From the Renormalization Group to Quantum Gravity: Celebrating the science of Joe Polchinski

February 27 – 28, 2014

"Canada hands U.S. crushing OT loss, wins women's hockey gold"

"Canada destroys Sweden 3-0 for men's hockey gold"

"US men's hockey falls to Canada"

Spacetime Entanglement

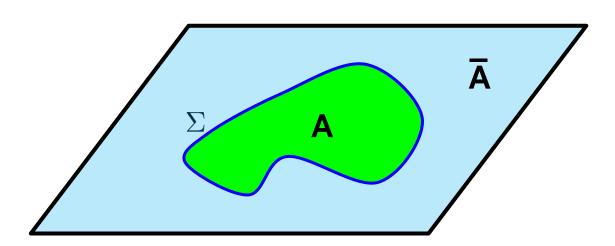
R. Myers

with M. Headrick, J. Rao, S. Sugishita & J. Wien

Proposal: Spacetime Entanglement

• in a theory of quantum gravity, for any sufficiently large region A in a smooth background, consider entanglement entropy between dof describing A and \overline{A} ; contribution describing short-range entanglement is finite and described in terms of geometry of entangling surface with leading term:

$$S_{\mathrm{EE}} = \frac{\mathcal{A}_{\Sigma}}{4G_{N}} + \cdots$$



higher order terms similar to Wald entropy (RM, Pourhasan & Smolkin)

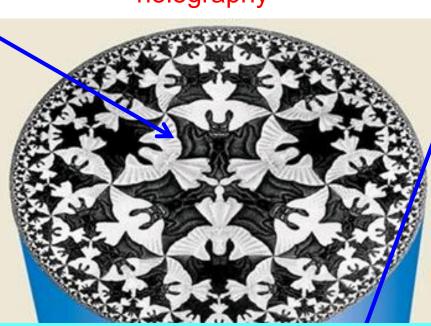
AdS/CFT Correspondence:

Bulk: gravity with negative Λ in d+1 dimensions

Boundary: quantum field theory in d dimensions

"holography"

anti-de Sitter space

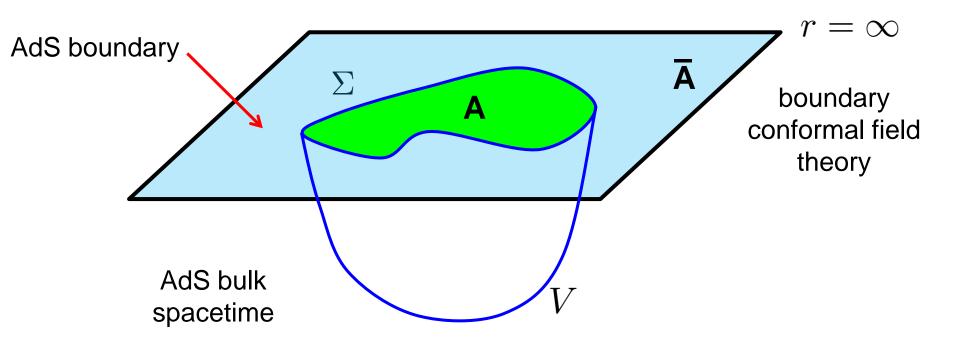


conformal field theory

Are there boundary observables corresponding to S_{BH} for bulk surfaces?

time

Holographic Entanglement Entropy:



$$S(A) = \min_{\partial V = \Sigma} \frac{A_V}{4G_N}$$

Lessons from Holography:

• R&T construction certainly assigns entropy $S_{BH} = \mathcal{A}/(4G_N)$ to bulk regions with "unconventional" boundaries:

not black hole! not horizon! not boundary of causal domain!

