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What does QEC have 
to do with holography?



AdS/CFT 
preaching to the choir

AdS CFT

Weakly coupled 
gravity Strongly coupled

Geometric 
minimal surface

Entanglement 
entropy

Bulk operators Boundary operators

Gravitational 
dynamics

Entanglement 
thermodynamics

string theory 
on (d+1)-dim AdS

d-dim CFT

 Powerful framework to study strongly-interacting systems 
 Advanced our understanding of quantum gravity

Maldacena, J. The Large-N Limit of Superconformal Field Theories and Supergravity. 
IJTP, 38(4), 1113–1133.



Boundary reconstruction of  
bulk operators

Global reconstruction AdS-Ridler wedge 
reconstruction

Hamilton, A., Kabat, D., Lifschytz, G., & Lowe, D. (2006).  
Holographic representation of local bulk operators. PRD, 74(6), 066009.



Explicit solution in metric



Reduction to spacelike slice

Solve boundary EOMs

'(x)

'(x) ! �AB(x) '(x) ! �BC(x) '(x) ! �CA(x)

Almheiri, A., Dong, X., & Harlow, D. (2015).  
Bulk locality and quantum error correction in AdS/CFT. JHEP, 2015(4), 163.



⇢0AB 6= ⇢AB ⇢0BC 6= ⇢BC ⇢0AC 6= ⇢AC

A [B [ C = Boundary

'(x)

Sharpening the paradox

The effect of       is encoded in non-local correlations.'(x)

⇢0A = ⇢A = trBC [|⌦ih⌦|]
⇢0B = ⇢B = trCA[|⌦ih⌦|]
⇢0C = ⇢C = trAB [|⌦ih⌦|]

|⌦0i = '(x)|⌦i



Entanglement and  
Operator "teleportation"

| �i := |0i|1i � |1i|0ip
2

Singlet

X ⌦X| �i = Y ⌦ Y | �i = Z ⌦ Z| �i = �| �i

Stabilizer equations

Operator "teleportation" 

OA| �i = OB | �i

Resolution: Entangled ground state and low energy sector.



Motivation 
(a holography inspired code exploration)

• A connection has been established between 
quantum error correction and holography 

• Such "holographic" codes may be fruitful  for 
quantum information processing. 

• Understanding their features could shed light on 
the information structure of holography and maybe 
even quantum gravity.



Dictionary
Holography QECC

Bulk operators Logical operators

Boundary operators Physical operators

Vacuum geometry assumption Code subspace definition

x in the entanglement wedge E[R] Rc correctable with respect to Ax 

Operators in Ax may be represented in R

x

x

Single bulk location
[[5,1,3]]2 code



Operator Algebra 
Quantum Error Correction  

(OAQEC)

Bény, C., Kempf, A., & Kribs, D. (2007).  
Generalization of Quantum Error Correction via the Heisenberg Picture.  

PRL, 98(10), 100502.

"If you don't eat your meat, you can't have any pudding, 
how can you have any pudding if you don't eat your meat!"



Code space:

 is correctable with respect to 

Definition: OAQEC

A ✓ L(H)

N (⇢) =
X

j

Nj⇢N
†
j

Noise map: Noise span:
N = span{N†

aNb}a,b

N = span{N†
aNb}a,b

A ✓ L(H)

in the code subspace iffHC = PCH

i) ∃ R (recovery map):

ii) Algebraic condition 8X 2 A

HC = PH

[PN†
aNbP,X] = 0

tr[XR �N (⇢)] = tr[X⇢] ⇢ = P⇢P



distance in OAQEC

Region R is correctable <=> Depolarizing R is correctable.

Distance: size d  of the smallest non-correctable region.

�R(⇢) = �R ⌦ trr[⇢]Depolarizing map:

Has all operators supported in R in its span.

8X 2 A, 9X̃Rc : X̃Rc ⇠P X

X̃ ⇠P X PX̃P = PXP

Logical equivalence of operators.

is
Region R is correctable <=>    may be represented on RcA ✓ L(H)

Can be relative to a sub-algebra!!



price of an algebra

Price: size p of the smallest region  
where all operators can be represented.
Can be relative to a sub-algebra!!

Price: Tells us how well the information is hidden. 
How hard it is to read.

Distance: Tells us how well the information is 
protected from noise. How hard it is to modify.



Additional conserved Quantities

H := �
X

hj,ki

ZjZk

X̄ =
O
j

Xj

decoherence xn  !

X̄Z̄ = �Z̄X̄
X̄2 = Z̄2 = 1

Pauli algebra of  
Spin operators

Example: Repetition code 
(Ferromagnetic Ising)

Zj ⇠C Z̄ d(X̄) = 1

Robust macroscopic polarization.
p(Z̄) = 1

p = n
d = 1

HC = span{|0i⌦n, |1i⌦n}

d(Z̄) = n

p(X̄) = n



|0i ! |0̃i = |000i+ |111i+ |222i
|1i ! |1̃i = |012i+ |120i+ |201i
|2i ! |2̃i = |021i+ |102i+ |210i

HC = span{|0̃i, |1̃i, |2̃i}

Enc(⇢) = E⇢E†E =
X

j

|j̃ihj|

Z ⌦ Z† ⌦ 1 ⇠C 1⌦ Z ⌦ Z† ⇠C Z† ⌦ 1⌦ Z

X ⌦X† ⌦ 1 ⇠C 1⌦X ⌦X† ⇠C X† ⌦ 1⌦X

! = e
2i⇡
3

x

EE† = PC

d(X̄) = d(Z̄) = d = 2

Example:[[3,1,2]] quantum code 
[[n,k,d]]     Protect non-commuting observables

X̄ ⇠C

Z̄ ⇠C

Z|ji = !j |ji
X|ji = |j + 1 mod (3)i

p(X̄) = p(Z̄) = p = 2



Complementarity

5

To understand eq.(21) we argue as follows. Consider a uni-
tary map supported on R, under which

⇢ 7! ⇢0
= (UR ⌦ IRc

) ⇢
⇣
U †

R ⌦ IRc

⌘
; (22)

hence ⇢Rc
= ⇢0

Rc , and therefore �R(⇢) = �R(⇢0
), from

which we infer that

tr

⇣
�

†
R(Y )⇢

⌘
= tr

⇣
�

†
R(Y )⇢0

⌘
= tr

⇣⇣
U†

R ⌦ IRc

⌘
�

†
R(Y ) (UR ⌦ IRc

) ⇢
⌘

(23)

If it holds for any state ⇢, eq.(23) implies

�

†
R(Y ) =

⇣
U†

R ⌦ IRc

⌘
�

†
R(Y ) (UR ⌦ IRc

) (24)

for any unitary UR. Eq.(21) then follows. Thus we have
shown:

Lemma 2 (reconstruction). Give code subspace HC = PH
and logical subalgebra A, if subsystem R of H is correctable
with respect to A, then A can be reconstructed on the comple-
mentary subsystem Rc. That is, for each logical operator in
A, there is a logically equivalent operator supported on Rc.

D. Distance and price

In the standard theory of quantum error correction, we con-
sider the physical Hilbert space H to have a natural decompo-
sition as a tensor product of small subsystems, for example a
decomposition into n qubits (two-level systems); n is called
the length of the code. This decomposition is “natural” in the
sense of being motivated by the underlying physics — e.g.,
each qubit might be carried by a separate particle, where the
particles interact pairwise. Typically we suppose that the code
subspace HC also has a decomposition into “logical” qubits;
that is, that the dimension of the code space is 2

k where k is
a positive integer. We may define the distance d of the code
as the size of the smallest set R of physical qubits for which
erasure of R is not correctable. Equivalently, d is the size of
the smallest region which supports observables capable of dis-
tinguishing among distinct logical states. We use the notation
[[n, k, d]] for a code with n physical qubits, k logical qubits,
and distance d. For a given n, it is desirable for k and d to
be as large as possible, but there is a tradeoff; larger k means
smaller d and vice versa. This standard theory can be gener-
alized in some obvious ways; for example, the dimension of
the code subspace might not be a power of 2, or the physical
Hilbert space might be decomposed into higher-dimensional
subsystems rather than qubits.

The distance d loosely characterizes the error-correcting
power of the code. But if some encoded degrees of freedom
are better protected than others, then a more refined charac-
terization can be useful, since the distance captures only the
worst case. In holographic codes in particular, bulk degrees of
freedom far from the boundary are better protected than bulk

degrees of freedom near the boundary. To describe the perfor-
mance of a holographic code more completely, we may assign
a distance value to each of the code’s logical subalgebras.

As in the standard theory, we assume the physical Hilbert
space is uniformly factorizable, H = H⌦n

0

, where H
0

is
finite-dimensional. In applications to quantum field theory,
then, H is the Hilbert space of a suitably regulated theory; for
example, if the theory is defined on a spatial lattice, a subsys-
tem with Hilbert space H

0

resides at each lattice site. Guided
by this picture, we refer to the elementary subsystem as a
“site.” By a “region” R we mean a subset of the n sites, and
the number of sites it contains is called the size of R, denoted
|R|. We may now define the distance of a logical algebra A.

Definition 3 (distance). Given code subspace HC = PH
and logical subalgebra A, the distance d(A) is the size of
the smallest region R which is not correctable with respect to
A.

If A is the code’s complete logical algebra, then d(A) co-
incides with the standard definition of distance for a subspace
code. In the case of a subsystem code, if A is the algebra
of “bare” logical operators, which act nontrivally on the pro-
tected subsystem and trivially on the gauge subsystem, d(A)

is the size of the smallest region which supports a nontrivial
“dressed” logical operator, one which acts nontrivially on the
protected subsystem and might act on the gauge subsystem as
well. In that case, d(A) coincides with the standard definition
of distance for a subsystem code. More generally, we might
want to consider multiple ways of decomposing HC into a
protected subsystem and its complement, and our definition
assigns a distance to each of these protected subsystems.

For a given code HC and logical algebra A, we may also
consider the smallest possible region R such that all operators
in A are supported on R. We call the size of this region the
price of the algebra.

Definition 4 (price). Given code subspace HC = PH and
logical subalgebra A, the price p(A) is the size of the smallest
region R such that, for every operator X 2 A, there is a
logically equivalent operator ˜X which is supported on R.

As already noted, if region R is correctable with respect to
operator X , then an operator logically equivalent to X can be
reconstructed on the complementary region Rc. In this sense
the notions of distance and price are dual to one another. The
relation between distance and price can be formulated more
precisely with some simple lemmas.

Lemma 3 (complementarity). Given code subspace HC =

PH and logical subalgebra A, where H contains n sites, the
distance and price of A obey

p(A) + d(A)  n + 1. (25)

Proof. Consider a region R which is correctable with respect
to A and also unextendable, meaning R has the property that
adding any additional site makes it noncorrectable. Then
there are noncorrectable sets with |R| + 1 sites, and therefore
d(A)  |R|+1. Furthermore, since R is correctable, all oper-
ators in A can be reconstructed on its complement Rc; hence
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mance of a holographic code more completely, we may assign
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As in the standard theory, we assume the physical Hilbert
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A.

If A is the code’s complete logical algebra, then d(A) co-
incides with the standard definition of distance for a subspace
code. In the case of a subsystem code, if A is the algebra
of “bare” logical operators, which act nontrivally on the pro-
tected subsystem and trivially on the gauge subsystem, d(A)

is the size of the smallest region which supports a nontrivial
“dressed” logical operator, one which acts nontrivially on the
protected subsystem and might act on the gauge subsystem as
well. In that case, d(A) coincides with the standard definition
of distance for a subsystem code. More generally, we might
want to consider multiple ways of decomposing HC into a
protected subsystem and its complement, and our definition
assigns a distance to each of these protected subsystems.

For a given code HC and logical algebra A, we may also
consider the smallest possible region R such that all operators
in A are supported on R. We call the size of this region the
price of the algebra.

