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Gravitational Condensate Stars
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e Classical Black Holes

e Quantum Black Holes

» Properties of Bose-Einstein Condensates GRO J1655-40: Evidence for a Spinning Black Hole
Drawing Credit: A. Hobart, CXC
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that a black hole is present, but also likely attributes. The gas surrounding GRO J 1655-40, example
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ANHALE OF N ATFIMATIEON

Val. 40, Ne. 4. Octabar, LI

ON A STATIONARY SYSTEM WITE SPHERICAL SYMMETRY

CONSISTING OF MANY GRAVITATING MASSES

Br AuvszrT EmvetBiN

(Recelved May 10, 1939}
If one considers Schwarzschild's solution of the static gravitational field of
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Particles of finite size in the gravitational field

By P. A. M. Dirac, FRS.
8t John'a College, Cambridgs

1 should like to apeak briefly about some work that 1 s engaged on, although it is
not yet complete. The o‘bjgyu‘h of this work is to set up a theory of the g;_a.vihﬁo.m! g
field intereoting with particles. Iwm‘othiatheorytnhninagzeemﬁwithm‘n
theory of gravitation, and also I insist thet it shall follow from un setion principle.
1do insist on this because I believe that Najure worksacoording toanaction principle, -
and if we have an action principls, we certainly have » first step towards quantiza-
tion.

oonsldering & particle interacting with the wvitational field the first
thigm;n*:wuuld think of wouldbaa puintt::gthle, buth.;-pnna runs into & difficulty,
because if one keeps to physically scceptable ideas, one cannot have a particle
smaller than the Schwarzschild radiua, which provides a sort of natural ‘boundary.

to spece, The methematiciany can E heiond this Schwarzechild radine, and get
inside, bub I wor 2 & Teglon 18 nob P T uss

0 ingide snd tﬁou?ngmmmmmﬁﬁ._mliwl._ :

send &
thtﬁor:mmﬂ'aﬁ;ﬁﬁlmnﬁﬂarﬁi ust, belong to Hﬁﬁiﬁi i

z8child radius must “_3_;;”_.&' 3 verse .,
53 should not be taken knbo scoount in any physical theory. mmaa
of having & pont singular! in the Einstein field isi.:. .

aint of view,
fuled out. Each paf:i:la must have & finite size no smaller than the Echwn?.mhﬂd :
radivs.

1 ried for some time to work with s particle with radius equal to the Schwarzschild
radius, but I found great difficulties, because the flsld at the Schwarzsohild radius is
sostronglysinguler, and it scoms that 8 more profitable line of investigationis to take
a particle bigger than the Sohwarzschild radius and to try to construct a theary for'
suoh a particle interscting with the gravitational fleld. There we have q\:.iba’ a definite
problem, and we can get some help by considering the analogous problem in electro-
dynamics. Previous speakers have called attention to the cloge analogies between :

the electromagnetic field and the gravitational field, and I am going to follow in v+

their footsteps end start off by considering the corresponding problem i.n_tha
elsctromagnetio field.

This i the problem of setting up a theory of an extended electron in an eleotro-
magnetiofield. We must malke some basio assumptions about this extended electron,
and I make the simplest ones which give a reascnable physical theory.

1 assume that the electron has & definite surface—a definite boundary—outside
which the field is described by Maxwell's equations.

T assume the surface itself to be a perfect conductor, so that thets is no fisld inside
the surface.

I sssume that the potentials are continuous st the surface, while their first
derivatives may have discontinuities, so that the field conditions just outside the
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Classical Black Holes
Schwarzschild Metric (1916)

dr 2
ds? = —dt® f(r) +—(—)+ r? (d6? + sin® 6 d¢?

f(r) = 1'—7*’1(?)