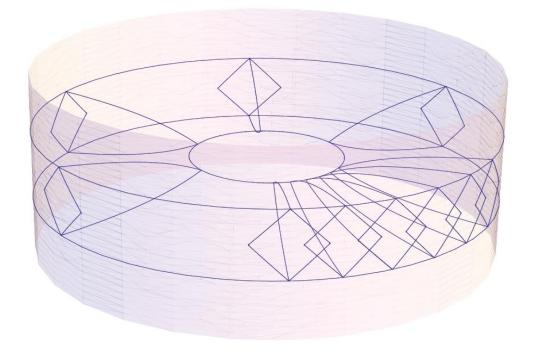
- indicates S_{BH} applies more broadly but more examples?
- S_{BH} on other surfaces speculated to give new entropic measures of entanglement in boundary theory
 - causal holographic information (Hubeny & Rangamani; H, R & Tonni; Freivogel & Mosk; ...)
 - entanglement between high and low scales (Balasubramanian, McDermott & van Raamsdonk)
 - → hole-ographic spacetime
 (Balasubramanian, Chowdhury, Czech, de Boer & Heller)

"hole-ographic spacetime":

calculate "gravitational entropy" of curves inside of d=3 AdS
 space, in terms of entropies of bounded regions in boundary

$$S_{\text{res}} \leq \sum (S(I_j) - S(I_j \cap I_{j+1}))$$

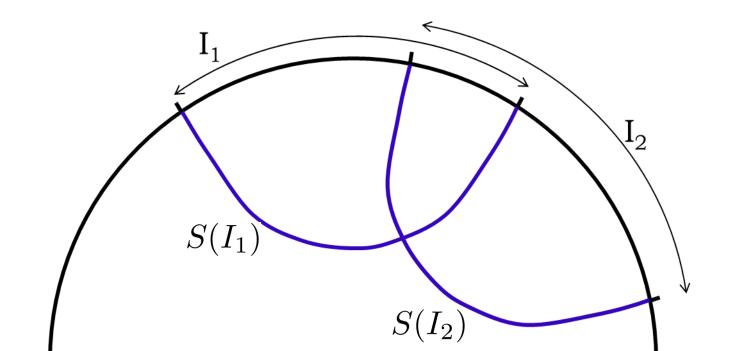
 "residual entropy": maximum entropy of a density matrix consistent with all measurements of finite-time local observers

