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The AdS of AdS/CFT
The Correspondence

A D3-brane is 3-dim hypersurface that 
moves in time. Strings can end on it. Their 
physics captures aspects of its dymanics. 
The physics is U(1) susy gauge theory. U(N) for N branes.



ds2 =
u2

R2(−dt2 +d!x · d!x)+
R2

u2du2 +R2(dθ2 + cos2 θdΩ2
3 + sin2 θdφ2)

Shot of “global” AdS
(gauge theory in a box)

R2 =
√

4πgsN α′ ; 2πgs = g2
YM N large; gs small; λ = g2

YMN large

Brane also has a gravitational footprint. Decoupling 
the gauge theory from the rest of the stringy physics 
yields “near-horizon” geometry: AdS5×S5

u

8

local AdS



The Dual Gauge Theory

       Supersymmetric                Yang MillsN = 4 SU(N)

Superconformal invariance

∼ SO(4,2)

AdS5×S5

SU(4)∼ SO(6)global R-symmetry

Aµ,4λ,6ϕ gauge multiplet

Review: Aharony, Gubser, Maldacena, Ooguri, Oz, hep-th/9905111

isometries isometries



Toward QCD

Adding fundamental flavours.

One approach is inspired 
by role of D3-D7 strings:

D7-brane

D3-branes

A string endpoint 
transforms in the 
fundamental.

How does this 
look in AdS/CFT?



Take near horizon limit of N D3-branes 

Get  a sensible, controllable 
geometry when:

This gives limit in which 
D7s are simply probes of 
the AdS geometry.

This is like the “quenched” 
limit. The quarks do not 
back react on the physics.

Nf D7-branes

g2YMN = λ= finite

g2YMNf = 0

N large



The D7-brane sees on its worldvolume:

Large u is just AdS5×S3

But when u=L, only have AdS part.

The D7-brane fills AdS and 
wraps S3 ⊂ S5

The D7-brane dissolves away!

Karch-Katz ‘02, Kruczenski et al ‘03

Put D7-brane at a point in          .(u,φ)

In limit, it will spread out to fill (part of)   , and have non-trivial embedding θ(u)u

ds2 =
u2

R2(−dt2 +d!x · d!x)+
R2

u2du2 +R2
(

u2−L2

u2

)
dΩ2
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L = usinθ
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AdS
background

D7-branes

D7-branes
vanish



Tc T0
AdS AdS−Sch

Phase structure:

Finite Temperature

Here, theory is in a box, and so transition at non-zero temp. If not in box, any 
non-zero temperature makes the transition to “deconfined” or “plasma” phase.

black hole

Witten, ‘98
(Hawking-Page, ‘83)



Finite Temperature
AdS-Schwarzschild:

ds2 =− f (u)
R2 dt2 +

R2

f (u)
du2 +

u2

R2d!x · d!x+R2(dθ2 + cos2 θdΩ2
3 + sin2 θdφ2)
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f (u) = u2− b4

u2

b2 =
8G5mb.h.

3π



AdS-Schwarzschild:

ds2 =− f (u)
R2 dt2 +

R2

f (u)
du2 +

u2

R2d!x · d!x+R2(dθ2 + cos2 θdΩ2
3 + sin2 θdφ2)

f (u) = u2− b4

u2

b2 =
8G5mb.h.

3π

−dt2 =⇒ dτ2 β−1 =
b

πR2 8

u

b



Finite Temperature, Flavoured
AdS-Schwarzschild with D7-brane probe:
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ds2 =− f (u)
R2 dt2 +

R2

f (u)
du2 +

u2

R2d!x · d!x+R2
(

u2−L2

u2

)
dΩ2
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f (u) = u2− b4
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b2 =
8G5mb.h.

3π

β−1 =
b

πR2

L = usinθ

Babington, et. al. hep-th/0306018



AdS-Schwarzschild with D7-brane probe:

b

L

8

u

The D7-brane fills AdS and 
wraps S3 ⊂ S5

f (u) = u2− b4

u2

ds2 =
f (u)
R2 dτ2 +

R2

f (u)
du2 +

u2

R2d!x · d!x+R2
(

u2−L2

u2

)
dΩ2

3

and also wraps S1

Brane can end by either 
compact space collapsing...

L > b ends outside horizon

L < b falls into horizon



Compute the effective action for the 
probe in the background, and solve the 
equations of motion.

φ = 0; θ = θ(u)

d
du

(
u2

(
u4−b4

)
θ′(u)cos3 (θ(u))

√
u2 +(u4−b4)θ′(u)2

)
+3u2 cos2 θ(u)sinθ(u)

√
u2 +(u4−b4)θ′(u)2 = 0

m = 2πα′mq ; −c # 〈ψ̄ψ〉

d
du

(
u5θ′(u)

)
+3u2θ(u) = 0,

Asymptotically, we have, for large u:

θ(u) =
1
u

(
m+

c
u2

)
.

lim
u→∞

L(u) = m+
c
u2 + . . .