Definition 4 (price). Given code subspace HC = PH and
logical subalgebra A, the price p(A) is the size of the smallest
region R such that, for every operator X 2 A, there is a
logically equivalent operator ˜X which is supported on R.

As already noted, if region R is correctable with respect to
operator X , then an operator logically equivalent to X can be
reconstructed on the complementary region Rc. In this sense
the notions of distance and price are dual to one another. The
relation between distance and price can be formulated more
precisely with some simple lemmas.

Lemma 3 (complementarity). Given code subspace HC =

PH and logical subalgebra A, where H contains n sites, the
distance and price of A obey

p(A) + d(A)  n + 1. (25)

Proof. Consider a region R which is correctable with respect
to A and also unextendable, meaning R has the property that
adding any additional site makes it noncorrectable. Then
there are noncorrectable sets with |R| + 1 sites, and therefore
d(A)  |R|+1. Furthermore, since R is correctable, all oper-
ators in A can be reconstructed on its complement Rc; hence

Repetition code and qutrit code saturate complementarity.
Don’t be fooled, most codes don’t!!



No free-lunch

6

the p(A)  |Rc| = n � |R|. Adding these two inequalities
yields eq.(25).

We may anticipate that if a region R supports a nontrivial
logical algebra, then erasing R inflicts an irreversible logical
error. This intuition is correct if the algebra is non-abelian.
Let us say that a logical subalgebra is non-abelian if it contains
two logical operators X and Y such that PXP and PY P are
non-commuting. Then we have:

Lemma 4 (no free lunch). Given code subspace HC = PH
and non-abelian logical subalgebra A, the distance and price
of A obey

d(A)  p(A). (26)

Proof. Consider two logical operators X and Y in A (both
commuting with P ), such that PXP and PY P are non-
commuting. By the definition of p(A), there is a region R
with |R| = p(A) such that an operator ˜Y logically equivalent
to Y is supported on R; hence

0 6= [PY P, PXP ] = [P ˜Y P, PXP ] = [P ˜Y P, X]. (27)

This means that region R does not satisfy the criterion for cor-
rectability in Lemma 1, and therefore is not correctable with
respect to A. By the definition of distance, d(A)  |R| =

p(A), and eq.(26) follows.

If A is abelian, then eq.(26) need not apply. Consider for
example the three-qubit quantum repetition code, spanned by
the states |000i and |111i, and the logical algebra generated
by

¯Z = |000ih000| � |111ih111|. (28)

This algebra has price p = 1, because the operator Z ⌦ I ⌦ I ,
supported on only the first qubit, is logically equivalent of ¯Z.
On the other hand, the distance is d = 3; because the logi-
cal algebra can be supported on any one of the three physical
qubits, it is protected against the erasure of any two qubits.
Note that p + d = 4, saturating eq.(25).

For a traditional subspace code, we may define the price of
the code as the price of its complete logical algebra, just as
we define the code’s distance to be the distance of its com-
plete logical algebra. The price and distance of a code are
constrained by an inequality which can be derived from the
subadditivity of Von Neumann entropy. This constraint on
price is a corollary to the following theorem.

Theorem 2 (constraint on correctable regions). Consider a
code subspace HC = PH, where H contains n sites, and let
k = log dim HC/ log dim H

0

. Suppose that R
1

and R
2

are
two disjoint correctable regions. Then

n � k � |R
1

| + |R
2

|. (29)

Proof. Let A denote the code block H⌦n
0

, let T denote a ref-
erence system, and let |�i denote a state of AT in which T
is maximally entangled with the code space. The criterion for
correctability says that if R is a correctable region then for

any operator Y supported on R, PY P = cP ; therefore, if Y
is supported on R and X is supported on T ,

h�|Y ⌦ X|�i = h�|PY P ⌦ X|�i = ch�|P ⌦ X|�i
= ch�|I ⌦ X|�i = h�|Y ⌦ I|�ih�|I ⌦ X|�i.

(30)

Because h�|Y ⌦ X|�i factorizes for any Y supported on R
and X supported on T , we conclude that the marginal density
operator of RT factorizes,

⇢RT = ⇢R ⌦ ⇢T , (31)

if R is correctable.
To proceed we use properties of the entropy

S(⇢) = �tr (⇢ log ⇢) , (32)

where for convenience we define entropy using logarithms
with base dim H

0

. Because R
1

and R
2

are both correctable,
R

1

T and R
2

T are product states; therefore

S(R
1

T ) = S(R
1

) + S(T ), S(R
2

T ) = S(R
2

) + S(T ).
(33)

Denoting by Rc the region of the code block complementary
to R

1

R
2

, and noting that the overall state of R
1

R
2

RcT is
pure, we have

S(R
1

Rc
) = S(R

2

T ) = S(R
2

) + S(T ), (34)
S(R

2

Rc
) = S(R

1

T ) = S(R
1

) + S(T ); (35)

adding these equations yields

S(T ) =

1

2

(S(R
1

Rc
) + S(R

2

Rc
) � S(R

1

) � S(R
2

)) (36)

= S(Rc
) � 1

2

(I(R
1

; Rc
) + I(R

2

; Rc
)) . (37)

Since the mutual information I(R; Rc
) is nonnegative (sub-

additivity of entropy), S(T ) = k, and S(Rc
)  |Rc| =

n � |R
1

| � |R
2

|, we obtain eq.(29).

Corollary 1 (strong quantum Singleton bound). Consider a
code subspace HC = PH, where H contains n sites, and
where k = log dim Hc/ log dim H

0

. Then the distance d and
price p of the code obey

p � k � d � 1. (38)

Proof. In eq.(29), choose R
1

to be the complement of the
smallest region that supports the logical algebra of the code
(hence |R

1

| = n � p), and choose R
2

to be any set of d � 1

qubits not contained in R
1

. Then eq.(38) follows.

Corollary 2 (quantum Singleton bound). Consider a code
subspace HC = PH, where H contains n sites, and where
k = log dim Hc/ log dim H

0

. Then

n � k � 2(d � 1) (39)

where d is the code distance.

Qutrit code saturates no-free lunch.

Logical Z algebra in repetition violates it but is abelian.

Repetition code is far from it.



Strong quantum singleton

Qutrit code saturates SQSB.

6
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to R

1

R
2

, and noting that the overall state of R
1

R
2

RcT is
pure, we have

S(R
1

Rc
) = S(R

2

T ) = S(R
2

) + S(T ), (34)
S(R
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Rc
) = S(R

1

T ) = S(R
1

) + S(T ); (35)

adding these equations yields

S(T ) =

1

2

(S(R
1

Rc
) + S(R

2

Rc
) � S(R

1

) � S(R
2

)) (36)

= S(Rc
) � 1

2

(I(R
1

; Rc
) + I(R

2

; Rc
)) . (37)

Since the mutual information I(R; Rc
) is nonnegative (sub-

additivity of entropy), S(T ) = k, and S(Rc
)  |Rc| =

n � |R
1

| � |R
2

|, we obtain eq.(29).

Corollary 1 (strong quantum Singleton bound). Consider a
code subspace HC = PH, where H contains n sites, and
where k = log dim Hc/ log dim H

0

. Then the distance d and
price p of the code obey

p � k � d � 1. (38)

Proof. In eq.(29), choose R
1

to be the complement of the
smallest region that supports the logical algebra of the code
(hence |R

1

| = n � p), and choose R
2

to be any set of d � 1

qubits not contained in R
1

. Then eq.(38) follows.

Corollary 2 (quantum Singleton bound). Consider a code
subspace HC = PH, where H contains n sites, and where
k = log dim Hc/ log dim H

0

. Then

n � k � 2(d � 1) (39)

where d is the code distance.

SQSB with complementarity                         imply the QSB
k  n� 2(d� 1)

p+ d  n+ 1

We prove this for subspace codes and  
operator algebras in holographic codes!!

k  p� d+ 1
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ported on a corresponding region on the boundary (a set of
physical boundary sites). The geometrical interpretation of
this relation between the bulk and boundary operator algebras
will be elaborated in the following subsections.

A. Entanglement wedge reconstruction

For holographic codes, whether a specified subsystem of
the physical Hilbert space H is correctable with respect to
a particular logical subalgebra can be formulated as a ques-
tion about the bulk geometry. This connection between
correctability and geometry is encapsulated by the entan-
glement wedge hypothesis [10, 17, 18, 31], which holds in
AdS/CFT [3, 11]. This hypothesis specifies the largest bulk
region whose logical subalgebra can be represented on a given
boundary region.

The entanglement wedge hypothesis can be formulated for
dynamical spacetimes, but for our purposes it will suffice
to consider a special case. We consider a smooth Rieman-
nian manifold B, which may be regarded as a spacelike slice
through a static bulk spacetime. Somewhat more generally,
we may imagine that B is a slice though a Lorentzian mani-
fold which is invariant under time reversal about B. Any B
can be locally extended to such a Lorentzian manifold which
solves the Einstein field equation without matter sources. To
formulate the entanglement wedge hypothesis for this case,
we will need the concept of a minimal bulk surface embedded
in B. We denote the boundary of B by @B, and consider a
boundary region R ✓ @B.

Definition 5 (Minimal surface). Given a Riemannian mani-
fold B with boundary @B, the minimal surface �R associ-
ated with a boundary region R ✓ @B is the minimum area
co-dimension one surface in B which separates R from its
boundary complement Rc (see figure 1 for some examples).

We will, for the most part, assume that the minimal surface
�R is unique and geometrically well defined. Some choices of
geometry B and boundary region R admit more than one min-
imal surface, but one may usually slightly alter the choice of
R in order to make the minimal surface �R unique. Note that,
according to Definition 5, R and Rc have the same minimal
surface.

Now we can define the entanglement wedge.

Definition 6 (Entanglement wedge). Given a boundary re-
gion R ✓ @B, the entanglement wedge of R is a bulk region
E [R] ✓ B, whose boundary is @E [R] := �R [ R, where �R

is the minimal surface for R (see figure 1 for some examples).

Note that under the uniqueness assumption for the minimal
surface �R, the entanglement wedge E(R) of a boundary re-
gion R and the entanglement wedge E(Rc

) of its boundary
complement Rc cover the full bulk manifold B, and they in-
tersect exclusively at the minimal surface.

Hypothesis 1 (Geometric complementarity). Given a region
R ✓ @B and its boundary complement Rc we have that �R =

�Rc
= E [R] \ E [Rc

] and E [R] [ E [Rc
] = B.

R

R
1

R
2

�R

E [R] RE [R]

E [R]

�R

�R

�R

FIG. 1. This figure illustrates the geometric notions of minimal sur-
face and entanglement wedge. In each pane, we highlight a bound-
ary region R with a crayon stroke; the corresponding minimal sur-
face �R is indicated, and the entanglement wedge E [R] is shaded in
green. On the left B is a hyperboloid whose boundary @B has two
connected components, where R is one of those components (the one
on the right). The minimal surface cuts the hyperboloid at its waist,
and the entanglement wedge is everything to the right of �R. In the
central pane B is the interior of a Euclidean ellipse; the boundary re-
gion R = R1 tR2 has two connected components, and �R also has
two connected components. As shown, the connected components
of �R need not be homologous to R1 and R2, allowing E [R1 t R2]
to be significantly larger than E [R1] t E [R2]. On the right B is the
Poincaré disc, portraying an infinite hyperbolic geometry. The mini-
mal surface is a geodesic in the bulk with endpoints on @B.

As we will see, this geometric statement, which holds
for a generic manifold B and boundary region R, leads to
very strong code-theoretic guarantees under the entanglement
wedge hypothesis.

For a holographic code, the entanglement wedge hypoth-
esis states a sufficient condition for a boundary region to be
correctable with respect to the logical subalgebra supported at
a site in the bulk. Due to Lemma 2, this condition also in-
forms us that the logical subalgebra can be reconstructed on
the complementary boundary region. Evoking the continuum
limit of the regulated bulk theory, we will sometimes refer to
a bulk site as a point in the bulk, though it will be implicit that
associated logical subalgebra is finite dimensional and slightly
smeared in space.