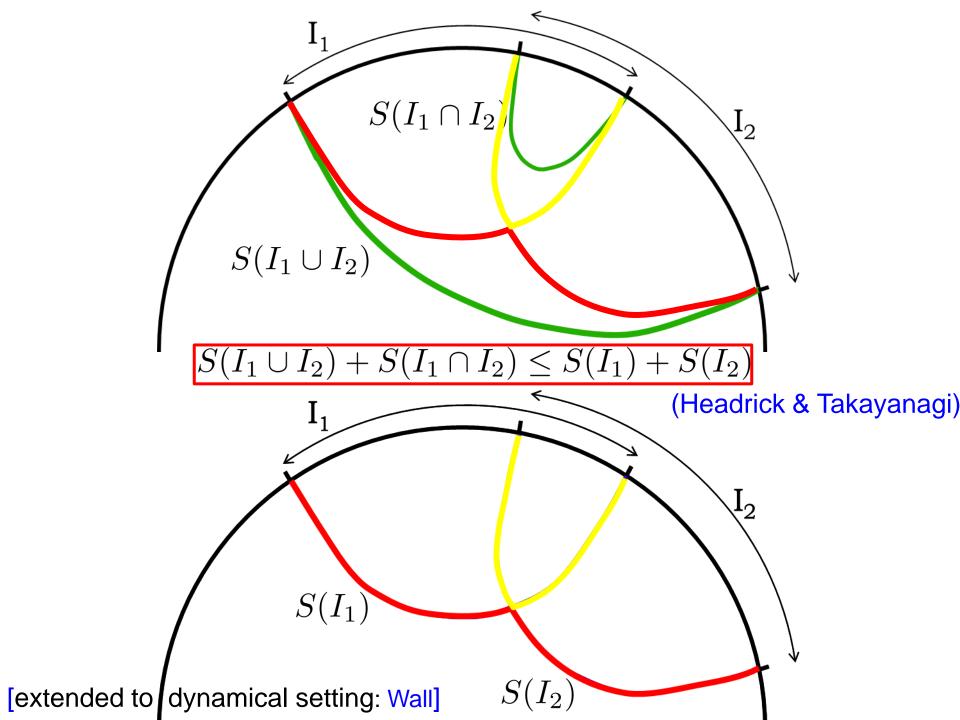


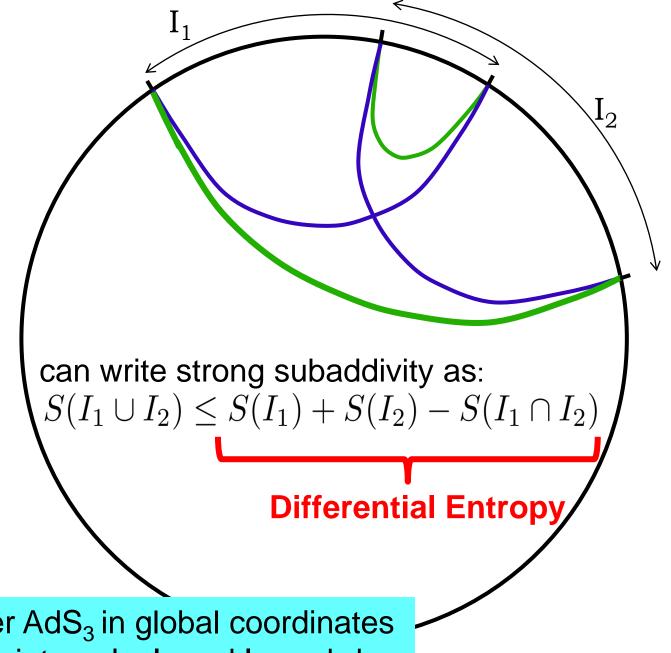
Strong Sub-Additivity: $S(I_1 \cup I_2) + S(I_1 \cap I_2) \leq S(I_1) + S(I_2)$

recall "holographic proof"

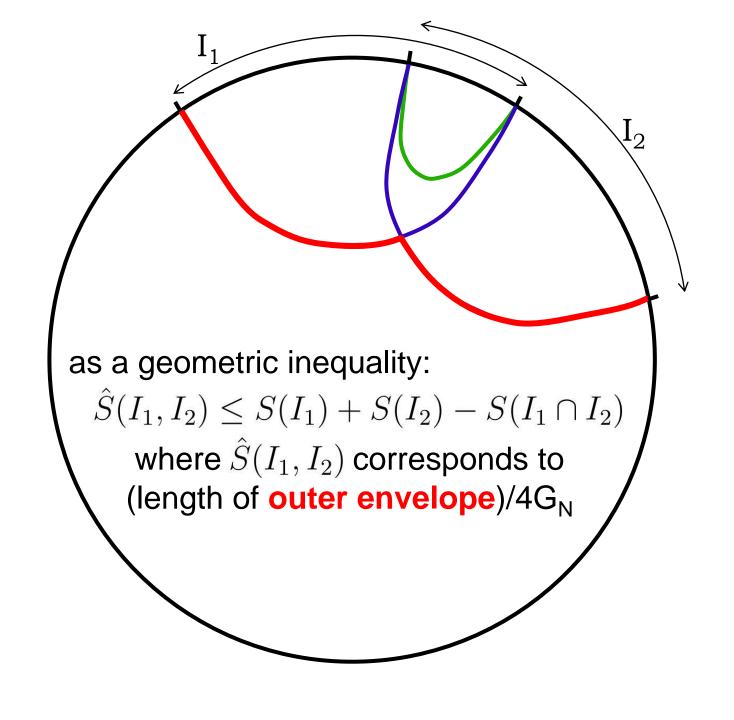
(Headrick & Takayanagi)