Look for solutions and read off these values...



Chiral Symmetry and Geometry

Geometrically, it is simply the U(1) rotation in the coordinate φ

Chiral Symmetry here is a U(1) phase rotation of the quarks.

ψ→ eiφψ
ψ̄→ e−iφψ̄

This is the global symmetry corresponding to 
rotations around the D7 in the          plane. (u,φ)

A vev for        corresponds to a profile of 
the D7-brane that breaks this symmetry.

〈ψ̄ψ〉



Here are some of the solutions we found numerically:

Key difference from what went before: Use 
shooting technique starting at horizon. Much 
less delicate process than starting from infinity.

Embedding Solutions

Babington, et. al.; Mateos et. al.; Albash, et. al.; Karch et. al.



Read off the Asymptotia* from each solution:

*sorry... could not resist.



A closer look, showing some multivaluedness:



Physics will choose. Compute the free energy, using:

F = β−1τ7

Z
d4x dΩ3 du

√
−detg



A closer look, showing the crossover:

There is a first order phase transition from one class of 
embedding to another at some critical value of the bare mass.

This is equivalent to a phase transition at some critical 
temperature (above the deconfinement temperature)



What is the nature of this transition?

Below the transition, probes are in a phase similar to that at 
zero temperature. Brane ends before the horizon. There are 
mesons, etc.

Above the transition, probes are in a new phase. Branes have 
fallen into the horizon.  New physics.



The Meson Spectrum
Meson spectrum studied by looking at fluctuations of 
D7-brane probe about θ(0) = θ(u), φ(0) = 0

φ(z, t) = 0+δφ(z, t) = f (z)e−iωt z = u−2

At second order, get, for the horizon solutions:

f ′′(z)+
f ′(z)

z−b−2 +
R4ω2

16b2
f (z)

(z−b−2)2 = 0 .

f (z) = a(1− zb2)iR2ω
4b +b(1− zb2)−iR2ω

4b .

The in-falling solutions are the physical ones, (“quasi-normal modes”) and 
we search for solutions that are normalizable and out-going at infinity. 

Kruczenski et. al.; Mateos et. al.; Hoyos et. al.; Albash et. al.



Result:  Discrete spectrum of stable mesons for the Minkowski-type solutions, 
Continuous spectrum of massive excitations that decay for horizon solutions. 

Re[ω] = M , Im[ω] = (2τ)−1

M,τ - mass, lifetime

Hoyos et. al.; Albash et. al



What is the nature of this transition?

So it is a melting or dissociation phase 
transition for the mesons at Tmelt > Tdeconf

N. Evans et. al.; others...



Magnetic Fields and 
Chiral Symmetry Breaking

Another very important example can be studied by placing 
the gauge theory in an external magnetic field.

This is easy to do. 

Add a pure gauge B-field to AdS background. 
This does not change equations of motion.

However, through interaction                      on 
world-volume of probes it is equivalent to non-
trivial B-field (magnetic) seen by the quarks.

Bab +α′Fab

B = H dx2∧dx3

Supersymmetry for probe sector is broken by B-field. Filev et. al.



Equations of Motion

Equation of motion for L0(ρ) ρ(    is the radial coordinate here.)

Asymptotically, we have:

Can read off same information as before about the condensate and mass.

Proceed both numerically and 
analytically (details in paper)...



Embedding Solutions
Can already see analytically that for large 
quark mass or small H, have a condensate:

spiral structure

Non-zero condensate at vanishing mass - spontaneous chiral symmetry breaking!

Numerically:

(Black curve is analytic result...)



Spontaneous Chiral Symmetry Breaking

Numerically:

Analytically, can work out the dependence:

(Black curve is analytic result...)



Discrete, gapped, spectrum in 0-1 plane (weak fields):

(Black lines are pure AdS result.)

Zeeman Effect



Meson Spectrum

Goldstone in 2-3 plane:

(Curve is pure AdS result.)



Closeup to see Gell-Mann, Oakes, Renner behaviour:



Some more of the 2-3 spectrum:



Magnetic Field and Temperature
Do it all again, but with a black hole. The metric is

ds2 =− f (u)
R2 dt2 +

R2

f (u)
du2 +

u2

R2d!x · d!x+R2(dθ2 + cos2 θdΩ2
3 + sin2 θdφ2)

f (u) = u2− b4

u2

b2 =
8G5mb.h.