Classical Singularities:

e r=0: Infinite Tidal Forces, Breakdown of
Gen. Rel.

er=R;,=2GM (c = 1): Event Horizon,
Infinite Blueshift, Change of sign of f,h

Trapping of light inside the horizon is what
makes a black hole
BLACK
The r = R, singularity is purely kinematic,
removable by a coordinate transformation
iffh=0

Quantum Black Holes
Consequences of h # 0

o Infinite Blueshift of w Means Infinite Energy hw

¢ Gravitational Couplmg ® Grows Near Horizon

Semi-Classical Hawking Radiation is Thermal

=t fic®
T - 8mG k M

Negative Specific Heat Capacity <> Unstable

First Law dE =T dS |mp||es a HUGE Entropy
S, =tkal o o7k ( O)

e Information Paradox S =k InQ7?

Bekenstein-Hawking Entropy is Non-Extensive

Information Loss, Non-conservation of Probability
— Change Quantum Mechanics??

BUT is the semi-classical calculation correct?
What really happens near r = R_7?
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Quantum Effects Near r = R,

® Large Vacuum Stresses of Matter Fields
(TY) ~ (T7) ~ (1 - 263) ™

r

e Extreme Behavior of 1, £ Components Imply an
Effective One-Dimensional Relativistic Fluid

p=p
e Critical Region where Sound Speed = Light Speed
c2 = dp — 2
Any Additional Increase in Pressure Would Violate
Causality: Onset of Superluminal Modes is the

Signature of a Relativistic Phase Transition
® Back Reaction of Hawking Radiation not Negligible

=4 7!::11 Spu

becomes S = S, for K = 1 ('t Hooft)
Semi-Classical Limit Requires p = p

® Conformal Phase of Gravity with p = p obtained
from the Stress Tensor of Effective Action of the
Quantum Trace Anomaly

e A Critical Region is Essential for Joining Interior
(de Sitter) to the Exterior (Schwarzschild)

Bose-Einstein Condensation

o Bose-Einstein statistics imply any number of
particles can occupy the same single particle state.

e At high enough densities and/or low enough
temperatures the free energy of a boson gas is
minimized by a finite fraction of all the particles in
the lowest energy (ground) state.

e This tendency of bosons to condense takes place
in the absence of interactions or even with (not
too strong) repulsive interactions. Attractive
interactions make it all the more favorable.

o Bose-Einstein Condensation is a  generic
macroscopic. quantum phenomenon, observed in
§uperfluids, ‘He (even *He by fermion pairing),
Superconductors, and Atomic Gases, **Rb.

e Relativistic Quantum Field Theory exhibits a
similar phenomenon in Spontaneous Symmetry
Breaking, in both the strong and electroweak

interactions at their characteristic energy or
temperature scale. <@> £0
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Gravitational Vacuum
Condensates

@ Gravity is a theory of spin-2 bosons

e Interactions are attractive

e Interactions are strong near r = R,

e Energy of any scalar order parameter must couple
to gravity with vacuum eq. of state:

py = —p, = —V(¢)

e Relativistic Entropy Density s is (for u = 0):
Ts=p+p=0 if p=—p

e Zero entropy density for a single macroscopic
quantum state: k,InQ =0 for Q@ =1

® Such eq. of state does not satisfy the energy
condition p + 3p > 0 if p,, > 0 needed
to prove the classical singularity theorems

e Acts as a repulsive core

A BEC phase transition can stabilize
a high density, compact cold stellar
remnant to further gravitational collapse

A New Soln. to Einstein Egs.
R} —1R6t =8rG T,
o 1-9Ch) _grGpr?

dr
o %%+h—1:87r6’pr2
o P40 (VoT.t = 0)

Other components follow by differentiating these

Define hEl—@n’:ﬁ.—)El—&

r

Then %—T =4rpr?  and

G m+4mpre
4 e (1ovw

Egs. become closed when eq. of state is given:
R=ng
) -1, r<mr
with K=
+1, M<r<r;
p=p= 0, o< T
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Integration of final (conservation) eq. gives

2
fr) = (£) (&) £(r1) =~ (&) £(r)
A consistent soln. matching at r; and r3 is obtained
if wis O(1) but Aw = wy — wy = O(e). Then
'~R, ~ry

hf

'

roeryee By

barely changes in region Il with

Ar = Tg —T1 = 0(62)

LY

and both f and h are of order € in region Il but
nowhere vanishing. This means that the soln. has
a globally defined time and NO event horlzon

The physical meaning of ¢ << 1 is that ¢ -3 is the
order of the very large but finite redshift a photon
emitted at the shell experiences in escaping to infinity.