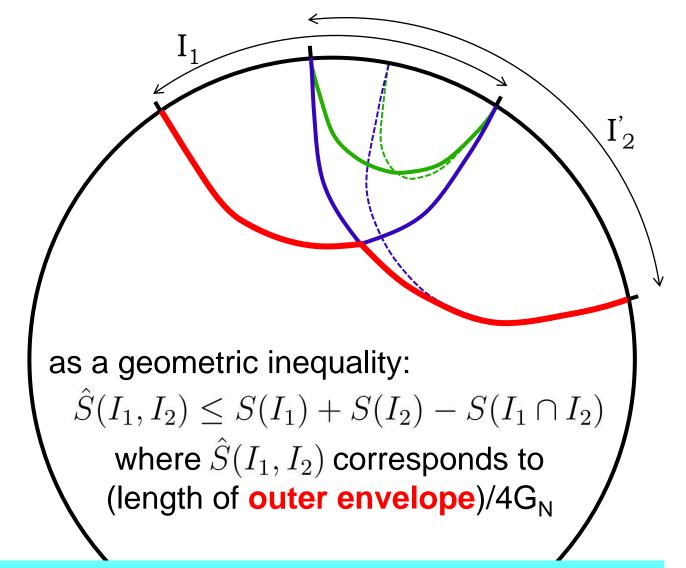






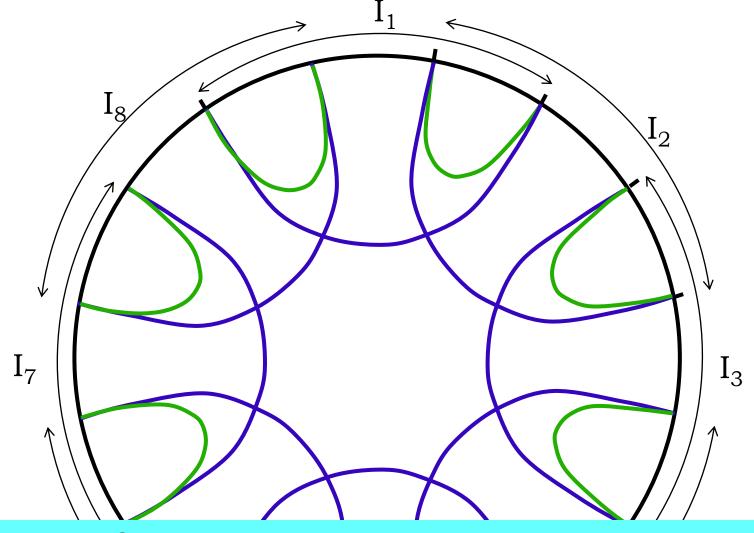
consider AdS₃ in global coordinates with two intervals, I₁ and I₂, on bdry



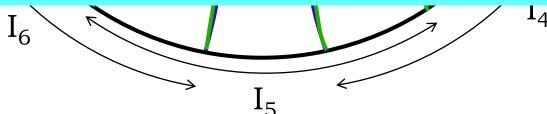


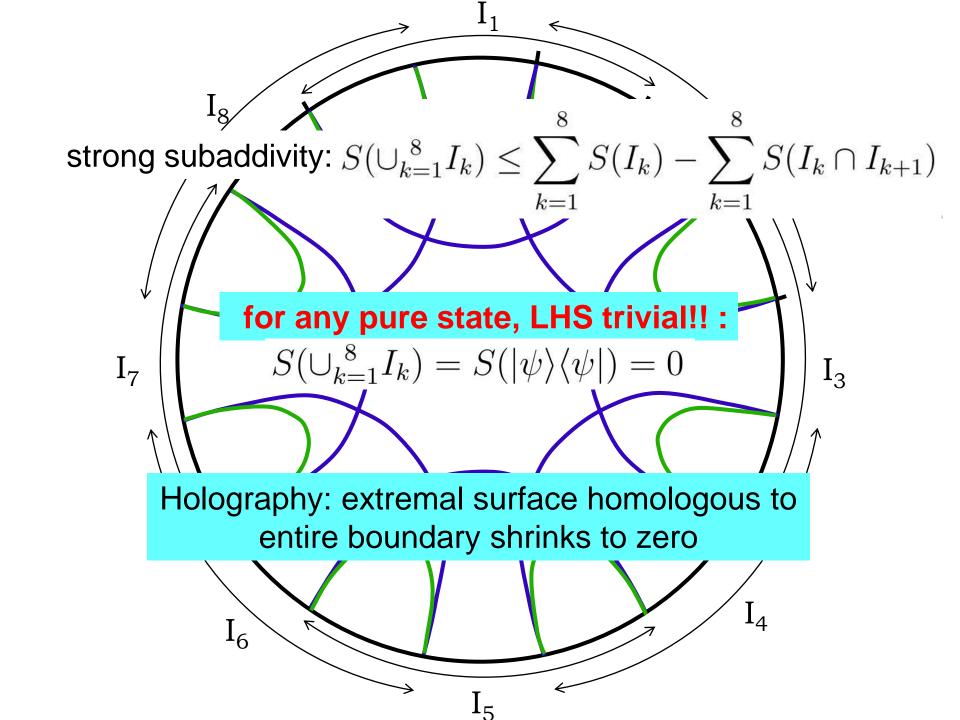
Note: $\hat{S}(I_1,I_2)$ is not a function of $I_1 \cup I_2$ alone; instead depends on details of partition