Hypothesis 2 (Entanglement wedge hypothesis). If the bulk
point x is contained in the entanglement wedge E [R] of
boundary region R, then the complementary boundary region
Rc is correctable with respect to the logical bulk subalgebra
Ax. Thus for each operator in Ax, there is a logically equiv-
alent operator supported on R.

This connection between holographic duality and operator
algebra quantum error correction has many implications worth
exploring.

For a holographic code corresponding to a regulated bound-
ary theory, there are a finite number of boundary sites, each
describing a finite-dimensional subsystem. Thus we can speak
of the length n of the code, meaning the number of boundary
sites, as well as the distance d and price p of the code (or
of any logical subalgebra), which also take integer values. It
is convenient, though, to imagine taking a formal continuum
limit of the boundary theory in which the total boundary vol-
ume stays fixed as n ! 1, while maintaining a uniform num-
ber of boundary sites per unit boundary volume as determined



Dictionary
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Bulk operators Logical operators

Boundary operators Physical operators

Vacuum geometry assumption Code subspace definition

x in the entanglement wedge E[R] Rc correctable with respect to Ax 

Operators in Ax may be represented in R

x
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ported on a corresponding region on the boundary (a set of
physical boundary sites). The geometrical interpretation of
this relation between the bulk and boundary operator algebras
will be elaborated in the following subsections.

A. Entanglement wedge reconstruction

For holographic codes, whether a specified subsystem of
the physical Hilbert space H is correctable with respect to
a particular logical subalgebra can be formulated as a ques-
tion about the bulk geometry. This connection between
correctability and geometry is encapsulated by the entan-
glement wedge hypothesis [10, 17, 18, 31], which holds in
AdS/CFT [3, 11]. This hypothesis specifies the largest bulk
region whose logical subalgebra can be represented on a given
boundary region.

The entanglement wedge hypothesis can be formulated for
dynamical spacetimes, but for our purposes it will suffice
to consider a special case. We consider a smooth Rieman-
nian manifold B, which may be regarded as a spacelike slice
through a static bulk spacetime. Somewhat more generally,
we may imagine that B is a slice though a Lorentzian mani-
fold which is invariant under time reversal about B. Any B
can be locally extended to such a Lorentzian manifold which
solves the Einstein field equation without matter sources. To
formulate the entanglement wedge hypothesis for this case,
we will need the concept of a minimal bulk surface embedded
in B. We denote the boundary of B by @B, and consider a
boundary region R ✓ @B.

Definition 5 (Minimal surface). Given a Riemannian mani-
fold B with boundary @B, the minimal surface �R associ-
ated with a boundary region R ✓ @B is the minimum area
co-dimension one surface in B which separates R from its
boundary complement Rc (see figure 1 for some examples).

We will, for the most part, assume that the minimal surface
�R is unique and geometrically well defined. Some choices of
geometry B and boundary region R admit more than one min-
imal surface, but one may usually slightly alter the choice of
R in order to make the minimal surface �R unique. Note that,
according to Definition 5, R and Rc have the same minimal
surface.

Now we can define the entanglement wedge.

Definition 6 (Entanglement wedge). Given a boundary re-
gion R ✓ @B, the entanglement wedge of R is a bulk region
E [R] ✓ B, whose boundary is @E [R] := �R [ R, where �R

is the minimal surface for R (see figure 1 for some examples).

Note that under the uniqueness assumption for the minimal
surface �R, the entanglement wedge E(R) of a boundary re-
gion R and the entanglement wedge E(Rc

) of its boundary
complement Rc cover the full bulk manifold B, and they in-
tersect exclusively at the minimal surface.

Hypothesis 1 (Geometric complementarity). Given a region
R ✓ @B and its boundary complement Rc we have that �R =

�Rc
= E [R] \ E [Rc

] and E [R] [ E [Rc
] = B.

R

R
1

R
2

�R

E [R] RE [R]

E [R]

�R

�R

�R

FIG. 1. This figure illustrates the geometric notions of minimal sur-
face and entanglement wedge. In each pane, we highlight a bound-
ary region R with a crayon stroke; the corresponding minimal sur-
face �R is indicated, and the entanglement wedge E [R] is shaded in
green. On the left B is a hyperboloid whose boundary @B has two
connected components, where R is one of those components (the one
on the right). The minimal surface cuts the hyperboloid at its waist,
and the entanglement wedge is everything to the right of �R. In the
central pane B is the interior of a Euclidean ellipse; the boundary re-
gion R = R1 tR2 has two connected components, and �R also has
two connected components. As shown, the connected components
of �R need not be homologous to R1 and R2, allowing E [R1 t R2]
to be significantly larger than E [R1] t E [R2]. On the right B is the
Poincaré disc, portraying an infinite hyperbolic geometry. The mini-
mal surface is a geodesic in the bulk with endpoints on @B.

As we will see, this geometric statement, which holds
for a generic manifold B and boundary region R, leads to
very strong code-theoretic guarantees under the entanglement
wedge hypothesis.

For a holographic code, the entanglement wedge hypoth-
esis states a sufficient condition for a boundary region to be
correctable with respect to the logical subalgebra supported at
a site in the bulk. Due to Lemma 2, this condition also in-
forms us that the logical subalgebra can be reconstructed on
the complementary boundary region. Evoking the continuum
limit of the regulated bulk theory, we will sometimes refer to
a bulk site as a point in the bulk, though it will be implicit that
associated logical subalgebra is finite dimensional and slightly
smeared in space.

Hypothesis 2 (Entanglement wedge hypothesis). If the bulk
point x is contained in the entanglement wedge E [R] of
boundary region R, then the complementary boundary region
Rc is correctable with respect to the logical bulk subalgebra
Ax. Thus for each operator in Ax, there is a logically equiv-
alent operator supported on R.

This connection between holographic duality and operator
algebra quantum error correction has many implications worth
exploring.

For a holographic code corresponding to a regulated bound-
ary theory, there are a finite number of boundary sites, each
describing a finite-dimensional subsystem. Thus we can speak
of the length n of the code, meaning the number of boundary
sites, as well as the distance d and price p of the code (or
of any logical subalgebra), which also take integer values. It
is convenient, though, to imagine taking a formal continuum
limit of the boundary theory in which the total boundary vol-
ume stays fixed as n ! 1, while maintaining a uniform num-
ber of boundary sites per unit boundary volume as determined
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by the bulk induced metric. Without intending to place re-
strictions on the dimension of B, from now on we will use the
term area when speaking about the size of a boundary region,
and save the term volume for describing the size of a bulk
region. In the continuum limit, we may still speak of n, d,
and p, but now taking real values; n becomes the total area of
the boundary, while d(A) is the area of the smallest boundary
region which is not correctable with respect to logical subal-
gebra A, and p(A) is the area of the smallest boundary region
which supports A. For now, to ensure that back reaction on
the bulk geometry is negligible, we will suppose that the bulk
algebra A has support on a constant number of points. In the
formal continuum limit, then, the logical algebra has negligi-
ble dimension, in effect defining a k ⇡ 0 code if the size of
the logical system is expressed in geometrical units.

The entanglement wedge hypothesis has notable conse-
quences for the logical subalgebra Ax supported at a bulk
point x. Consider the distance of Ax. For any boundary region
R with boundary complement Rc, if x 2 E [Rc

] then R is cor-
rectable with respect to Ax. On the other hand, if x 2 E [R],
then Ax can be reconstructed on R; arguing as in the proof
of Lemma 4, R cannot be correctable with respect to Ax if
R supports Ax and Ax is non-abelian. By geometric comple-
mentarity, either x 2 E [Rc

] or x 2 E [R]; we conclude that R
is correctable with respect to Ax if and only if x 2 E [Rc

]. By
the definition of distance, then,

d(Ax) = min

R✓@B:x 62E(Rc
)

|R|, (43)

assuming Ax is non-abelian.
Now consider the price of Ax. According to the entan-

glement wedge hypothesis, Ax can be reconstructed on R if
x 2 E [R]. On the other hand, if x 62 E [R], then x 2 E [Rc

] by
geometric complementarity, and therefore Ax can be recon-
structed on Rc. Because operators supported on R commute
with operators supported on Rc, it is not possible for Ax to
be reconstructed on both R and Rc if Ax is non-abelian. We
conclude that Ax can be reconstructed on R if and only if
x 2 E [R]. By the definition of price, then,

p(Ax) = min

R✓@B:x2E(R)

|R|, (44)

assuming Ax is non-abelian.
Geometric complementarity says that x 2 E [R] if and only

if x 62 E [Rc
]. Therefore by comparing eq.(43) and eq.(44),

we see that the expressions for the distance and the price are
identical. Thus we have shown:

Lemma 5 (price equals distance for a point). For a holo-
graphic code, let Ax be the non-abelian logical algebra as-
sociated with a bulk point x. Then

p(Ax) = d(Ax). (45)

Thus, in a holographic code, the bound p(Ax) � d(Ax) in
Lemma 4 is saturated by the logical subalgebra of a point. It
is intriguing that a geometrical point admits this simple alge-
braic characterization, suggesting how geometrical properties
might be ascribed to logical subalgebras in a broader setting.

We can extend this reasoning to a bulk region X which
contains a finite number of bulk points, continuing to assume
that the number of operator insertions is sufficiently small that
back reaction on the bulk geometry can be neglected, and that
the logical subalgebra factorizes as in eq.(42). In that case, a
boundary region R is correctable with respect to the algebra
AX if it is correctable with respect to Ax for each bulk point
x in X . Therefore,

d(AX) = min

x2X
d(Ax). (46)

Eq.(44) can also be extended to a bulk region X:

p(AX) := min

R✓@B:X✓E[R]

|R|, (47)

assuming that each nontrivial operator in AX fails to com-
mute with some other operator in AX . If all points of X are
contained in E [R], it follows that p(AX)  |R|.

We emphasize again that these properties apply not only to
AdS bulk geometry, but also to other quantum code construc-
tions satisfying geometric complementarity and the entangle-
ment wedge hypothesis. Such codes were constructed in [26]
for tensor networks associated with tilings of bulk geometries
having non-positive curvature. These results were extended to
arbitrary graph connectivity in [15], where a discrete general-
ization of the entanglement wedge hypothesis was found to be
valid in the limit of large bond dimension. Taking a suitable
limit, these codes can be viewed as regularized approxima-
tions to underlying smooth geometries.

B. Punctures in the bulk

In quantum gravity, there is an upper limit on the dimen-
sion of the Hilbert space that can be encoded in a physical
region known as the Bousso bound [6]; the log of this maxi-
mal dimension is proportional to the surface area of the region.
When one attempts to surpass this limit, a black hole forms,
with entropy proportional to the area of its event horizon.

This feature of bulk quantum gravity can be captured by
holographic codes, rather crudely, if we allow punctures in
the bulk. A subsystem of the code space HC resides along
the edge of each such puncture, and the holographic tensor
network provides an isometric embedding of this logical sub-
system in the physical Hilbert space H which resides on the
exterior boundary of the bulk geometry. This picture is crude
because in an actual gravitational theory a black hole in the
bulk would carry mass and modify the bulk curvature outside
the black hole. For our purposes this impact on the curvature
associated with a puncture will not be particularly relevant and
we will for the most part ignore it here.

