Minimal String Theory

February, 2004

Klebanov, Maldacena and N. S., hep-th/0309168
N.S. and Shih, hep-th/0312170

Motivation

- Simple (minimal) and tractable string theory
- Explore D-branes, nonperturbative phenomena
- Other formulations of the theory matrix models, holography

Descriptions

- Worldsheet: Liouville $\phi+$ minimal CFT (2d gravity)
- Spacetime: Dynamics in one (Euclidean) dimension ϕ
- Matrix model: Eigenvalues λ

Nonlocal relation between ϕ and λ.

Here: A Riemann surface emerges from the worldsheet description. It leads to a "derivation" of the matrix model and sheds new light on the nonlocal relation between ϕ and λ.

Roughly, ϕ and λ are conjugate (Tdual) (Moore and N.S.)

Outline

- Review of minimal CFT
- Review of Liouville theory
- Minimal string theory
- Ground ring

- Review of D-branes in Liouville theory

- D-branes in minimal string theory
- Geometric interpretation
- Conclusions

Review of minimal CFT (BPZ)

Labelled by $p<q$ relatively prime

$$
c=1-\frac{6(p-q)^{2}}{p q}
$$

Finite set of Virasoro representations

$$
\begin{aligned}
& \Delta\left(\mathcal{O}_{r, s}\right)=\frac{(r q-s p)^{2}-(p-q)^{2}}{4 p q} \\
& 1 \leq r<p, \quad 1 \leq s<q, \quad s p<r q
\end{aligned}
$$

Fusion rules

$$
\left(r_{1}, s_{1}\right) \times\left(r_{2}, s_{2}\right)=\sum_{r, s}(r, s)
$$

with a certain range of (r, s)

Review of Liouville theory

Worldsheet Lagrangian

$$
(\partial \phi)^{2}+\mu e^{2 b \phi}
$$

Will set in the second term (cosmological constant) $\mu=1$

Central charge

$$
\begin{aligned}
& c=1+6 Q^{2} \\
& Q=b+\frac{1}{b}
\end{aligned}
$$

Virasoro primaries

$$
\Delta\left(e^{2 \alpha \phi}\right)=-\left(\frac{Q}{2}-\alpha\right)^{2}+\frac{Q^{2}}{4}
$$

Degenerate representations labelled by integer $r, s \geq 1$

$$
2 \alpha_{r, s}=\frac{1}{b}(1-r)+b(1-s)
$$

have special fusion rules and allow to solve the theory (Dorn, Otto, Zamolodchikov, Zamolodchikov, Teschner)

Minimal String Theory

Combine the minimal CFT ("matter") with Liouville and ghosts.

Total $c=26$ sets $b^{2}=\frac{p}{q}$

Simplest operators in the BRST cohomology are "tachyons"

$$
\begin{aligned}
& \mathcal{T}_{r, s}=c \bar{c} \mathcal{O}_{r, s} e^{2 \beta_{r, s} \phi} \\
& \mathcal{T}_{r, s}=\mathcal{T}_{p-r, q-s} \\
& 2 \beta_{r, s}=\frac{p+q-|r q-s p|}{\sqrt{p q}} \\
& 1 \leq r<p, \quad 1 \leq s<q
\end{aligned}
$$

Because of degenerate matter and Liouville representations, there are additional physical operators with other ghost numbers (Lian and Zuckerman).

Ground Ring

Special operators with ghost number zero

$$
\begin{aligned}
& \widehat{\mathcal{O}}_{r, s}=\mathcal{L}_{r, s} \cdot \mathcal{O}_{r, s} e^{2 \alpha_{r, s} \phi} \\
& 2 \alpha_{r, s}=\frac{p+q-r q-s p}{\sqrt{p q}} \\
& 1 \leq r<p, \quad 1 \leq s<q
\end{aligned}
$$

with $\mathcal{L}_{r, s}$ a polynomial in ghosts, and Virasoro generators.

Using ghost number conservation they form a ring (modulo BRST commutators) (Witten).