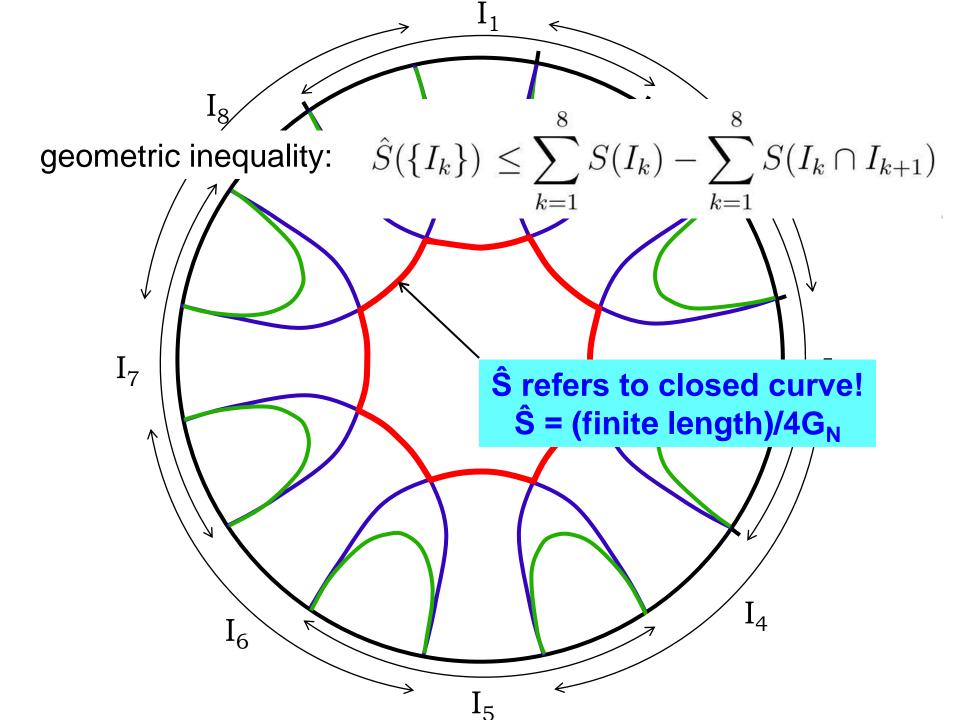
eg,
$$I_1 \cup I_2 = I_1 \cup I_2'$$
 but $\hat{S}(I_1, I_2) \neq \hat{S}(I_1, I_2')$



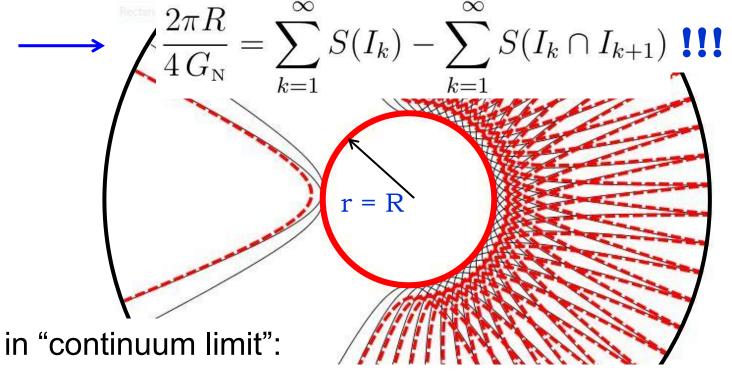
consider AdS₃ in global coordinates now extend the number of intervals to **cover the entire bdry**