In the continuum limit, we associate the holographic code
with a Riemannian bulk manifold B as in §III A, but now
the boundary @B is the union of two components: the exte-
rior (physical) boundary, denoted �, and the interior (logical)
boundary, denoted ⇤. The logical boundary is the union of the
boundaries of all punctures. For the physical region R ✓ �,
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by the bulk induced metric. Without intending to place re-
strictions on the dimension of B, from now on we will use the
term area when speaking about the size of a boundary region,
and save the term volume for describing the size of a bulk
region. In the continuum limit, we may still speak of n, d,
and p, but now taking real values; n becomes the total area of
the boundary, while d(A) is the area of the smallest boundary
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Thus, in a holographic code, the bound p(Ax) � d(Ax) in
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valid in the limit of large bond dimension. Taking a suitable
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tions to underlying smooth geometries.
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In quantum gravity, there is an upper limit on the dimen-
sion of the Hilbert space that can be encoded in a physical
region known as the Bousso bound [6]; the log of this maxi-
mal dimension is proportional to the surface area of the region.
When one attempts to surpass this limit, a black hole forms,
with entropy proportional to the area of its event horizon.

This feature of bulk quantum gravity can be captured by
holographic codes, rather crudely, if we allow punctures in
the bulk. A subsystem of the code space HC resides along
the edge of each such puncture, and the holographic tensor
network provides an isometric embedding of this logical sub-
system in the physical Hilbert space H which resides on the
exterior boundary of the bulk geometry. This picture is crude
because in an actual gravitational theory a black hole in the
bulk would carry mass and modify the bulk curvature outside
the black hole. For our purposes this impact on the curvature
associated with a puncture will not be particularly relevant and
we will for the most part ignore it here.
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with a Riemannian bulk manifold B as in §III A, but now
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] by
geometric complementarity, and therefore Ax can be recon-
structed on Rc. Because operators supported on R commute
with operators supported on Rc, it is not possible for Ax to
be reconstructed on both R and Rc if Ax is non-abelian. We
conclude that Ax can be reconstructed on R if and only if
x 2 E [R]. By the definition of price, then,

p(Ax) = min

R✓@B:x2E(R)

|R|, (44)

assuming Ax is non-abelian.
Geometric complementarity says that x 2 E [R] if and only

if x 62 E [Rc
]. Therefore by comparing eq.(43) and eq.(44),

we see that the expressions for the distance and the price are
identical. Thus we have shown:

Lemma 5 (price equals distance for a point). For a holo-
graphic code, let Ax be the non-abelian logical algebra as-
sociated with a bulk point x. Then

p(Ax) = d(Ax). (45)

Thus, in a holographic code, the bound p(Ax) � d(Ax) in
Lemma 4 is saturated by the logical subalgebra of a point. It
is intriguing that a geometrical point admits this simple alge-
braic characterization, suggesting how geometrical properties
might be ascribed to logical subalgebras in a broader setting.

We can extend this reasoning to a bulk region X which
contains a finite number of bulk points, continuing to assume
that the number of operator insertions is sufficiently small that
back reaction on the bulk geometry can be neglected, and that
the logical subalgebra factorizes as in eq.(42). In that case, a
boundary region R is correctable with respect to the algebra
AX if it is correctable with respect to Ax for each bulk point
x in X . Therefore,

d(AX) = min

x2X
d(Ax). (46)

Eq.(44) can also be extended to a bulk region X:

p(AX) := min

R✓@B:X✓E[R]

|R|, (47)

assuming that each nontrivial operator in AX fails to com-
mute with some other operator in AX . If all points of X are
contained in E [R], it follows that p(AX)  |R|.

We emphasize again that these properties apply not only to
AdS bulk geometry, but also to other quantum code construc-
tions satisfying geometric complementarity and the entangle-
ment wedge hypothesis. Such codes were constructed in [26]
for tensor networks associated with tilings of bulk geometries
having non-positive curvature. These results were extended to
arbitrary graph connectivity in [15], where a discrete general-
ization of the entanglement wedge hypothesis was found to be
valid in the limit of large bond dimension. Taking a suitable
limit, these codes can be viewed as regularized approxima-
tions to underlying smooth geometries.

B. Punctures in the bulk

In quantum gravity, there is an upper limit on the dimen-
sion of the Hilbert space that can be encoded in a physical
region known as the Bousso bound [6]; the log of this maxi-
mal dimension is proportional to the surface area of the region.
When one attempts to surpass this limit, a black hole forms,
with entropy proportional to the area of its event horizon.

This feature of bulk quantum gravity can be captured by
holographic codes, rather crudely, if we allow punctures in
the bulk. A subsystem of the code space HC resides along
the edge of each such puncture, and the holographic tensor
network provides an isometric embedding of this logical sub-
system in the physical Hilbert space H which resides on the
exterior boundary of the bulk geometry. This picture is crude
because in an actual gravitational theory a black hole in the
bulk would carry mass and modify the bulk curvature outside
the black hole. For our purposes this impact on the curvature
associated with a puncture will not be particularly relevant and
we will for the most part ignore it here.

In the continuum limit, we associate the holographic code
with a Riemannian bulk manifold B as in §III A, but now
the boundary @B is the union of two components: the exte-
rior (physical) boundary, denoted �, and the interior (logical)
boundary, denoted ⇤. The logical boundary is the union of the
boundaries of all punctures. For the physical region R ✓ �,

k(A
x

) = 0



�

�̃

⇤ = ⇤̃

B = E(�)

B̃ = E(�̃)

�̃

� \R � \R
R R

E [R]

E [R]

�̃

Physical and logical boundaries
@B = � t ⇤

|�| = n |⇤| = k

In 2D static geometry horizon (all or nothing). 
Otherwise, minimal surface partially follow puncture.
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such black holes approach one another, they must coalesce
into a larger black hole in order to enforce eq.(49). See figure
3.
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FIG. 3. This figure illustrates the necessary condition �⇤ = ⇤ for
the interior boundary of a Riemannian manifold B to be identified as
a logical system. In both panes, the physical Hilbert space H resides
on the exterior boundary � of B, and ⇤ is the boundary of the punc-
tures in the bulk, which are shaded in black. The green region is the
entanglement wedge E [�], bounded by � and the minimal surface
�� = �⇤ separating � from ⇤; the gray region is B \ E [�]. For
purposes of illustration we assume the bulk metric is Euclidean. On
the left, we have �⇤ = ⇤ and the interpretation of ⇤ as a logical
system is consistent. On the right, we have �⇤ 6= ⇤ and two possi-
ble reasons for this are illustrated. First, a connected component of
⇤ may fail to be convex. Second, the union ⇤1 of several connected
components of ⇤ may be encapsulated by a surface ⇤̃1 with smaller
area than ⇤1, in which case the logical system resides on ⇤̃1 rather
than ⇤1. The emergence of this new logical system is reminiscent of
the merging of small black holes to form a larger black hole.

For a holographic code with punctures, we may consider
the logical subalgebra associated with a bulk region X ✓ B,
where now X may contain a subregion of the logical boundary
⇤ as well as some additional bulk points outside ⇤, where
the number of such bulk points is sufficiently small for back
reaction on the bulk to be negligible. If X does intersect with
⇤, then nearly all the logical sites of X are contained in ⇤ and
the effective size of the logical system is

kX = |⇤ \ X|, (50)

the area of the portion of X contained in ⇤.
For bulk region X , we may consider a reference system

T which is maximally entangled with the logical subsystem
residing in X ✓ B. Then when we say that AX can be recon-
structed on boundary region R ✓ �, we mean that R contains
a subsystem which is maximally entangled with T . If we ap-
ply the entanglement wedge hypothesis to a manifold B with
a logical boundary, we can use the same reasoning as in §III A
to obtain a geometrical expression for the price of the logical
algebra:

p(AX) := min

R✓�:X✓E[R]

|R|, (51)

On the other hand, a boundary region R ✓ � will be cor-
rectable with respect to AX if AX is supported on the phys-
ical complement � \ R of R, and the expression for distance

becomes

d(AX) := min

R✓�:X 6✓E[�\R]

|R|. (52)

It is important to notice that the minimization in d(AX) is
over X not contained in the entanglement wedge of the phys-
ical complement, rather than the boundary complement, of R.
In particular, when X is a single point {x} in the bulk, the ex-
pressions for price and distance are not identical because the
entanglement wedges E [R] and E [� \ R] are not complemen-
tary regions of the bulk. Therefore Lemma 5 does not apply
to the case of a bulk manifold B with logical boundaries.

The geometrical interpretations for price and distance of
AX allow us to prove a version of the strong quantum Sin-
gleton bound that applies to subalgebras with nonvanishing
kX in the continuum limit. This will be explained in §VI.

IV. NEGATIVE CURVATURE AND UBERHOLOGRAPHY

Next we discuss a general property of holographic codes
defined on bulk manifolds with asymptotically uniform nega-
tive curvature, which we call uberholography. The essence of
uberholography is that both the distance and price of a logical
subalgebra scale sublinearly with the length n of the holo-
graphic code. In the formal continuum limit n ! 1, the
logical subalgebra can be supported on a fractal subset of the
boundary, with fractal dimension strictly less than the dimen-
sion of the boundary. This fractal dimension is a universal
feature of the code, in the sense that it does not depend on
which logical subalgebra we consider. Uberholography is in-
triguing, as it suggests that (D + 1)-dimensional bulk geom-
etry can emerge, not just from an underlying D-dimensional
system, but also from a system of even lower dimension.

Though uberholography applies more generally, to be con-
crete we consider the bulk to have a two-dimensional hyper-
bolic geometry with radius of curvature L. Now the boundary
is one-dimensional, and the minimal “surface” �R associated
with connected boundary region R is really a bulk geodesic,
whose “area” is actually the geodesic’s length. For our pur-
pose we need to know only one feature of the bulk geometry:
For an interval R on the boundary with length |R|, the length
of the bulk geodesic �R separating R from its boundary com-
plement is

|�R| = 2L log(|R|/a) (53)

Here a is a short-distance cutoff, which we may think of as
a lattice spacing for the boundary theory, so that |R|/a is the
number of boundary sites contained in R. Applying the Ryu-
Takayanagi formula, we conclude that the entanglement en-
tropy S(R) scales logarithmically with the size of R, which
is the expected result for the vacuum state of a CFT in one
spatial dimension.

For some bulk region X , we would like to compute the dis-
tance of the logical subalgebra AX associated with X . This
distance d(AX) is the size of the smallest boundary region R
which is not correctable with respect to X . Pick a point x in

|⇤| = |�⇤|

|�⇤| = |��|  |�|

Should be thought of as Bousso bound.
Bousso, R. (1999). A covariant entropy conjecture. JHEP, 1999(7), 004–004.
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Maldacena, J., & Susskind, L. (2013). Cool horizons for entangled black holes. 
Fortschritte Der Physik, 61(9), 781–811. 
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FIG. 4. This figure illustrates the two possible geometries for the
entanglement wedge E [R0] of a boundary region R0 = R1tR2 with
two connected components separated by the interval H . In the left
pane, the minimal surface is �R0 = �R

1

t�R
2

and the entanglement
wedge is E [R0] = E [R1]tE [R2]. In the right pane, the minimal sur-
face is �R0 = �R t�H , where R = R1HR2, and the entanglement
wedge is E [R0] = E [R] \ E [H].

X , and choose a connected boundary region R such that E [R]

contains x, but just barely — if we choose a slightly smaller
connected boundary region R0 ⇢ R, then E [R0

] will not con-
tain x. Since x 2 E(R), we know that R is not correctable
with respect to Ax, and therefore d(AX)  |R|. We could get
a tighter upper bound on d(AX) if we could find a smaller
boundary region R0 ⇢ R whose entanglement wedge still
contains x. There may be no such connected boundary region,
but can we find a disconnected R0 ⇢ R such that x 2 E [R0

]?
Let’s try punching a hole in R. That is, we divide R into

three consecutive disjoint intervals R
1

HR
2

, where

|R
1

| = |R
2

| =

⇣r

2

⌘
|R|, |H| = (1 � r)|R|, 0 < r < 1,

(54)

and then remove the middle (hole) interval H , leaving the dis-
connected region R0

= R
1

R
2

= R \ H . There are two pos-
sible ways to choose bulk geodesics which separate R0 from
its complement (illustrated in figure 4), either �R

1

t �R
2

or
�R t�H ; the minimal surface �R0 is the smaller of these two.
Thus if

|�R
1

| + |�R
2

| > |�R| + |�H |, (55)

we’ll have

E [R0
] = E [R] \ E [H]; (56)

removing H from R has the effect of removing E [H] from
E [R]. Therefore E [R0

] still contains x, and hence d(AX) 
|R0|.

