agrams vanish at v = 0, so we need only show that this
additional scale of breakdown is lower than the scale aris-
ing from the two-point function.

This turns out to be straightforward for any n-point
function. The closed fermion loop produces a dimension-
ful factor k

d�1

F

corresponding to the area of the Fermi
surface, which is dimensionally compensated for by fac-
tors of the external momentum. So far, this is identical
to the factor of the two-point diagram. However, the n-
point function has n factors of the coupling g rather than
two, so the dimensionless prefactor controlling the size of
the breakdown scale is parametrically

g

n

k

2�✏
F

E

2�✏
breakdown

⇠ 1. (9)

Because of these extra factors of the coupling, for per-
turbative g the breakdown scale associated with n-point
functions is strictly lower than that associated with the
two-point function.

Discussion: The central physical insight underlying
the present analysis is that for v/c ⌧ 1, the fermions can-
not respond to the rapidly propagating collective modes.
In the case of critical order parameter fluctuations, this

means that they exhibit the same Wilson-Fisher univer-
sal properties as they would in the absence of coupling to
fermions. Conversely, the singular forward scattering in-
teractions between fermions induced by the exchange of
gapless bosons cause a spectacular breakdown of Fermi-
liquid theory; instead of well defined quasiparticles, the
fermion fields develop an anomalous dimension, which to
leading order in the ✏ expansion is �

 

= ✏/8. Moreover,
the associated fermion mass renormalization at critical-
ity implies that v itself is a running coupling constant,
so that if v/c < 1 at the bare level, it will tend increas-
ingly to renormalize to smaller values at lower energies,
meaning that this simple physical argument becomes in-
creasingly accurate at lower energies. The possible role,
if any, of o↵-shell bosons, which are damped, will be ex-
plored in a future publication.

Conversely, if the bare ratio v/c � 1, then Landau
damping likely plays an important role at low energies.
As best we understand, it is still unclear what the be-
havior of such a system is at low energy. It seems plau-
sible that it is governed by a di↵erent fixed point than
the one explored here, perhaps one that emphasizes the
role of Landau damping10,11,13,17,18,22,25,26,30. In physical
terms, this would imply that there is more than one possi-
ble universality class for the quantum critical phenomena
associated with the same symmetry breaking transition
in a metallic system. A well established precedent for
this exists, at least in d = 131.

In a future publication, we will explore some of the
experimentally accessible signatures of this new class of
metallic quantum critical points. However, a few of the
more obvious points are worth mentioning: The specific
heat at the critical point exhibits the non-Fermi liquid
power law, C ⇠ T

1�O(✏) (becoming⇠ T log(T ) as ✏ ! 0).
Where the coupling function g(k

F

, 0) has nodes on the
Fermi surface (as it does in the case of an Ising nematic
order parameter), even at criticality, well defined quasi-
particles survive at these points (“cold spots”). Away
from criticality, well defined quasiparticles are recovered
along the entire Fermi surface, but with an e↵ective mass
that diverges as the critical point is approached.
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4

A simple computation reveals:

Above this scale, one is governed by the approximate fixed 
point of our RG equations.  It is characterized by Wilson-

Fisher bosons and a non-Fermi liquid with:

where b is an O(1) (positive) number, computed in appendix A 3. One can verify that at

v=0, sgn(v) = 0 in the above formula by taking v = 0 inside the loop integral. Next,

one chooses counter-terms to cancel the dependence on the cut-o↵ ⇤; this is equivalent to

setting a UV boundary condition for the parameters of the theory. The dependence on ⇤ is

eliminated if we take the following counter-terms:

�Z =
bg2

c|v|
✓

1

c+ |v| log⇤ � 1

c
log⇤k

◆

�v =
bg2

c(c+ |v|)sgn(v) log⇤
�g = 0,

g
0

⇡ g + �g � �Zg, v
0

⇡ v + �v � �Zv. (II.4)

As in 1, the four-Fermi terms have a stable fixed point at � = 0 and we do not discuss

them further here.

We will define beta functions by setting ⇤k ⇠ ⇤ and computing running with respect to

⇤. The results for the beta functions and the anomalous dimension of the fermion are:

�g ⌘ @g

@log⇤
= g

✓
� ✏

2
+

bg2

c2(c+ |v|)
◆
, (II.5)

�v ⌘ @v

@log⇤
=

bg2

c2
sgn(v), (II.6)

2� ⌘ � @�Z
@log⇤=

bg2

c2(c+ |v|) . (II.7)

As a check that b > 0, note that the anomalous dimension is positive, as is guaranteed

by unitarity at the fixed point.

Several pieces of important physics are evident in (II.5) - (II.7):

• There is a controlled fixed point at g of order
p
✏, where the fermions are dressed into a

non-Fermi liquid.

• The anomalous dimension of the fermion is ✏
4

, in agreement with the result in 1.23 The

Green’s function for the fermion satisfies a Callan-Symanzik equation
✓
⇤

@

@⇤
+ �g

@

@g
+ �v

@

@v
+ 2�

◆
GF

⇣!
⇤
,
!

`
; g, v

⌘
= 0 . (II.8)

Therefore, at the fixed point where the beta functions vanish, it will take the form

GF =
1

!1� ✏
2
f(

!

`
) . (II.9)

8

scaling function f =1
at large N

re-introducing the
“irrelevant” w...
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By the end, this talk has devolved into some
complicated figures.  Therefore, I summarize

the take-away messages:

1.  Either small v/c or large (matrix) N allow one
to access novel (intermediate?) fixed points in the
natural field theory for quantum critical metals.

2.  Because of the nature of the perturbative flows
starting from the UV decoupled fixed point, small v

becomes increasingly good in the IR.

3.  At very low energy, the “irrelevant” w operator 
causes some new behavior.  (Lifshitz transition?)
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