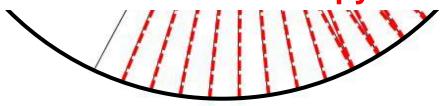




- keep length of intervals is fixed but take number of intervals to infinity
- Ŝ becomes the length of a (smooth) circle of constant radius
- surprise is that the geometric inequality is precisely saturated!

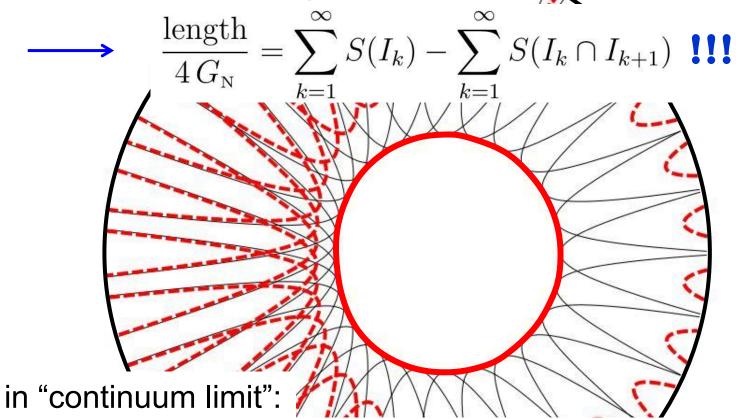


S_{BH} in bulk = differential entropy on boundary

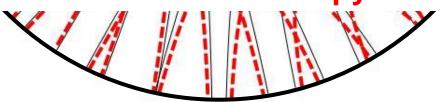


geometric inequality: $\hat{S}(\{I_k\}) \leq \sum_{k=1}^{\infty} S(I_k) - \sum_{k=1}^{\infty} S(I_k \cap I_{k+1})$

- prescription extends to arbitrary curves in the bulk with \$\hat{S}\$ = length of curve
- geometric inequality is again saturated!



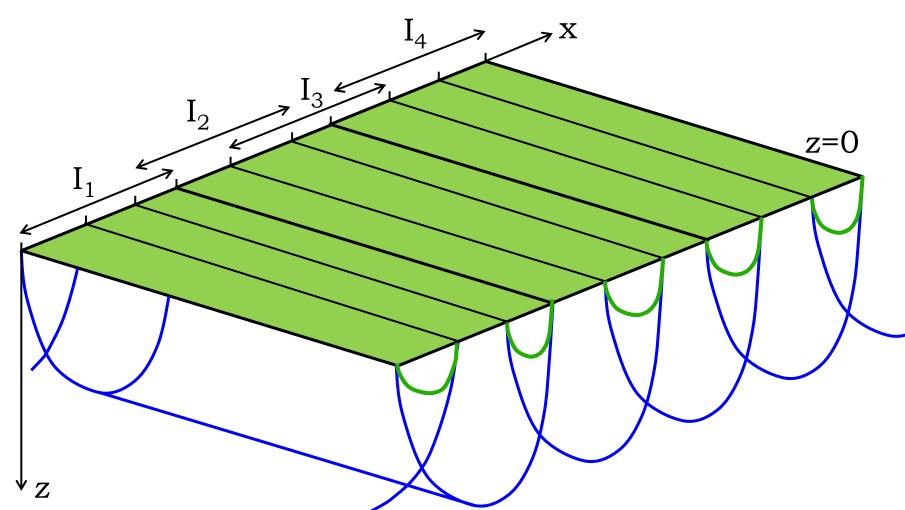
S_{BH} in bulk = differential entropy on boundary



geometric inequality: $\hat{S}(\{I_k\}) \leq \sum_{k=1}^\infty S(I_k) - \sum_{k=1}^\infty S(I_k \cap I_{k+1})$