If we choose H as large as possible, while respecting
eq.(55), then eq.(53) implies

|R
1

| · |R
2

| = |R| · |H| =) r2/4 = (1 � r), (57)

which is satisfied by

r/2 =

p
2 � 1. (58)

Each connected component of R0 is smaller than R by this
factor.

Now we repeat this construction recursively. In each round
of the procedure we start with a disconnected region ˜R such

that E [

˜R] contains x, where ˜R is the union of many connected
components of equal size. Then we punch a hole out of each
connected component to obtain a new region ˜R0 such that
E [

˜R0
] still contains x. Punching the holes increases the num-

ber of connected components by a factor of 2, and reduces the
size of each component by the factor r/2.

The procedure halts when the connected components are
reduced in size to the lattice spacing a, which occurs after m
rounds, where

a = (r/2)

m|R|. (59)

. The remaining region R
min

has 2

m components, each con-
taining one lattice site. so that

d(AX)  |R
min

|/a = 2

m
= (|R|/a)

↵, (60)

where

↵ =

log 2

log(2/r)
=

1

log

2

(

p
2 + 1)

⇡ .786. (61)

The initial interval R is surely no larger than the whole bound-
ary, so the distance is bounded above by n↵ for any logi-
cal subalgebra, where d and n are expressed as a number of
boundary sites (rather than length along the boundary).

We can also consider codes with punctures in the bulk. To
be specific, suppose B is a hyperbolic disk of proper radius
r
out

, with a single puncture at the center of radius r
in

. The
code length n is proportional to the circumference of the outer
boundary, and the size k of the logical system is proportional
to the circumference of the inner boundary. Because the cir-
cumference of a circle with radius r is 2⇡Ler/L, the rate of
the code is

k/n = e(r
in

�r
out

)/L. (62)

We may choose an interval R on the boundary, such that �R

is tangent to the inner boundary at a single point. The length
of this geodesic is essentially twice the difference between the
inner and outer boundaries, so that eq.(53) implies

r
out

� r
in

= L log(|R|/a) (63)

Using the recursive construction to repeatedly carve holes out
of R, we obtain the bound eq.(60) on the code distance, which
becomes

d  (|R|/a)

↵
=

⇣
e(r

out

�r
in

)/L
⌘↵

= (n/k)

↵ (64)

(with the code distance expressed as a number of boundary
sites). This scaling of the code distance, with ↵ ⇡ .786, com-
pares favorably with the bound [8] on local commuting pro-
jector codes defined on a two-dimensional Euclidean lattice,
for which ↵ = 1/2.

The scaling p(AX) ⇠ n↵ applies to price as well as dis-
tance. Once we have found a sufficiently large boundary re-
gion R such that E [R] contains the bulk region X , we can
proceed to hollow out R recursively until we reach the much
smaller region R

min

such that |R
min

|/a = (|R|/a)

↵ where
E [R

min

] still contains X , and hence AX is supported on R
min

.
The resulting region R

min

, with fractal dimension ↵, has a ge-
ometry reminiscent of the Cantor set, as illustrated in figure 5.
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such black holes approach one another, they must coalesce
into a larger black hole in order to enforce eq.(49). See figure
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FIG. 3. This figure illustrates the necessary condition �⇤ = ⇤ for
the interior boundary of a Riemannian manifold B to be identified as
a logical system. In both panes, the physical Hilbert space H resides
on the exterior boundary � of B, and ⇤ is the boundary of the punc-
tures in the bulk, which are shaded in black. The green region is the
entanglement wedge E [�], bounded by � and the minimal surface
�� = �⇤ separating � from ⇤; the gray region is B \ E [�]. For
purposes of illustration we assume the bulk metric is Euclidean. On
the left, we have �⇤ = ⇤ and the interpretation of ⇤ as a logical
system is consistent. On the right, we have �⇤ 6= ⇤ and two possi-
ble reasons for this are illustrated. First, a connected component of
⇤ may fail to be convex. Second, the union ⇤1 of several connected
components of ⇤ may be encapsulated by a surface ⇤̃1 with smaller
area than ⇤1, in which case the logical system resides on ⇤̃1 rather
than ⇤1. The emergence of this new logical system is reminiscent of
the merging of small black holes to form a larger black hole.

For a holographic code with punctures, we may consider
the logical subalgebra associated with a bulk region X ✓ B,
where now X may contain a subregion of the logical boundary
⇤ as well as some additional bulk points outside ⇤, where
the number of such bulk points is sufficiently small for back
reaction on the bulk to be negligible. If X does intersect with
⇤, then nearly all the logical sites of X are contained in ⇤ and
the effective size of the logical system is

kX = |⇤ \ X|, (50)

the area of the portion of X contained in ⇤.
For bulk region X , we may consider a reference system

T which is maximally entangled with the logical subsystem
residing in X ✓ B. Then when we say that AX can be recon-
structed on boundary region R ✓ �, we mean that R contains
a subsystem which is maximally entangled with T . If we ap-
ply the entanglement wedge hypothesis to a manifold B with
a logical boundary, we can use the same reasoning as in §III A
to obtain a geometrical expression for the price of the logical
algebra:

p(AX) := min

R✓�:X✓E[R]

|R|, (51)

On the other hand, a boundary region R ✓ � will be cor-
rectable with respect to AX if AX is supported on the phys-
ical complement � \ R of R, and the expression for distance

becomes

d(AX) := min

R✓�:X 6✓E[�\R]

|R|. (52)

It is important to notice that the minimization in d(AX) is
over X not contained in the entanglement wedge of the phys-
ical complement, rather than the boundary complement, of R.
In particular, when X is a single point {x} in the bulk, the ex-
pressions for price and distance are not identical because the
entanglement wedges E [R] and E [� \ R] are not complemen-
tary regions of the bulk. Therefore Lemma 5 does not apply
to the case of a bulk manifold B with logical boundaries.

The geometrical interpretations for price and distance of
AX allow us to prove a version of the strong quantum Sin-
gleton bound that applies to subalgebras with nonvanishing
kX in the continuum limit. This will be explained in §VI.

IV. NEGATIVE CURVATURE AND UBERHOLOGRAPHY

Next we discuss a general property of holographic codes
defined on bulk manifolds with asymptotically uniform nega-
tive curvature, which we call uberholography. The essence of
uberholography is that both the distance and price of a logical
subalgebra scale sublinearly with the length n of the holo-
graphic code. In the formal continuum limit n ! 1, the
logical subalgebra can be supported on a fractal subset of the
boundary, with fractal dimension strictly less than the dimen-
sion of the boundary. This fractal dimension is a universal
feature of the code, in the sense that it does not depend on
which logical subalgebra we consider. Uberholography is in-
triguing, as it suggests that (D + 1)-dimensional bulk geom-
etry can emerge, not just from an underlying D-dimensional
system, but also from a system of even lower dimension.

Though uberholography applies more generally, to be con-
crete we consider the bulk to have a two-dimensional hyper-
bolic geometry with radius of curvature L. Now the boundary
is one-dimensional, and the minimal “surface” �R associated
with connected boundary region R is really a bulk geodesic,
whose “area” is actually the geodesic’s length. For our pur-
pose we need to know only one feature of the bulk geometry:
For an interval R on the boundary with length |R|, the length
of the bulk geodesic �R separating R from its boundary com-
plement is

|�R| = 2L log(|R|/a) (53)

Here a is a short-distance cutoff, which we may think of as
a lattice spacing for the boundary theory, so that |R|/a is the
number of boundary sites contained in R. Applying the Ryu-
Takayanagi formula, we conclude that the entanglement en-
tropy S(R) scales logarithmically with the size of R, which
is the expected result for the vacuum state of a CFT in one
spatial dimension.

For some bulk region X , we would like to compute the dis-
tance of the logical subalgebra AX associated with X . This
distance d(AX) is the size of the smallest boundary region R
which is not correctable with respect to X . Pick a point x in
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FIG. 4. This figure illustrates the two possible geometries for the
entanglement wedge E [R0] of a boundary region R0 = R1tR2 with
two connected components separated by the interval H . In the left
pane, the minimal surface is �R0 = �R

1

t�R
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and the entanglement
wedge is E [R0] = E [R1]tE [R2]. In the right pane, the minimal sur-
face is �R0 = �R t�H , where R = R1HR2, and the entanglement
wedge is E [R0] = E [R] \ E [H].

X , and choose a connected boundary region R such that E [R]

contains x, but just barely — if we choose a slightly smaller
connected boundary region R0 ⇢ R, then E [R0

] will not con-
tain x. Since x 2 E(R), we know that R is not correctable
with respect to Ax, and therefore d(AX)  |R|. We could get
a tighter upper bound on d(AX) if we could find a smaller
boundary region R0 ⇢ R whose entanglement wedge still
contains x. There may be no such connected boundary region,
but can we find a disconnected R0 ⇢ R such that x 2 E [R0

]?
Let’s try punching a hole in R. That is, we divide R into

three consecutive disjoint intervals R
1

HR
2

, where

|R
1

| = |R
2

| =

⇣r

2

⌘
|R|, |H| = (1 � r)|R|, 0 < r < 1,

(54)

and then remove the middle (hole) interval H , leaving the dis-
connected region R0

= R
1

R
2

= R \ H . There are two pos-
sible ways to choose bulk geodesics which separate R0 from
its complement (illustrated in figure 4), either �R

1

t �R
2

or
�R t�H ; the minimal surface �R0 is the smaller of these two.
Thus if

|�R
1

| + |�R
2

| > |�R| + |�H |, (55)

we’ll have

E [R0
] = E [R] \ E [H]; (56)

removing H from R has the effect of removing E [H] from
E [R]. Therefore E [R0

] still contains x, and hence d(AX) 
|R0|.

If we choose H as large as possible, while respecting
eq.(55), then eq.(53) implies

|R
1

| · |R
2

| = |R| · |H| =) r2/4 = (1 � r), (57)

which is satisfied by

r/2 =

p
2 � 1. (58)

Each connected component of R0 is smaller than R by this
factor.

Now we repeat this construction recursively. In each round
of the procedure we start with a disconnected region ˜R such

that E [

˜R] contains x, where ˜R is the union of many connected
components of equal size. Then we punch a hole out of each
connected component to obtain a new region ˜R0 such that
E [

˜R0
] still contains x. Punching the holes increases the num-

ber of connected components by a factor of 2, and reduces the
size of each component by the factor r/2.

The procedure halts when the connected components are
reduced in size to the lattice spacing a, which occurs after m
rounds, where

a = (r/2)

m|R|. (59)

. The remaining region R
min

has 2

m components, each con-
taining one lattice site. so that

d(AX)  |R
min

|/a = 2

m
= (|R|/a)

↵, (60)

where

↵ =

log 2

log(2/r)
=

1

log

2

(

p
2 + 1)

⇡ .786. (61)

The initial interval R is surely no larger than the whole bound-
ary, so the distance is bounded above by n↵ for any logi-
cal subalgebra, where d and n are expressed as a number of
boundary sites (rather than length along the boundary).