3π

−dt2 =⇒ dτ2 β−1 =
b

πR2 8

u

b



Useful change of variables:

and so we have:

Our probe embedding ansatz will be:

And our pure gauge B-field will be:



The resulting probe Lagrangian for finite temperature and magnetic field is:

Again this asymptotes nicely:

With the same solution allowing us to read off the physics



Again, it is straightforward to extract some interesting results by hand. For large 
mass or weak magnetic field:

For large enough mass, the condensate vanishes from below.

We can use numerical methods to see what happens at low values, and as a 
function of temperature.



Some dimensionless parameters:

0.5 1 1.5 2 2.5 3
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The familiar finite temperature, zero field case.

 Black hole embeddings

 Minkowski embeddings
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m
!

0.02

0.04

0.06

0.08

0.1

"c!!m! " Η$0

m
!
cr%0.92

There’s the melting transition region blown up:

The familiar finite temperature, zero field case.



Now turn on the magnetic field:

transition mass decreases (melting temperature increases)

η≡ R2

b2H
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Turn up the magnetic field:

transition mass decreases further (melting temperature increases)
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m
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Keep your eye on the transition region...

transition mass decreases further (melting temperature increases)
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Keep your eye on the transition region...

transition mass decreases further (melting temperature increases)
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Eventually, at some critical field, the transition mass is zero!

There is no longer any melting...black hole embeddings gone... 
There is chiral symmetry breaking.

!0.1 !0.075 !0.05 !0.025 0.025 0.05
m
"

!5

!4

!3

!2

!1
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Spontaneous Chiral Symmetry Breaking

higher free energy

The spontaneous
condensate



The values of the condensate:

Ηcr " 7.89

5 10 15 20 Η
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Finally, the rather lovely phase diagram of all of this:

Phase Structure

2 4 6 8 10 12
Η
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m
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Melted Mesons

Light Mesons

non!broken CS spontaneously broken CS



Electric Fields and 
Metal-Insulator Transitions

Let’s now study an external electric field. 

This is also easy to do. 

Consider the following ansatz for the world-volume gauge field:

Filev et. al.

Karch & O’Bannon 

This will give an electric field and a current, as we shall see:



where our embedding ansatz was:

and I’ve introduced dimensionless parameters via:

Keeping terms up to second order, we get for the DBI:

Solving in the asymptotic region, we find the normalizable solution:

and



defines a “vanishing locus” or “pseudo-horizon”.

We can convert (via Legendre transform) the full solution for B(r) into a 
solution for  the current:

where

Notice that the current vanishes at vanishing electric field, and also 
that it vanishes for  the Minkowski embeddings, for which 



We can solve for the embedding. The equation is a mess, so I’ll spare you.

From which we can again read off the mass and condensate:

giving:

Asymptotically

Notice again that for large mass we can derive:
...condensate 
vanishes, but 
from above.



Resort to pictures, in view of time:

Zero Temperature
Useful to use a new set of dimensionless coordinates

Three types of embedding to consider, even at zero temperature...

Minkowski embeds. End at 



In addition to the Minkowski embeddings, there are two types that pass the 
pseuedo-horizon:

We must keep an eye on these conical solutions...

smooth Conical singularities present



Now look at the mass vs condensate, and see that there’s a new transition:

Transition between Minkowski (mesons, vanishing current) and 
non-Minkowski (quarks, non-vanishing current)

A Metal-Insulator Transition

Window where conical singularities present



Inverse critical mass vs field:

Binding energy of mesons proportional to quark mass - So a strong enough E 
will unbind (dissociate) the mesons into constituent quarks. (red line)

A Metal-Insulator Transition

Note: Region where conical singularities present between red and blue curves



The different types of non-Minkowski embedding when there’s an horizon:

Finite Temperature



Key difference: For small enough electric field, the conical singular solutions 
are skipped by the transition:

Finite Temperature



Beyond a critical value of the electric field, the conical singular solutions are 
not skipped by the transition:

Finite Temperature



Phase diagram (refined overleaf):

Finite Temperature

Need to keep eye on the conical solutions however....



Phase diagram:

Finite Temperature

mesons

melted

Note: Region where conical singularities present between red and blue curves

Ecr



These studies provide very clean probes of important phenomena.

Conclusions

Going beyond the probe limit is a major challenge.

Much more can be done to construct other instructive examples.

Important to complete the story of the conical singular solutions.  Are they 
repaired by stringy physics in the interior? Are there completely new 
solutions to study, modifying the phase diagram?

Nice complement and extension (in magnetic case), of field theory 
literature on “magnetically catalyzed SSB”. Review: 

Miransky, hep-th/0208180

Related results in:
Erdmenger et.al., arXiv:0709.1551

...Just because it’s Santa Barbara!