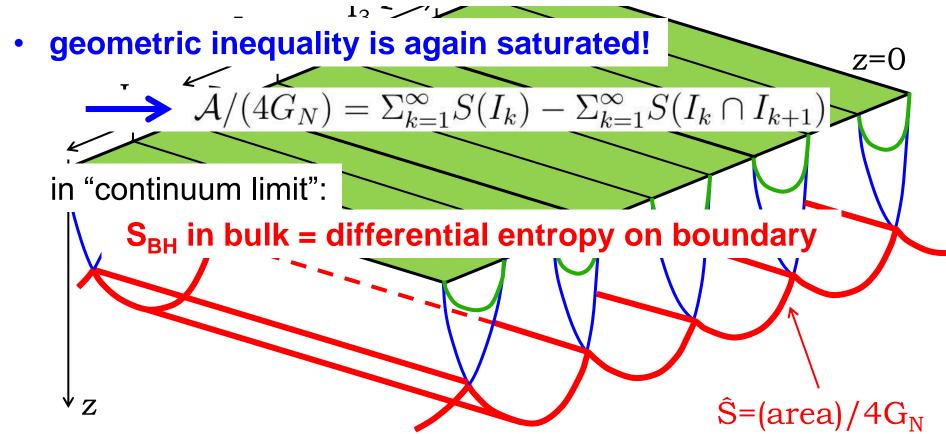
Higher dimensional "holes":

- "outer envelope" readily extends to higher dimensions
- extend to AdS_{d+1} in Poincare coordinates and tile t=0 surface with strips/slabs of constant width



Higher dimensional "holes":

- "outer envelope" readily extends to higher dimensions
- extend to AdS_{d+1} in Poincare coordinates and tile t=0 surface with strips/slabs of constant width
- hole-ographic prescription extends to arbitrary surfaces (with planar symmetry, ie, z=z(x)) in the bulk with $\hat{S} \sim area$ of surface



Causal Holographic Information:

evaluate S_{BH} for extremal surface on oboundary of bulk causal wedge

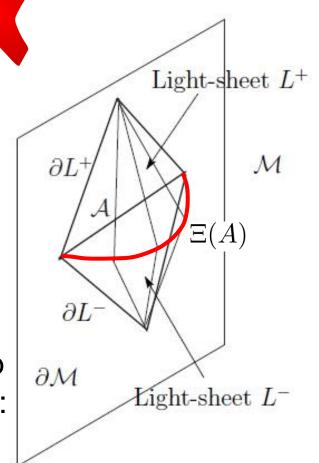
$$\chi(A) = \frac{\Xi(A)}{4 \, G_N}$$

- natural extension of "observer story" to higher dimensions
- applying hole-graphic prescription to strip decomposition in higher dimensions, find: "geometric inequality" is NOT saturated!

$$\longrightarrow \sum_{k=1}^{\infty} \chi(I_k) - \sum_{k=1}^{\infty} \chi(I_k \cap I_{k+1}) \sim \left(\frac{z_{max}}{\delta}\right)^{d-4}$$

sub-leading divergences are nonlocal!! (in contrast to S_{EE})

trast to S_{EE})
(Freivogel & Mosk)



(Hubeny & Rangamani)

Gauss-Bonnet Gravity:

• holographic entanglement entropy: $S(A) = \min_{\partial V = \Sigma} S_{JM}$

where
$$S_{JM} = \frac{1}{4G_N} \int d^{d-1}x \sqrt{h} \left[1 + \frac{2\lambda L^2}{(d-2)(d-3)} \mathcal{R} \right]$$

(Hung, RM & Smolkin; de Boer, Kulaxizi & Parnachev)

$$S_{JM} = \sum_{k=1}^{\infty} S(I_k) - \sum_{k=1}^{\infty} S(I_k \cap I_{k+1})$$

General Backgrounds:

$$ds^{2} = -g_{0}(z) dt^{2} + g_{1}(z) dx^{2} + \sum_{i=2}^{\infty} g_{i}(z) (dx^{i})^{2} + f(z) dz^{2}$$

$$\longrightarrow S_{BH} = \sum_{k=1}^{\infty} S(I_k) - \sum_{k=1}^{\infty} S(I_k \cap I_{k+1})$$