We can also consider codes with punctures in the bulk. To
be specific, suppose B is a hyperbolic disk of proper radius
r
out

, with a single puncture at the center of radius r
in

. The
code length n is proportional to the circumference of the outer
boundary, and the size k of the logical system is proportional
to the circumference of the inner boundary. Because the cir-
cumference of a circle with radius r is 2⇡Ler/L, the rate of
the code is

k/n = e(r
in

�r
out

)/L. (62)

We may choose an interval R on the boundary, such that �R

is tangent to the inner boundary at a single point. The length
of this geodesic is essentially twice the difference between the
inner and outer boundaries, so that eq.(53) implies

r
out

� r
in

= L log(|R|/a) (63)

Using the recursive construction to repeatedly carve holes out
of R, we obtain the bound eq.(60) on the code distance, which
becomes

d  (|R|/a)

↵
=

⇣
e(r

out

�r
in

)/L
⌘↵

= (n/k)

↵ (64)

(with the code distance expressed as a number of boundary
sites). This scaling of the code distance, with ↵ ⇡ .786, com-
pares favorably with the bound [8] on local commuting pro-
jector codes defined on a two-dimensional Euclidean lattice,
for which ↵ = 1/2.

The scaling p(AX) ⇠ n↵ applies to price as well as dis-
tance. Once we have found a sufficiently large boundary re-
gion R such that E [R] contains the bulk region X , we can
proceed to hollow out R recursively until we reach the much
smaller region R

min

such that |R
min

|/a = (|R|/a)

↵ where
E [R

min

] still contains X , and hence AX is supported on R
min

.
The resulting region R

min

, with fractal dimension ↵, has a ge-
ometry reminiscent of the Cantor set, as illustrated in figure 5.

In negatively curved space:

r =
p
8� 2 ⇡ 0.8284Equality at:
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Uberholography 
(recursive hole punching)

in negatively curved space
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FIG. 4. This figure illustrates the two possible geometries for the
entanglement wedge E [R0] of a boundary region R0 = R1tR2 with
two connected components separated by the interval H . In the left
pane, the minimal surface is �R0 = �R

1

t�R
2

and the entanglement
wedge is E [R0] = E [R1]tE [R2]. In the right pane, the minimal sur-
face is �R0 = �R t�H , where R = R1HR2, and the entanglement
wedge is E [R0] = E [R] \ E [H].

X , and choose a connected boundary region R such that E [R]

contains x, but just barely — if we choose a slightly smaller
connected boundary region R0 ⇢ R, then E [R0

] will not con-
tain x. Since x 2 E(R), we know that R is not correctable
with respect to Ax, and therefore d(AX)  |R|. We could get
a tighter upper bound on d(AX) if we could find a smaller
boundary region R0 ⇢ R whose entanglement wedge still
contains x. There may be no such connected boundary region,
but can we find a disconnected R0 ⇢ R such that x 2 E [R0

]?
Let’s try punching a hole in R. That is, we divide R into

three consecutive disjoint intervals R
1

HR
2

, where

|R
1

| = |R
2

| =

⇣r

2

⌘
|R|, |H| = (1 � r)|R|, 0 < r < 1,

(54)

and then remove the middle (hole) interval H , leaving the dis-
connected region R0

= R
1

R
2

= R \ H . There are two pos-
sible ways to choose bulk geodesics which separate R0 from
its complement (illustrated in figure 4), either �R

1

t �R
2

or
�R t�H ; the minimal surface �R0 is the smaller of these two.
Thus if

|�R
1

| + |�R
2

| > |�R| + |�H |, (55)

we’ll have

E [R0
] = E [R] \ E [H]; (56)

removing H from R has the effect of removing E [H] from
E [R]. Therefore E [R0

] still contains x, and hence d(AX) 
|R0|.

If we choose H as large as possible, while respecting
eq.(55), then eq.(53) implies

|R
1

| · |R
2

| = |R| · |H| =) r2/4 = (1 � r), (57)

which is satisfied by

r/2 =

p
2 � 1. (58)

Each connected component of R0 is smaller than R by this
factor.

Now we repeat this construction recursively. In each round
of the procedure we start with a disconnected region ˜R such

that E [

˜R] contains x, where ˜R is the union of many connected
components of equal size. Then we punch a hole out of each
connected component to obtain a new region ˜R0 such that
E [

˜R0
] still contains x. Punching the holes increases the num-

ber of connected components by a factor of 2, and reduces the
size of each component by the factor r/2.

The procedure halts when the connected components are
reduced in size to the lattice spacing a, which occurs after m
rounds, where

a = (r/2)

m|R|. (59)

. The remaining region R
min

has 2

m components, each con-
taining one lattice site. so that

d(AX)  |R
min

|/a = 2

m
= (|R|/a)

↵, (60)

where

↵ =

log 2

log(2/r)
=

1

log

2

(

p
2 + 1)

⇡ .786. (61)

The initial interval R is surely no larger than the whole bound-
ary, so the distance is bounded above by n↵ for any logi-
cal subalgebra, where d and n are expressed as a number of
boundary sites (rather than length along the boundary).

We can also consider codes with punctures in the bulk. To
be specific, suppose B is a hyperbolic disk of proper radius
r
out

, with a single puncture at the center of radius r
in

. The
code length n is proportional to the circumference of the outer
boundary, and the size k of the logical system is proportional
to the circumference of the inner boundary. Because the cir-
cumference of a circle with radius r is 2⇡Ler/L, the rate of
the code is

k/n = e(r
in

�r
out

)/L. (62)

We may choose an interval R on the boundary, such that �R

is tangent to the inner boundary at a single point. The length
of this geodesic is essentially twice the difference between the
inner and outer boundaries, so that eq.(53) implies

r
out

� r
in

= L log(|R|/a) (63)

Using the recursive construction to repeatedly carve holes out
of R, we obtain the bound eq.(60) on the code distance, which
becomes

d  (|R|/a)

↵
=

⇣
e(r

out

�r
in

)/L
⌘↵

= (n/k)

↵ (64)

(with the code distance expressed as a number of boundary
sites). This scaling of the code distance, with ↵ ⇡ .786, com-
pares favorably with the bound [8] on local commuting pro-
jector codes defined on a two-dimensional Euclidean lattice,
for which ↵ = 1/2.

The scaling p(AX) ⇠ n↵ applies to price as well as dis-
tance. Once we have found a sufficiently large boundary re-
gion R such that E [R] contains the bulk region X , we can
proceed to hollow out R recursively until we reach the much
smaller region R

min

such that |R
min

|/a = (|R|/a)

↵ where
E [R

min

] still contains X , and hence AX is supported on R
min

.
The resulting region R

min

, with fractal dimension ↵, has a ge-
ometry reminiscent of the Cantor set, as illustrated in figure 5.
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FIG. 5. This figure illustrates uberholography for the case of a two-
dimensional hyperbolic bulk geometry. The inner logical boundary is
contained inside the entanglement wedge, shaded in blue, of a bound-
ary region R. By repeatedly punching holes of decreasing size out of
this boundary region, we obtain a much smaller region Rmin whose
entanglement wedge still contains the logical boundary. Thus the
logical algebra is supported on a fractal boundary set, whose geome-
try is reminiscent of the Cantor set.

V. QUANTUM MARKOV CONDITION AND LOCAL
CORRECTABILITY

For a holographic code, consider (as in §IV) a connected
region R = R

1

HR
2

which is the disjoint union of three ad-
joining intervals. Imagine that the middle interval H is erased.
If H is correctable, there is a recovery map R which corrects
this erasure error. But now we ask whether a stronger condi-
tion is satisfied: Is it possible to choose a recovery map taking
R0

= R
1

R
2

to R, so that RR0!R0H “fills in” the erased hole
H? If the erasure of H can be corrected by a map which acts
only on a somewhat larger region containing H (larger by a
constant factor independent of system size), then we say that
erasure is locally correctable.

The quantum Markov condition provides a criterion for lo-
cal correctability [14]. We say that the state ⇢ABC of three
disjoint regions A, B, C obeys the quantum Markov condi-
tion (also called quantum conditional independence) if

0 = I(A; C|B) = S(AB) + S(BC) � S(ABC) � S(B),
(65)

which is equivalent to saying that the strong subadditivity in-
equality is saturated (satisfied as an equality). If the Markov
condition is satisfied, then ⇢ABC can be reconstructed from
the marginal state ⇢AB using a map RB!BC which maps
B ! BC:

RB!BC
: ⇢AB 7! ⇢ABC , (66)

known as Petz recovery map [27]. See Ref. [13] for a con-
struction of a map which is robust to condition (65) holding

only approximately. Likewise, in view of the symmetry of the
condition under interchange of A and C, ⇢ABC can be recon-
structed from ⇢BC by a map from B to AB.

In fact, eq.(65) implies that B has a decomposition as a
direct sum of tensor products of Hilbert spaces

HB =

M
j

HBj =

M
j

HBL
j

⌦ HBR
j
, (67)

and that the state of ABC has the block diagonal form

⇢ABC =

M
j

pj ⇢ABL
j

⌦ ⇢BR
j C . (68)

Evidently, we can recover ⇢ABC from ⇢AB by replacing each
⇢BR

j
by ⇢BR

j C , without touching the system A.
To apply the Markov condition to our holographic setting,

consider a holographic code with no punctures, where the
state of the physical boundary is pure. We choose A, B, C to
be three disjoint regions whose union is the complete bound-
ary, namely

A = Rc, B = R0, C = H, (69)

where Rc denotes the boundary region complementary to
R. Because the state of the complete boundary is pure,
S(ABC) = 0 and S(H) = S(Hc

); therefore the condition
eq.(65) becomes

S(AB) + S(BC) = S(B) () S(H) + S(R) = S(R0
).

(70)

When this condition is satisfied, R0 can be divided into two
subsystems, where one purifies the state of H and the other
purifies the state of Rc. To correct the erasure of H we need
only restore the entanglement between R0 and H , and for this
purpose there is no need to venture outside R.

A. Hyperbolic bulk

Using the Ryu-Takayanagi formula, this statement eq.(70)
about entropy would follow from a statement about minimal
surfaces:

�R0
= �H t �R, (71)

which is the same as the condition (discussed in §IV) for the
entanglement wedge E ]R0

] to be E [R] \ E [H]. For the case
where the bulk is a hyperbolic disk, then, the calculation in
§IV shows that erasure of H can be corrected by a recovery
map which acts on region R containing H , where |R|/|H| =

(1�r)�1

= 3+2

p
2 ⇡ 5.828. Thus the erasure error is locally

correctable. This local correctability is a general feature of
holographic codes with asymptotically uniform negative bulk
curvature.

We may also consider the case of a manifold with punc-
tures, where the logical boundary ⇤ is maximally entangled

Markov condition: Conditional mutual information =0
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FIG. 5. This figure illustrates uberholography for the case of a two-
dimensional hyperbolic bulk geometry. The inner logical boundary is
contained inside the entanglement wedge, shaded in blue, of a bound-
ary region R. By repeatedly punching holes of decreasing size out of
this boundary region, we obtain a much smaller region Rmin whose
entanglement wedge still contains the logical boundary. Thus the
logical algebra is supported on a fractal boundary set, whose geome-
try is reminiscent of the Cantor set.

V. QUANTUM MARKOV CONDITION AND LOCAL
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For a holographic code, consider (as in §IV) a connected
region R = R
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which is the disjoint union of three ad-
joining intervals. Imagine that the middle interval H is erased.
If H is correctable, there is a recovery map R which corrects
this erasure error. But now we ask whether a stronger condi-
tion is satisfied: Is it possible to choose a recovery map taking
R0

= R
1

R
2

to R, so that RR0!R0H “fills in” the erased hole
H? If the erasure of H can be corrected by a map which acts
only on a somewhat larger region containing H (larger by a
constant factor independent of system size), then we say that
erasure is locally correctable.

The quantum Markov condition provides a criterion for lo-
cal correctability [14]. We say that the state ⇢ABC of three
disjoint regions A, B, C obeys the quantum Markov condi-
tion (also called quantum conditional independence) if

0 = I(A; C|B) = S(AB) + S(BC) � S(ABC) � S(B),
(65)

which is equivalent to saying that the strong subadditivity in-
equality is saturated (satisfied as an equality). If the Markov
condition is satisfied, then ⇢ABC can be reconstructed from
the marginal state ⇢AB using a map RB!BC which maps
B ! BC:

RB!BC
: ⇢AB 7! ⇢ABC , (66)

known as Petz recovery map [27]. See Ref. [13] for a con-
struction of a map which is robust to condition (65) holding

only approximately. Likewise, in view of the symmetry of the
condition under interchange of A and C, ⇢ABC can be recon-
structed from ⇢BC by a map from B to AB.

