Quantum Mechanics Without State Vectors
Steven Weinberg (UT Austin)

Are there small non-linear corrections to
the time-dependent Schrodinger equation?

S. W. 1989

A problem: Instantaneous communica-
tion in entangled systems!

Polchinski 1991

Gisin 1990:

For isolated systems [ and [/, with p,,]nn
fixed, it is always possible to find entan-
gled states such that measurements in
system [ will put system I in any en-
semble of states |V, > with probabilities
Py, provided only that

Y Py |V >< Uy =ph
(

KITP JoeFest, Feb 28, 2014



This is OK in ordinary quantum mechan-
Ics, because

e p = all probabilities.
o dpl jdt = —i {H],pl}.

Still, if state vectors can be changed in-
stantaneously by distant measurements,
can we take them seriously as a repre-
sentation of reality?

Also, the possibility of instantaneous com-
munication stands in the way of some at-
tempts (e. g. S.W. 2012) to improve on
the Copenhagen interpretation, without
surrendering realism or accepting many
worlds.



A modest proposal: Any statement that
a system is in an ensemble of states |V, >
with probabilities Py has no physical sig-
nificance, except that it implies a density
matrix

p=> Prl¥><Ty.
(

The same density matrix will describe
many different ensembles, but only the
density matrix has physical significance.



Example: Spin 1/2
Pure State Probability

North 50%
South 14%
Fast 35%

or

Pure State Probability
Northeast 5%
Southwest 25%



~/0.69 0.17
P=\ 017031 ) °



Interpretive postulate: A = Tr(pA)

o pJf =p& A" = A if A Hermitian.
e Irp=1&< a>= aif ac-number.
e p positive < A > 0 if A positive.



What's the difference?

Under symmetry transformations, ¥ +—
UV (Wigner 1939), so if p is defined by
> .0 Py Wy >< V| with invariant prob-
abilities Py, then p — UpUJf.

Otherwise, g : p +— p, with

Pt = Y Ky viwlgl pan
MN

So far, this has been considered only for
time-translation.
General time evolution: (Kossakowski 1972;
Lindblad 1976; Sudarshan et al. 1976)
Spontaneous localization: (Ghirardi,
Rimini, & Weber, 1986: Pearle, 1989:
Bassi & Ghirardi 2003, etc.)

U (t) unnecessary!



An Example  SU(3) d = 3]

P12 P12
o | =uUl o |, Uu=1
P23 P23

and py N — PNN-

Here p transforms as
3+3+1+1+1.

This cannot take the form p — U,OU]L
of ordinary quantum mechanics because
then p would transform as

3x3=8+1,
or

singlets x singlets = singlets .



General Symmetries

O = D K vwlal e
MN

e ¢ Hermitian for all Hermitian p
= K[g]i;W’M,N/N — KN’N,M’M[Q] .
o Trp' = Trp

&) Kypawrnlal = oy -
M/

e o positive for all positive p
& 17T



Transformation of Entangled Systems

m, n, etc. label states of system [
a, b, etc. label states of system [/

Entanglement: p,,,, np 7 p{rmpég. But

1
Km 'a n’b’,ma nb[ ] Km/n/ mn[ ] K /b/ ab[g]
1 11
ZKm’m,mn Omn ZKaaa = Oqp -
m/

Define p{nn = > . Pmana SO that, if
Ama,nb = A{nn5abr then

A =Tr(Ap) = Tr(Alph).
For a transformation g : p — p':

1]
pm’n’_y Y mmnn Kaaa [9] Pma,nb

a’ mnab

Z mmnn '07[7”671'
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Because K|g ]7\4’]\4 NIN = KN’N Yoyt
1)%
KM’M,N/N 277 M’M g\Q/N[Q] ;

N Kyl uﬁ@%Nm — g1, o],
N'N

TT(UW[Q] U<j)[9]) = 0 -

Trace condition:

Zn“)[g] ulT[g] uldg] = 1 .
o = Z nlg] w'Vg] p uVT[g] .

