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What does QEC have
to do with holography?
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Powerful framework to study strongly-interacting systems

Advanced our understanding of guantum gravity
Maldacena, J. The Large-N Limit of Superconformal Field Theories and Supergravity.

IJTP, 38(4), 1113-1133.



Boundary reconstruction of
pulk operators

Global reconstruction AdS-Ridler wedge
reconstruction

Hamilton, A., Kabat, D., Lifschytz, G., & Lowe, D. (2006).
Holographic representation of local bulk operators. PRD, 74(6), 066009.



=Xplicit solution In metric

() = / dY K(xz;Y)O(Y)
S—1xR



Reduction to spacelike slice

O(Y) @ .

Solve boundary EOMs
p(r) = Pap(r)  p(x) = Ppe(x) p(r) = Poalx)

Almheiri, A., Dong, X., & Harlow, D. (2015).
Bulk locality and quantum error correction in AdS/CFT. JHEP, 2015(4), 163.




Sharpening the paradox
Q) = o(z)|Q2)
A s AUBUC = Boundary

pa = pa = trec[|Q)(Q]

pc = pc = trap[|2) (]

C

Pap # pas  Pec 7 PBC  PAC 7 PAC

The effect of ¢(z) is encoded in non-local correlations.



Entanglement and
Operator "teleportation’

~y . 10)[1) = ]1)|0)
) = v

Singlet
Stabilizer equations
XRQXUH)=YQY|V ) =ZxZ¥V")=—|0")

Operator "teleportation’

OAl¥™) = O0p|¥7)

Resolution: Entangled ground state and low energy sector.



Votivation

(a holography inspired code exploration)

* A connection has been established between
guantum error correction and holography

e Such "holographic” codes may be fruitful for
guantum information processing.

e Understandi

the informati

even quantu

ng their features could shed light on
on structure of holography and maybe
m gravity.
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Operator Algebra
Quantum Error Correction
(OAQEC)

'If you don't eat your meat, you can't have any pudding,
how can you have any pudding if you don't eat your meat!”

Bény, C., Kempf, A., & Kribs, D. (2007).
Generalization of Quantum Error Correction via the Heisenberg Picture.
PRL, 98(10), 100502.



Definition: OAQEC

Code space: . = PH AC L(H)
Noise map: Noise span:
N(/O) — ZNJION;L N — span{NiNb}OJ,b
J

N is correctable with respect to 4 in the code subspaceHc iff

) 3 R (recovery map): tr[XR oN(p)] = tr[Xp] p = PpP
i) Algebraic condition  [PN]N,P, X] =0 VX € A



distance in OAQEC

Depolarizing map: Ar(p) = or @ tr,[p]
Has all operators supported in R In its span.

Region R is correctable <=> Depolarizing R Is correctable.
Logical equivalence of operators.
X~pX is PXP=PXP
Region R is correctable <=> _4 may be represented on R¢
\V/X - A,HXRC . XRC ~ p X

Distance: size d of the smallest non-correctable region.
Can be relative to a sub-algebra!!



price of an algebra

Price: size p of the smallest region
where all operators can be represented.

Can be relative to a sub-algebra!!

Price: Tells us how well the information is hidden.
How hard it Is to read.

Distance: Tells us how well the information is
protected from noise. How hard it is to modity.



Example: Repetition code

(Ferromagnetic Ising)

He = span{|0)®", 1)} H:=-Y Z;7
(7,k)
Additional conserved Quantities
Zj ch d(Z_):n X:®Xj d()_z):
p(Z) = J p(X) =mn

Robust macroscopic polarization.




[[n,k,d] Protect non-commuting observables
He = span{|0), 1), 2)} ,
0) = [0) = [000) + [111) + [222)  ZW) =Wl w=e
1) — 1) = |012) + |120) + |201)  X|j) = |7 + 1 mod (3))
2) — [2) =]021) + |102) + |210)

Examp\e 113,1,2]] quantum code
1]
i

E=Y")l  EEt=P:  Enc(p) = EpE!

Zr~o 72072701~ 1QZQZ v ZT01Q Z

Xrne X0XT01re 1@ XX ne XT010X
dX)=d(Z)=d=2 <

p(X)=p(Z)=p=2 |



Complementarity

Lemma 2 (reconstruction). Give code subspace Ho = PH
and logical subalgebra A, if subsystem R of H is correctable
with respect to A, then A can be reconstructed on the comple-
mentary subsystem R°. That is, for each logical operator in
A, there is a logically equivalent operator supported on R°.