In fact, eq.(65) implies that B has a decomposition as a
direct sum of tensor products of Hilbert spaces

HB =

M
j

HBj =

M
j

HBL
j

⌦ HBR
j
, (67)

and that the state of ABC has the block diagonal form

⇢ABC =

M
j

pj ⇢ABL
j

⌦ ⇢BR
j C . (68)

Evidently, we can recover ⇢ABC from ⇢AB by replacing each
⇢BR

j
by ⇢BR

j C , without touching the system A.
To apply the Markov condition to our holographic setting,

consider a holographic code with no punctures, where the
state of the physical boundary is pure. We choose A, B, C to
be three disjoint regions whose union is the complete bound-
ary, namely

A = Rc, B = R0, C = H, (69)

where Rc denotes the boundary region complementary to
R. Because the state of the complete boundary is pure,
S(ABC) = 0 and S(H) = S(Hc

); therefore the condition
eq.(65) becomes

S(AB) + S(BC) = S(B) () S(H) + S(R) = S(R0
).

(70)

When this condition is satisfied, R0 can be divided into two
subsystems, where one purifies the state of H and the other
purifies the state of Rc. To correct the erasure of H we need
only restore the entanglement between R0 and H , and for this
purpose there is no need to venture outside R.

A. Hyperbolic bulk

Using the Ryu-Takayanagi formula, this statement eq.(70)
about entropy would follow from a statement about minimal
surfaces:

�R0
= �H t �R, (71)

which is the same as the condition (discussed in §IV) for the
entanglement wedge E ]R0

] to be E [R] \ E [H]. For the case
where the bulk is a hyperbolic disk, then, the calculation in
§IV shows that erasure of H can be corrected by a recovery
map which acts on region R containing H , where |R|/|H| =

(1�r)�1

= 3+2

p
2 ⇡ 5.828. Thus the erasure error is locally

correctable. This local correctability is a general feature of
holographic codes with asymptotically uniform negative bulk
curvature.

We may also consider the case of a manifold with punc-
tures, where the logical boundary ⇤ is maximally entangled

Existence of local Petz recovery map.
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Petz, D. (1988). Sufficiency of channels over Von Neumann algebras. The 
Quarterly Journal of Mathematics, 39(1), 97–108.

Ryu-Takayanagi: S(B) = S(BC) + S(C)
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S(B) = S(BC) + S(C)

I(A : C) = S(A) + S(C)� S(AC) = 0

if and only if
Mutual information

2

where |�i is any maximally entangled state such as |�i =PD
j=1 D�1/2|jiHA |jiHC , where |jiHC is an orthonormal

basis spanning the code subspace HC and |jiHA are or-
thonormal states in a purifying ancillary Hilbert space HA.
The following simple relation between average fidelity ¯F
and entanglement fidelity Fe of a channel E was proven in
Ref. [14] (see also Ref. [15])

¯F (E) = DFe(E) + 1

D + 1

. (4)

The RHS of eq. (4) can be further simplified to ¯F (E) =

Fe(E) + (1 � Fe(E))/(D + 1) where it becomes explicit
that for large Hilbert space dimension D = |C|, the av-
erage fidelity and the entanglement fidelity are essentially
equivalent.

The entanglement fidelity proposed by Schumacher [16]
is also defined in the weighted setting we have in mind, and
is given by

Fe(⇢, E) := F (id ⌦ E , |�i), (5)

where |�i is now an arbitrary purification of ⇢. In the set-
ting where ⇢ is a thermal state of a Hamiltonian with ener-
gies Ej , the thermofield double state [17]

| �TFDi := 1pZ
X
j

e��Ej/2 | ji | ji (6)

with Z :=

P
j e��Ej , provides an explicit standard choice

for such a purification. Note however, that an arbitrary pu-
rification, which may be obtained by applying any unitary
transformation on HA will lead to an equivalent definition.

We will say that the measure µ( ) provides a resolution
of ⇢ into an ensemble of pure states if Note that the reso-
lution µ can, but certainly does not have to be the eigen-
decomposition of ⇢, see for example Ref. [18].

⇢ =

Z
 

| ih |µ( )d . (7)

In fact, Schumacher proved that the average fidelity ¯F with
respect to a resolution µ( ) of ⇢ is lower bounded by the
entanglement fidelity Fe. Namely,

Fe(⇢, E)  ¯F (µ, E), (8)

where

¯F (µ, E) :=
Z
 

µ( )h |E(| ih |)| id , (9)

is defined with respect to any resolution µ( ) of ⇢. This is
quite a fortunate result, since there is no canonical gener-
alization of the Haar measure for density matrices ⇢ with
non-flat spectrum. On the other hand, the entanglement
fidelity is well defined and independent of the choice of
purification.

We have argued that it is sufficient to focus on the entan-
glement fidelity Fe(⇢, E) of a density matrix ⇢ in order to
provide a lower bound on the average fidelity for any en-
semble µ of states generating the statistics of ⇢. However,
we have not yet specified how to provide a good choice of
recovery map R given a noise map N such that E := R�N
realizes a high entanglement fidelity; an issue which will
now dealt with.

Markov condition and recovery. If we know on which
subsystem C, the noise channel N acts non-trivially on,
it is possible to invoke a powerful general prescription
[19, 20] defining a recovery map R. Given a Hilbert space
which factorizes as HA ⌦ HB ⌦ HC , if N is restricted
to act on a subsystem C, then there exists a recovery map
RB!BC such that

I(A : C|B) � �2 logF (⇢ABC , idA ⌦ RB!BC⇢AB),
(10)

where I(A : C|B) := SAB + SBC � SABC � SB is
the conditional mutual information of A : C conditioned
on B. The constructed recovery map RB!BC will act
exclusively on BC attempting to reconstruct C from B.
Intuitively, the recovery map assumes the worst possible
scenario for subsystem C and ignore its content altogether
(i.e. RB!BC = RB!BC � Nc). Equivalently, eq. (10)
states

exp[�I(A : C|B)]  F (⇢ABC , idA ⌦ RB!BC⇢AB)
2.

(11)

In particular, for I(A : C|B) ⌧ 1, we can linearize the
exponential and obtain

1 � I(A : C|B)  F (⇢ABC , idA ⌦ RB!BC⇢AB)
2.
(12)

We are interested in the situation where ⇢ABC :=

| ABCih ABC | is a pure state. In fact, we in this work
we focus on global recovery, so the physical Hilbert space
is H = HB ⌦ HC and we interpret HA as an ancilla space
purifying ⇢BC . We then have

F [⇢ABC , idA ⌦ RB!BC(⇢AB)]
2 (13)

=h ABC |idA ⌦ RB!BC⇢AB | ABCi.

Note that, while the general definition of RB!BC de-
pend on the full state ⇢ABC , given ⇢BC the prescription
yields the same map for any possible purification on A. We
may then recognize eq. (13) as the entanglement fidelity:

F (⇢ABC , idA ⌦ RB!BC⇢AB)
2
= Fe(⇢BC , E), (14)

where E := RB!BC �N . For pure ⇢ABC , the conditional
mutual information simplifies to

I(A : C|B) = SC + SBC � SB , (15)

Caveat: The recovery map depends on the state on ABC
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Quantum source-channel codes
• Think of mixed state as distribution over (pure) states.
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where |�i is any maximally entangled state such as |�i =PD
j=1 D�1/2|jiHA |jiHC , where |jiHC is an orthonormal

basis spanning the code subspace HC and |jiHA are or-
thonormal states in a purifying ancillary Hilbert space HA.
The following simple relation between average fidelity ¯F
and entanglement fidelity Fe of a channel E was proven in
Ref. [14] (see also Ref. [15])

¯F (E) = DFe(E) + 1

D + 1

. (4)

The RHS of eq. (4) can be further simplified to ¯F (E) =

Fe(E) + (1 � Fe(E))/(D + 1) where it becomes explicit
that for large Hilbert space dimension D = |C|, the av-
erage fidelity and the entanglement fidelity are essentially
equivalent.

The entanglement fidelity proposed by Schumacher [16]
is also defined in the weighted setting we have in mind, and
is given by

Fe(⇢, E) := F (id ⌦ E , |�i), (5)

where |�i is now an arbitrary purification of ⇢. In the set-
ting where ⇢ is a thermal state of a Hamiltonian with ener-
gies Ej , the thermofield double state [17]

| �TFDi := 1pZ
X
j

e��Ej/2 | ji | ji (6)

with Z :=

P
j e��Ej , provides an explicit standard choice

for such a purification. Note however, that an arbitrary pu-
rification, which may be obtained by applying any unitary
transformation on HA will lead to an equivalent definition.

We will say that the measure µ( ) provides a resolution
of ⇢ into an ensemble of pure states if Note that the reso-
lution µ can, but certainly does not have to be the eigen-
decomposition of ⇢, see for example Ref. [18].

⇢ =

Z
 

| ih |µ( )d . (7)

In fact, Schumacher proved that the average fidelity ¯F with
respect to a resolution µ( ) of ⇢ is lower bounded by the
entanglement fidelity Fe. Namely,

Fe(⇢, E)  ¯F (µ, E), (8)

where

¯F (µ, E) :=
Z
 

µ( )h |E(| ih |)| id , (9)

is defined with respect to any resolution µ( ) of ⇢. This is
quite a fortunate result, since there is no canonical gener-
alization of the Haar measure for density matrices ⇢ with
non-flat spectrum. On the other hand, the entanglement
fidelity is well defined and independent of the choice of
purification.

We have argued that it is sufficient to focus on the entan-
glement fidelity Fe(⇢, E) of a density matrix ⇢ in order to
provide a lower bound on the average fidelity for any en-
semble µ of states generating the statistics of ⇢. However,
we have not yet specified how to provide a good choice of
recovery map R given a noise map N such that E := R�N
realizes a high entanglement fidelity; an issue which will
now dealt with.

Markov condition and recovery. If we know on which
subsystem C, the noise channel N acts non-trivially on,
it is possible to invoke a powerful general prescription
[19, 20] defining a recovery map R. Given a Hilbert space
which factorizes as HA ⌦ HB ⌦ HC , if N is restricted
to act on a subsystem C, then there exists a recovery map
RB!BC such that

I(A : C|B) � �2 logF (⇢ABC , idA ⌦ RB!BC⇢AB),
(10)

where I(A : C|B) := SAB + SBC � SABC � SB is
the conditional mutual information of A : C conditioned
on B. The constructed recovery map RB!BC will act
exclusively on BC attempting to reconstruct C from B.
Intuitively, the recovery map assumes the worst possible
scenario for subsystem C and ignore its content altogether
(i.e. RB!BC = RB!BC � Nc). Equivalently, eq. (10)
states

exp[�I(A : C|B)]  F (⇢ABC , idA ⌦ RB!BC⇢AB)
2.

(11)

In particular, for I(A : C|B) ⌧ 1, we can linearize the
exponential and obtain

1 � I(A : C|B)  F (⇢ABC , idA ⌦ RB!BC⇢AB)
2.
(12)

We are interested in the situation where ⇢ABC :=

| ABCih ABC | is a pure state. In fact, we in this work
we focus on global recovery, so the physical Hilbert space
is H = HB ⌦ HC and we interpret HA as an ancilla space
purifying ⇢BC . We then have

F [⇢ABC , idA ⌦ RB!BC(⇢AB)]
2 (13)

=h ABC |idA ⌦ RB!BC⇢AB | ABCi.