The proper thickness of the shell is
o o 1 pwg 5 _F
£= fm drh™2 =~ Rscifwl dww™2
3
whichis O(e2R,) < R,

& (‘Q/R,,\% « 1
L independent of M

e |. Interior (Vacuum Condensate) de Sitter:
f(r) = Ch(r) =C (1 - H§r?),

3
Py = “Pv- =%

058

® |Il. Exterior (Vacuum) Schwarzschild:
f(r) =h(r) =1- ¥
C, Hy and M are (so far) arbitrary parameters

e |l. Only Non-Vacuum Region:
Thin shell with p = p — pf = const.
Let w = 87 Gpr? so the other two egs. are

o Ty dh RO
r l1l=w—-h — 1l=w
a B 1—w—h dw , _1-—wdw
I R YT | TR e T

If region Il shell s thin,i.e. exists only near

oo I 2 , then L << 1 in region Il
and h can be neglected on r.hs. of e
Elementary Integration gives then

2
h~e (1—+?Ul- & 1 — € < 1, integ. const.

ren[1-en(2) +e(i-3)]
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Likewise the energy in the thin shell of region Il is
- T3 .2 g w2

Er = 47rfr1 pridr = erwl dw

whichis O(e*M) €« M

However, the entropy all resides in the shell since

: 2 /6. TS . .
p=p=gig () imples

w?
o E}i = kg (27rG)% kp 2=Gh r

S

I
which is of order

ak, —e’ZR ~ mls:BMfz L Sy = 4nk, GM2

w; w

and very much smaller than S,

Eg.ta~1, £~ Lyiancks M ~ M,

810k, € Su 2= 10"k € S, > 10"k,

2
e Ly S i aR w2 dw
—41r1'f,_1 srédrh !zkgh—gﬁe%f ew

Stability
The Entropy Principle

e Entropy S = 47rf37‘2 drh=% where

e s=(p+p)/T is the local entropy density
e Local form of the first law, dp = T'ds and

® Eq. of state, p = Kp imply

1
d 1 d
8= (-'f% x p'ﬁl.? x [4ﬂr!TT]m

so S can be expressed completely in terms
of one function p(r) = 2Gm(r)
® Extremization of the Entropy w.r.t. u
0S =0

is satisfied iff the TOV eq. for static equilibrium
is satisfied. Moreover, the soln. is stable iff the
second variation is negative semi-definite,

625 <0
i.e. iff the Entropy is Maximized
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® Regions | and |1l are vacuum regions with
St = S111 = 0 which require no new analysis.

@ In the shell region I, Kk = 1 and
5= [rar (%) -9
® Second Variation of the Er?tropy is
525 = g [ rdr (%) 7 (1-4) 7 x
[ [] s g3 -9 (14 ) 007
e Associated Sturm-Liouville diff. op. has zero solns.

Lx,=0

corresponding to varying the endpoints 71, T'2

o Let opu(r) = x,(r)¥(r) with
P(r1) = ¥(rg) = 0, integrate by parts &

528 = _%g. fr? rdr (%%) ® (1- “f)_% X (%)2

<0
Entropy is Maximal, Solution is Stable

Gra(vitational) Va(cuum) Stars

Gravastars as Astrophysical Objects

e Cold, Dark, Compact, Arbitrary M

e Accrete Matter like a Black Hole

e But Matter does not Disappear down a Hole

e May be Re-emitted by Ultra-relativistic Shell -

e Possible More Efficient Central Engine for
Sporadic Gamma Ray Bursters,
High-Energy Cosmic Rays, Other Sources?

¢ Formation could be Violent ‘Bosenova’

e Should Support Angular Momentum,
Magnetic Fields

e Gravitational Wave Signatures?

e Alternative to Black Holes for the Final
State of Gravitational Collapse

e Cosmological Models of Dark Energy
e Much to be Done...