Time-dependent bulk surfaces:

- salient lessons:
 - boundary data: two "independent" surfaces defining family of intervals: $\vec{\gamma}_L(\lambda) = \{t_L(\lambda), x_R(\lambda)\}; \vec{\gamma}_R(\lambda) = \{t_R(\lambda), x_R(\lambda)\}$
 - define intervals by finding extremal HEE surface which is tangent to bulk surface at each point;

Classical mechanics lemma:

- consider on-shell action: $S_{on} = \int_{s_i,q_i^a}^{s_f,q_f} \!\! ds \; \mathcal{L}(q^a,\partial_s q^a)$
- varying boundary conditions:

$$\delta S_{on} = p_f^a \, \delta q_f^a - E_f \, \delta s_f - p_i^a \, \delta q_i^a + E_i \, \delta s_i + \int ds [eom \cdot \delta q]$$

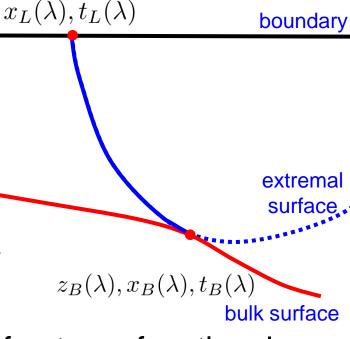
• consider family of boundary conditions: $\{s_i(\lambda), q_i^a(\lambda)\}, \{s_f(\lambda), q_f^a(\lambda)\}$

$$0 = \int_0^1 d\lambda \left[p_f^a \, \partial_\lambda q_f^a - E_f \, \partial_\lambda s_f - p_i^a \, \partial_\lambda q_i^a + E_i \, \partial_\lambda s_i \right]$$

Classical mechanics lemma:

 apply lemma to entropy problem with end-point data:

$$\{s_i(\lambda), q_i^a(\lambda)\} = \{s = 0, z = 0, x_L(\lambda), t_L(\lambda)\}$$
$$\{s_f(\lambda), q_f^a(\lambda)\} = \{s_{tang}(\lambda), z_B(\lambda), x_B(\lambda), t_B(\lambda)\}$$



also use reparametrization invariance of entropy functional

for general surfaces in general backgrounds (planar symmetry)

Questions:

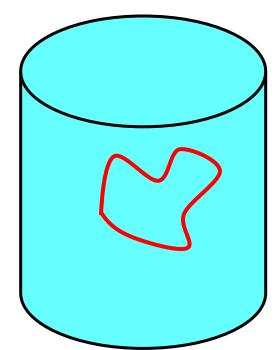
why entanglement entropy?

evaluating many holographic probes at leading order in large N involves "extremizing bulk area"

same construction applies

eg, reconstruct length of curve in bulk from two-point correlator of high dimension operator

$$length = \int_0^1 d\lambda \, \frac{dq_L^a}{d\lambda} \, \frac{\partial_{q_L^a} \langle \mathcal{O}(q_L^a) \, \mathcal{O}(q_R^a) \rangle}{\langle \mathcal{O}(q_L^a) \, \mathcal{O}(q_R^a) \rangle}$$



Questions:

- why entanglement entropy? other differential observables
- what are consistency conditions for boundary data, ie, $\vec{\gamma}_L(\lambda)$ and $\vec{\gamma}_R(\lambda)$, to define bulk surface in AdS? in general bkgd's?
- if consistency conditions not met, what does differential entropy evaluate?
- beyond planar symmetry: tiling boundary with finite regions? extension of differential entropy?

Conclusions:

- holographic S_{EE} suggests new perspectives
 - quantum information & entanglement are keys to fundamental issues in quantum gravity



- spacetime entanglement: S_{BH} applies for generic large regions
- "hole-ography" points to a precise definition in AdS/CFT context

Lots to explore!

Happy 60th, Joe!!

"Canada hands U.S. crushing OT loss, wins women's hockey gold"

"Canada destroys Sweden 3-0 for men's hockey gold"

"US men's hockey falls to Canada"