Lemma 3 (complementarity). Given code subspace Ho =
PH and logical subalgebra A, where H contains n sites, the
distance and price of A obey

p(A) +d(A) < n +1. (25)

Repetition code and qutrit code saturate complementarity.

Don’t be fooled, most codes don't!!



No free-lunch

Lemma 4 (no free lunch). Given code subspace Ho = PH
and non-abelian logical subalgebra A, the distance and price

of A obey
d(A) < p(A). (26)

Qutrit code saturates no-free lunch.
Repetition code is far from it.

Logical Z algebra in repetition violates it but is abelian.



Strong guantum singleton

Corollary 1 (strong quantum Singleton bound). Consider a
code subspace Ho = PH, where 'H contains n sites, and
where k = log dim H./ log dim Hg. Then the distance d and
price p of the code obey

p—k>d-1. (38)

Ek<p—d+1
We prove this for subspace codes and
operator algebras in holographic codes!!

Qutrit code saturates SQSB.

SQSB with complementarity p+d <n+1 imply the QSB
k<n-—2(d—-1)




Holography and QEC



Ryu-Takayanagi formula

Bulk/Boundary duality to Geometry/Entanglement duality

XR
S(R)= =~ min_area(xs)
— min area
4GN 8XR:8R XR
R
Entanglement <« » Geometry (Space-time)

Generalization of Bekenstein-Hawking black hole entropy.

1. Static space time boundary regions
2. Fully covariant prescription.

. Ryu, S., & Takayanagi, T. (2006). Holographic Derivation of Entanglement Entropy from
the anti-de Sitter Space/Conformal Field Theory Correspondence. PRL, 96(18), 181602.
. Hubeny, V. E., Rangamani, M., & Takayanagi, T. (2007). A covariant holographic
entanglement entropy proposal. JHEP, 2007(7), 062—062.



Entanglement wedge

(Bulk reconstruction beyond the causal wedge)

I I 3

A1UA3 Al UgAg

/\ - ~
Ao Aq A,  As

|A1\|A3\ < \A2|\A| | A1]|As| = |A2|]|A]

1. Bartlomiej Czech, Joanna L. Karczmarek, Fernando Nogueira, and Mark Van Raamsdonk,
The Gravity Dual of a Density Matrix. Class. Quant. Grav. 29, 155009 (2012)

2. Matthew Headrick, Veronika E. Hubeny, Albion Lawrence, and Mukund Rangamani,
Causality & holo- graphic entanglement entropy. JHEP 12, 162 (2014).




Ent. wedge reconstruction
m ¥

Causal wedge Entanglement wedge
P LN
L+ Inpu :
Input.. g : : T
A . ‘
B

Pastawski, F., Yoshida, B., Harlow, D., & Preskill, J. (2015). Holographic quantum error-
correcting codes: toy models for the bulk/boundary correspondence. JHEP, 2015(6), 149.



Notation

= The bulk, a Riemannian manifold
(not necessarily AdS, generally finite)
= The boundary, (where bulk ends)
= A region of the boundary
= The minimal surface separating R from
its boundary complement Re.
= Entanglement wedge
(region between R and its minimal surface)




Riemannian entanglement wedge hypothesis

Hypothesis 2 (Entanglement wedge hypothesis). If the bulk
point x is contained in the entanglement wedge E|R| of
boundary region R, then the complementary boundary region
R is correctable with respect to the logical bulk subalgebra
Az. Thus for each operator in A,, there is a logically equiv-
alent operator supported on R.

g[R]”':RiU € E|R] = |o(7)Q) = Ogr|Q)

(1) Dong, X., Harlow, D., & Wall, A. C. (2016). Reconstruction of Bulk Operators
within the Entanglement Wedge in Gauge-Gravity Duality. PRL, 117(2), 21601

(2) Hayden, P., Nezami, S., Qi, X.-L., Thomas, N., Walter, M., & Yang, Z. (2016).
Holographic duality from random tensor networks. JHEP, 2016(11), 9.
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Geometric complementarity

Hypothesis 1 (Geometric complementarity). Given a region

R C 0B and its boundary complement R® we have that xYr =
Xre = EIR|NE|R| and £|R] U £|R°| = B.

d(Ay) = min R|,
RCOB:xZ&(R°)
p(Az) = min  |R]

RCOB:x€&(R)

Lemma 35 (price equals distance for a point). For a holo-
graphic code, let A, be the non-abelian logical algebra as-
sociated with a bulk point x. Then

k(A,) = 0




Physical and logical boundaries
OB = U A

1P| = Al =k

In 2D static geometry horizon (all or nothing).
Otherwise, minimal surface partially follow puncture.