Note that, while the general definition of RB!BC de-
pend on the full state ⇢ABC , given ⇢BC the prescription
yields the same map for any possible purification on A. We
may then recognize eq. (13) as the entanglement fidelity:

F (⇢ABC , idA ⌦ RB!BC⇢AB)
2
= Fe(⇢BC , E), (14)

where E := RB!BC �N . For pure ⇢ABC , the conditional
mutual information simplifies to

I(A : C|B) = SC + SBC � SB , (15)

2

where |�i is any maximally entangled state such as |�i =PD
j=1 D�1/2|jiHA |jiHC , where |jiHC is an orthonormal

basis spanning the code subspace HC and |jiHA are or-
thonormal states in a purifying ancillary Hilbert space HA.
The following simple relation between average fidelity ¯F
and entanglement fidelity Fe of a channel E was proven in
Ref. [14] (see also Ref. [15])

¯F (E) = DFe(E) + 1
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. (4)

The RHS of eq. (4) can be further simplified to ¯F (E) =

Fe(E) + (1 � Fe(E))/(D + 1) where it becomes explicit
that for large Hilbert space dimension D = |C|, the av-
erage fidelity and the entanglement fidelity are essentially
equivalent.

The entanglement fidelity proposed by Schumacher [16]
is also defined in the weighted setting we have in mind, and
is given by

Fe(⇢, E) := F (id ⌦ E , |�i), (5)

where |�i is now an arbitrary purification of ⇢. In the set-
ting where ⇢ is a thermal state of a Hamiltonian with ener-
gies Ej , the thermofield double state [17]

| �TFDi := 1pZ
X
j

e��Ej/2 | ji | ji (6)

with Z :=

P
j e��Ej , provides an explicit standard choice

for such a purification. Note however, that an arbitrary pu-
rification, which may be obtained by applying any unitary
transformation on HA will lead to an equivalent definition.
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We have argued that it is sufficient to focus on the entan-
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we have not yet specified how to provide a good choice of
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realizes a high entanglement fidelity; an issue which will
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Markov condition and recovery. If we know on which
subsystem C, the noise channel N acts non-trivially on,
it is possible to invoke a powerful general prescription
[19, 20] defining a recovery map R. Given a Hilbert space
which factorizes as HA ⌦ HB ⌦ HC , if N is restricted
to act on a subsystem C, then there exists a recovery map
RB!BC such that

I(A : C|B) � �2 logF (⇢ABC , idA ⌦ RB!BC⇢AB),
(10)

where I(A : C|B) := SAB + SBC � SABC � SB is
the conditional mutual information of A : C conditioned
on B. The constructed recovery map RB!BC will act
exclusively on BC attempting to reconstruct C from B.
Intuitively, the recovery map assumes the worst possible
scenario for subsystem C and ignore its content altogether
(i.e. RB!BC = RB!BC � Nc). Equivalently, eq. (10)
states
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(11)

In particular, for I(A : C|B) ⌧ 1, we can linearize the
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We are interested in the situation where ⇢ABC :=

| ABCih ABC | is a pure state. In fact, we in this work
we focus on global recovery, so the physical Hilbert space
is H = HB ⌦ HC and we interpret HA as an ancilla space
purifying ⇢BC . We then have

F [⇢ABC , idA ⌦ RB!BC(⇢AB)]
2 (13)

=h ABC |idA ⌦ RB!BC⇢AB | ABCi.

Note that, while the general definition of RB!BC de-
pend on the full state ⇢ABC , given ⇢BC the prescription
yields the same map for any possible purification on A. We
may then recognize eq. (13) as the entanglement fidelity:

F (⇢ABC , idA ⌦ RB!BC⇢AB)
2
= Fe(⇢BC , E), (14)

where E := RB!BC �N . For pure ⇢ABC , the conditional
mutual information simplifies to

I(A : C|B) = SC + SBC � SB , (15)
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where we have chosen to express it without terms involv-
ing the ancilla A. To summarize, given a state ⇢BC and a
noise map N acting on C, it is possible to set up a fixed re-
covery map R which recovers the state with at most ✏ error
in entanglement fidelity provided SC + SBC � SB  ✏.

Critical transverse field Ising . One of the motivations
for setting up the framework of quantum source-channel
coding is to understand the approximate error-correcting
properties of certain holographic theories. We will now ap-
ply our previous considerations to a concrete system. The
simplest spin Hamiltonian allowing for quantum criticality
is the transverse field Ising model on a ring

HTF =

nX
j=1

�J�x
j �x

j+1 � h�z
j , (16)

which is critical for J = h. This Hamiltonian commutes
with the parity operator P =

Nn
j=1 �z

j which is thus a
conserved quantity.

The Hamiltonian HTF may be solved exactly by map-
ping to Majorana fermions

w2k�1 = �x
k

k�1O
j=1

�z
j w2k = �y

k

k�1O
j=1

�z
j , (17)

satisfying the anti-commutation relations {wj , wk} =

2�j,k. Setting J = h, we may then write

HTF ⌘even J
2nX
j=1

iwjwj+1, (18)

where equivalence is obtained within the even parity sector
associated to projector Peven = (I+P )/2 in order to obtain
the necessary simplification of the Majorana term j = 2n.

We consider the thermal state at inverse temperature �,
restricted to the even parity sector

⇢BC = ⇢(�)
even :=

Pevene��HTF

tr [Pevene��HTF
]

. (19)

Since the original thermal state is block diagonal with re-
spect to P , we are simply normalizing the even block.

In contrast to the full thermal state which is a Gaussian
state, ⇢(�)

even is not, due to the parity projection. Since the
Markov quantity of eq. (15) is extremal for Gaussian states
[21], the above argument can still be applied, to a Gaus-
sian state !(�)

even with the same second moments of Majo-
rana operators as ⇢(�)

even. Indeed, extensive numerics using
this Gaussification shows a “trivial” 1/n scaling for the
Markov quantity with the system size n, even when scal-
ing � / n. This forces us to use exact diagonalization for
the numerical assessment which has a computational cost
scaling exponentially in n instead of polynomially.

We say that the 1/n scaling is trivial because it can be
achieved by simply recording a single copy of the logical

information locally on one physical site and doing so uni-
formly (coherently or not) over the n physical sites. The
loss of each site thus equates to losing a corresponding 1/n
fraction of the information in each mode.

Whereas in fermionic systems the parity (P identifying
a topological superselection sector) can not be changed
by a physical noise process, the erasure of a qubit does
not enforce this. The global parity projection restricting
to a fixed parity sector provides a simple way to com-
pensate for this shortcoming. Because the Hamiltonian
HTF has a linear dispersion relation, it will also be nec-
essary to scale �J / n (or equivalently the strength of
Hamiltonian terms) in order to maintain the global entropy
SBC = S(⇢(�)

even) roughly independent of the system size n.
Note that in the interpretation as quantum source-channel
codes, n, the entropy SBC and |C| respectively play the
roles of n, k and d in traditional [[n, k, d]] QECCs, where
to each d we may associate a guaranteed performance in
terms of average fidelity (or lack thereof).

Take C to be a contiguous constant-size subregion of
the lattice (C ⇢ [1, n]). Since we are scaling �J with n,
we expect that the entropy SC will converge to the vacuum
entropy of the CFT SC = (c/3) ln(|C|) + c0 in the ther-
modynamic limit n ! 1, where c is the central charge
of the CFT [22] and c0 > 0. What is more, for a thermal
CFT at inverse temperature � > 0, SC is for large |C| well
approximated by SC ⇠ (c/3) ln(v�⇡�1

sinh(⇡x/(v�)))
[23], where v takes the role of an effective speed of light
[24]. While there are numerous calculations of entangle-
ment entropies in CFTs [22, 25], we are unaware of one
allowing the evaluation of eq. (15) in terms of the joint
scaling � / n ! 1 and for a specific parity sector to
a precision which goes beyond constant terms (whereas
cancellation is only confirmed for divergent terms). We
numerically calculate the quantity in eq. (15) for the even
sector critical transverse Ising model and confirm that there
is a non-trivial increase in protection of the encoded infor-
mation as n increases.

We may argue that in the setting of constant thermal en-
tropy, it is not possible for the Markov quantity to con-
verge to zero faster than 1/n2. Namely, the eigenstates
which have a significant probability in the thermal states
are within an energy window of width 1/n (normalizing
J = 1) furthermore their energy density is uniformly dis-
tributed and of the order 1/n2. A local energy energy den-
sity measurement taking place in C would distinguish such
states to order 1/n2. The numerics for �J / n seem to be
consistent with saturating this bound.

We may use the same Hamiltonian HTF to attempt to
encode more logical information. While it will be neces-
sary to sent �J ! 1 in order to get convergence of the
Markov quantity, we may nevertheless do so more slowly
than �J / n. We take �J scaling polynomially (yet sub-
linearly) with n and obtain a polynomial increase of ther-
mal entropy with n. On the other hand, the convergence of

F̄ (µ,RB!BC �NC) � 1� ✏
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not enforce this. The global parity projection restricting
to a fixed parity sector provides a simple way to com-
pensate for this shortcoming. Because the Hamiltonian
HTF has a linear dispersion relation, it will also be nec-
essary to scale �J / n (or equivalently the strength of
Hamiltonian terms) in order to maintain the global entropy
SBC = S(⇢(�)

even) roughly independent of the system size n.
Note that in the interpretation as quantum source-channel
codes, n, the entropy SBC and |C| respectively play the
roles of n, k and d in traditional [[n, k, d]] QECCs, where
to each d we may associate a guaranteed performance in
terms of average fidelity (or lack thereof).

Take C to be a contiguous constant-size subregion of
the lattice (C ⇢ [1, n]). Since we are scaling �J with n,
we expect that the entropy SC will converge to the vacuum
entropy of the CFT SC = (c/3) ln(|C|) + c0 in the ther-
modynamic limit n ! 1, where c is the central charge
of the CFT [22] and c0 > 0. What is more, for a thermal
CFT at inverse temperature � > 0, SC is for large |C| well
approximated by SC ⇠ (c/3) ln(v�⇡�1

sinh(⇡x/(v�)))
[23], where v takes the role of an effective speed of light
[24]. While there are numerous calculations of entangle-
ment entropies in CFTs [22, 25], we are unaware of one
allowing the evaluation of eq. (15) in terms of the joint
scaling � / n ! 1 and for a specific parity sector to
a precision which goes beyond constant terms (whereas
cancellation is only confirmed for divergent terms). We
numerically calculate the quantity in eq. (15) for the even
sector critical transverse Ising model and confirm that there
is a non-trivial increase in protection of the encoded infor-
mation as n increases.

We may argue that in the setting of constant thermal en-
tropy, it is not possible for the Markov quantity to con-
verge to zero faster than 1/n2. Namely, the eigenstates
which have a significant probability in the thermal states
are within an energy window of width 1/n (normalizing
J = 1) furthermore their energy density is uniformly dis-
tributed and of the order 1/n2. A local energy energy den-
sity measurement taking place in C would distinguish such
states to order 1/n2. The numerics for �J / n seem to be
consistent with saturating this bound.

We may use the same Hamiltonian HTF to attempt to
encode more logical information. While it will be neces-
sary to sent �J ! 1 in order to get convergence of the
Markov quantity, we may nevertheless do so more slowly
than �J / n. We take �J scaling polynomially (yet sub-
linearly) with n and obtain a polynomial increase of ther-
mal entropy with n. On the other hand, the convergence of

Critical transverse field Insing 
gapless free fermions

� / n

~constant k

constant |C|

Parity hack to forbid 
unphysical errors.

S(⇢�)

✏ / 1/n2



Larger BH = more logical Inf.
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Conclusions 
(and outlook)

• There is far more to do! Time? 

• Flat/Positive curvature  

• :-)   Improves code properties. k,d 

• :-(   Enhanced non-locality  

• Characterizing geometry from algebraic ideas. 

• Uberholography: Appearance of extra dimension > 1 

• Approximate QEC extension (geometry as prior).
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