With several 7, this is a generalization of
the transformation p +— UpUT of
ordinary quantum mechanics.
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Group Multiplication Law

We require that

E KM"M/,N”N/ [g] KM/M,N/N[g}
M'N'
= Kymy N 193]

and so
> 0 Dgl g ul g wl g @ wl)T[g)ulTg]

— Zn 9] u'™[g7] ® uT[gg]

where, for any matrices A and B,

AR Bl nn = Avmar B " .
M"M , N"N M"M PNN
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Continuous Symmetries

g0=1 KlI=1®1
Eigenvalues and eigenvectors:
W =1/vVda VI =d
Tr (1] = 0 ] = 0

For group parameter en with € — 0,

ViWlgenmluDiglen)] — 1—ie 3 n"r+0(e)

ug(en)] — ul¥(n) , n'g(en)] — A (n)

ax | 0Ky nenlg(en)] (8)
M /]\24;\7/ N UEWM(”’) Je e=0 N,N(m

= 6,5 AV (n)
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Trace condition:

—in°7+in'TT+Z A(O‘)(n) u<a)T(n) u(o‘>(n) =0,

where T; = 1.

Klglen) =11 +¢| —in- 701 +1® in -

+3 AW () u(n) @ u(n)

and in particular

Z Al (n) u<O‘>T(n) u(o‘)(n) — Z n'o, .

r
SO TTZTT_%HT, TJ:TT

(For compact groups, o = 0.)
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+y A () {u(@(n) o @t
L (@)1, (@) L@t (@)
= 5u ) m) p = Spu @) ul) )|

General Group Multiplication Rule

glen)g(em) = g(en+eﬁ+62 f(n,ﬁ)JrO(eg))
where
ff(n,m) = % Z Cl ot

st
+ terms symmetric in n&n
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2 uIT@u D) —n -7
= ZZTTC ' @1 +il® ZT;[C’Ttnsﬁt
rst rst

0 o — . (« —
—Z 8(n+ﬁ)7“zo;A< >(n+n)u< >(n+n)

rst L

® u(O‘)T(n + 1) TSt
4 n+n=0
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Ordinary Quantum Mechanics

If all A{@)(n) vanish, then

0,=0 so 7 ="1T,.

Ty, T}] —ZZC
5p=iznr T} pl
T
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A Sample Solution with A<O‘)(n) = ()
for Abelian Symmetries
Take >, .n'A%CL, = 0. Try taking
n-T and T - T and relevant u!®(n),
W (n), WP @), w1 (@) to all
commute with each other.

Then constraints reduce to 0=0.
Adopt a basis with

W) arn = Oarnuanr(n) Ty = Sarn 0Ty,

onppmN =€ pyun |in - (Ty —Tn)

# 32 A0 waarra () = gleapa(n)?

~ luan(ml] |
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Positivity
We need o’ positive for all positive p.
This is OK if 77<Z> > (. But recall
1 Dlg(en)] — el (n)

This cannot be positive for all € unless
Al@)(n) = 0. But then p transforms as
in ordinary quantum mechanics.

Generalization

THEOREM

If ¢ has an inverse g~ !, and if all n@[g]
and 77<j>[g_1] are positive, then u@[g] =
cDglulg), so

p— UlglpUT[g] ,

where Ulg] = 32, 7' [g] | [g][*|'Zu(g).
(The trace condition gives UUT = 1.)
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PROOF:

For any Hermitian positive p,

> 0Dl Dlg ™ uD[g) uP g™
ij

x pulMgul[g] = p.

Find unitary €2 for which pD = QpQ !
IS diagonal, [IOD]MN — PMéMN-

zjj UCLEEDY uPglutPg Y| Py

x| ul g TPy~
where
ul™Pg] = QuV g0~ | WP g™ = Qu) g~ 0!

This must hold for all real numbers Py,
so it follows that, for all I, M, and IV:

*
= Pyro
NT. MOMN >
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Zn g7!] [uP)]g] ubPg 1)

X { gl TP [g 1]} vy = OMLONL -

In particular, if M = N = L, then
> 0 lgn g | [u gl DY)
]

If all n0[g] > 0 and n)[g=1] > 0, then
for M +# L

W Pglu P =0

ML

2
|:o.