Restrictions on A
Al = |xa]

Xal = Ixa| < |2

Should be thought of as Bousso bound.

Bousso, R. (1999). A covariant entropy conjecture. JHEP, 1999(7), 004-004.



Bulk entanglement

0B =&

Represented through ER=EPR

Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes.
Fortschritte Der Physik, 61(9), 781-811.



Uberholography

(recursive hole punching)

In negatively curved space: \XR = 2L log(\R\/a)

Rl |_|5R2
R/
m G - )\l
Ry H Ry Ry H Ry

il = |Ra| = (5) IRI, |H|=(1=7)|R|

Equality at:  » =8 — 2 2~ (.8284



Uberholography

(recursive hole punching)

d(Axo) _ O(n0'786)

log 2 1 -6
O = — ~ . .
log(2/r)  log,(v/2+1)

IN negatively curved space

A Cantor type boundary region with fractal dimension 0.786



Quantum Markov Condition

(imples existence of recovery mag

Ryu-Takayanagi:  S(B) = S(BC)+ S(C)
Markov condition: Conditional mutual information =0
0=1I1(A;C|B)=S(AB)+ S(BC) — S(ABC) — S(B),
Existence of local Petz recovery map.
RE7EC pap > pasc,

Petz, D. (1988). Sufficiency of channels over Von Neumann algebras. The
Quarterly Journal of Mathematics, 39(1), 97-108.



But there are correlations!

(approximate recovery from approximate Markov)

S(B)=S5(BC)+ S(C) ifand only if
Mutual information I(A:C) = S(A)+ S(C) - S(AC) =0

1—I(A:C|B) < F(papc,ida @ Rp_spcpas)”.

Caveat: The recovery map depends on the state on ABC

Fawzi, O., & Renner, R. (2015). Quantum Conditional Mutual Information and
Approximate Markov Chains. CMP, 340(2), 575-611.



Quantum
source-channel
coding

FP, Jens Eisert and Henrik Wilming, Quantum source-channel codes.
quant-ph/1611.07528



Quantum source-channel codes

P\R R

A -
() ()

BTZ black hole dual to CFT thermal state.

How should | think of a CFT thermal state as a code?

For lattice models, there is no finite dimensional
subspace supporting the thermal state.



Quantum source-channel codes

e Think of mixed state as distribution over (pure) states.

w=Lymwmwmw.

* Calculate average fidelity the measure.

F(u,€) == L () (WIE (1) ()|} .

* Bound average fidelity by entanglement fidelity
Fo(p,€):=F(d®¢&,|¢),  Fe(p.&) < F(p,E).

 Recovery map is independent of purification A

F(PABC; |dA X 7?JB—>BC',0AB)2 — Fe(pBC'v 5)7

Sc+ Spc — 5Sp < e F(u,RespcoNc)>1—¢



Calculate on your tavorite CFT

Study conditional mutual information
as a function of system size n.
(lattice Hamiltonian)

Constant temperature correspond to BH
horizon a constant distance from boundary.

Scale inverse temperature withn.  goxn? ¢ € (0,1]

For constant S(pg) thermal entropy 5 x n

Now calculate conditional mutual information
on your favorite CFT!!!



Critical transverse field Insing
gapless free fermions

Markov upper bound on average decoding error

b oxXn

031 constant |C|

02F

~constantk  S(pg3)

| JEC

0'1;' @ S.+S,.-S, IC=I

| @ S.+S,.-5, IC=2 2
005} S.+S .- S, IC=3 € X ]_/TL

|| = 1/ a+ bn+ cn?) it

[ |= = 1/n
0.02 6/ n”

2 3 4 5 .6 7 9 11 13

Parity hack to forbid opo = pB) = &

unphysical errors.



| arger BH = more logical Inf.

2/3
b oxn /
Markov upper bound on average decoding error
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Conclusions

(and outlook)
There Is far more to do! Time”?

Flat/Positive curvature

* :-) Improves code properties. k,d

* -( Enhanced non-locality

Characterizing geometry from algebraic ideas.
Uberholography: Appearance of extra dimension > 1

Approximate QEC extension (geometry as prior).



Petz recovery map

Original conjectured.

1 _1 _1 1
Te—spc : Xp = ppelpp® Xppp® @ide)phe

Recent versions.

OO 14it —11it _1—it  —1—it
R()i= [ dtbo(pgt o5 (g7 pad
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