SO
[WD) gluD g1, p<D>} =0

) W Dlglulg ™, p| =0

21



SO
u gl g™ = ¢;5(g)1

where c;;|g] = Detul?[g] Detu!)[g—1].
There must be at least one 7 for which

Detul[g—1] # 0 and AU)[g~Y] £ 0,

since otherwise we would have u? >[g] uld) [g_l] =

0 for all relevant 7 and 5. So for such 7,
u@[g] = Det u@)[g] X ulg] ,

where u[g] = ul/) =g x Det ul?)[g—1].
Then

22



Time translation: n="7
N5t T) — ot AT .
77(0‘)>Ofor5t>0|fA( )(T)>O.

Define L(®) = /AW)(T) u(®)(T) anc
H = —T7. Then

olt) = —ilH, p(t)] + 3 | L) plt) L

- % Lt (@) () %p@) (@)t (e)

Lindblad 1976
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Do we need all n(?)[g] > 0?

We can have p’ positive for all positive
p, even if some nl9)[g] < 0.

Example: KM’M,N’N — 5M’N5N’M has
eigenvalues 1. But here o/ = p!, which
is positive if p is.

Complete Positivity (Stinespring 1955):
Consider a system I, and a linear map-
ping K1 ,0] — ,0]’ for which ,0]/ pOSi-
tive for all positive p]. Introduce an iso-
lated system /1 and extend this mapping
to K, which acts as K on I and as the
identity on [I. If K maps all positive
(entangled) p into positive p’ for all fi-
nite d77, then K is completely positive.
In this case nl") > 0. (Choi 1975) (But
in the real world, dj; =1 or dj; = 00.)
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p=~Lp
where, for any d X d matrix f,

Lf=—ilH, fl+Y  [LIYfL

_%L(Q)T AN . %f et e

Measurement

Take L(%) Hermitian, and ignore H.

£f = —5 (L@, (L@ 1]

87

so Tr (gTﬁf) = Tr((/:g)Tf).
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The general solution of the Lindblad
equation Is

where
Lfn=Mfn, (Ayreal).
Also,
(f.Lf) = ——ZTr L, f)) <0,

so A\p, < 0. At Iate time, p(t) dominated
by zero modes, A\, = 0. (E.g., f, x 1.)
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Suppose we measure a physical quantity
A, for which AN — a&/\@‘), where
AaAg = 0430\ and > oMo = 1. Take
L) — cal\o, With ¢, real. Solution of
Lindblad equation:

= NAap(0)Aa+ Y e (cate)t/2 Aap(0)Ag
@ o[

— Z Py where Py, = Tr(p(0)Ay) -

27



NB: If

a b
p(0>_(b*1—a>’ a* =a, b <a(l—a).

10 00
A1:<00>’ AZ:(Ol)'

Then

pt) = (b* eXC;()\t) beﬁ(y)) ’

where A = —(c% + ¢3)/2.

This has a negative eigenvalue for
t < —1In[(1 —a)a/|b]?]/2|\l.
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Testing Quantum Mechanics

Now assume that Ly > L, where
L=Ly+ Ly:

Lof = —ilH, f]
_ (@) ¢ (@)t _ L)t r()
Llf_zo; L9 rL LT L f

1
_ Zrrla)frla)
S LTL

Let H|la >= FEgyla >, < alb >= J.
Then L has eigenmatrices

Flab) — g > < p|

& eigenvalues —i(FE, — Ep).
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The first-order corrections to non-degenerate
eigenvalues —i(F, — Ep) (with a # b)
are

OAgpy = Tr(flV) Ty flab))

=y L) g [L 1T — %[L@ P L),

_ %[ Lt ple),,

> [Im([L ) q [ L))

a L

‘ L) gq — [L'Y,

o %Z ‘[L(a)]cb
c#£b

1 2
) \

2
_ %Z ‘[ L.,
c+a

2_
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The first-order corrections to degenerate
zero eigenvalues with unperturbed eigen-
vectors f,q, are the eigenvalues of the
matrix

Ma’a: —5/ Zgbav

where (p, = >, [L(e ]ba‘z- This al-
ways has at least one zero eigenvalue,
with eigenvectors

(01013 + 21623 + £23€31

, (19013 + 32013 + l120o3
. [ 12] Y

{21

etc. So fort — o0,

| (31019 + £31€30 + £91030
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