Their multiplication is constrained by the fusion rules. This allows us to determine the ring relations (up to a few coefficients which are justified later)

In terms of

$$
\begin{aligned}
& \widehat{\mathcal{O}}_{1,1}=1 \\
& \widehat{\mathcal{O}}_{2,1}=2 X \\
& \widehat{\mathcal{O}}_{1,2}=2 Y
\end{aligned}
$$

we have

$$
\widehat{\mathcal{O}}_{r, s}=U_{s-1}(X) U_{r-1}(Y)
$$

$U_{s-1}(X)$ are Chebyshev polynomials

$$
U_{s-1}(X=\cos \theta)=\frac{\sin s \theta}{\sin \theta}
$$

Since $U_{s-1}(X=\cos \theta)=\frac{\sin s \theta}{\sin \theta}$ are $S U(2)$ characters, their products are the $S U(2)$ fusion rules (coefficients are zero or one)

The truncation to a finite number of elements is obtained by imposing the ring relations

$$
U_{q-1}(X)=U_{p-1}(Y)=0
$$

(with only X present, this is familiar from the representation ring of $\widehat{S U(2)}$)

This guarantees that the ground ring multiplication is simple; i.e. all the coefficients are zero or one!

In the traditional worldsheet analysis this would arise as a surprising cancelIation between complicated expressions from the minimal CFT and Liouville

This interesting structure arises because $\mu \neq 0$

The Tachyon Module

By ghost number conservation,

$$
\widehat{\mathcal{O}}_{r_{1}, s_{1}} \mathcal{T}_{r_{2}, s_{2}}=\sum_{r_{3}, s_{3}} \mathcal{T}_{r_{3}, s_{3}}
$$

Therefore the tachyons are a module of the ring. In particular, using

$$
\mathcal{T}_{r, s}=\widehat{\mathcal{O}}_{r, s} \mathcal{T}_{1,1}
$$

the coefficients above are zero or one.
$\mathcal{T}_{r, s}=\mathcal{T}_{p-r, q-s}$ leads to a new relation in the module...

$$
T_{p}(Y)=T_{q}(X)
$$

with $T_{p}(Y)$ Chebyshev polynomials

$$
T_{p}(Y=\cos \theta)=\cos p \theta
$$

Using the ring and its module we easily derive some correlation functions; e.g.

$$
\begin{aligned}
& \left\langle\mathcal{T}_{r_{1}, s_{1}} \mathcal{T}_{r_{2}, s_{2}} \mathcal{I}_{r_{3}, s_{3}}\right\rangle \\
& \quad=\left\langle\widehat{\mathcal{O}}_{r_{1}, s_{1}} \widehat{\mathcal{O}}_{r_{2}, s_{2}} \widehat{\mathcal{O}}_{r_{3}, s_{3}} \mathcal{I}_{1,1} \mathcal{I}_{1,1} \mathcal{T}_{1,1}\right\rangle \\
& \quad=N_{\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)\left(r_{3}, s_{3}\right)}
\end{aligned}
$$

This explains why the correlation functions are so simple: zero or one!

Review of Branes in Liouville

FZZT branes (Fateev, Zamolodchikov and Zamolodchikov, Teschner) - macroscopic loops in the worldsheet

Labelled by the "boundary cosmological constant"

$$
\delta S=\mu_{B} \oint e^{b \phi}
$$

Minisuperspace wavefunction

$$
\Psi(\phi)=\left\langle\phi \mid \mu_{B}\right\rangle=e^{-\mu_{B} e^{b \phi}}
$$

The brane comes from infinity and dissolves at $\phi \approx-\frac{1}{b} \log \mu_{B}$.

In Cardy's formalism a brane is labelled by a representation in the open string channel
$\mu_{B}=\cosh \pi b \sigma \quad \longleftrightarrow \quad \Delta=\frac{1}{4} \sigma^{2}+\frac{Q^{2}}{4}$

The boundary state is
$\left.|\sigma\rangle=\int_{0}^{\infty} d P \cos (2 \pi P \sigma) \Psi(P)|P\rangle\right\rangle$
$|P\rangle\rangle$ is a closed string (Ishibashi) state.

For the degenerate representations

$$
\sigma=i\left(\frac{m}{b}+n b\right)
$$

Subtracting the null vectors in the representation leads to the ZZ (Zamolodchikov and Zamolodchikov) branes

$$
|m, n\rangle=|\sigma(m, n)\rangle-|\sigma(m,-n)\rangle
$$

Same

$$
\mu_{B}=(-1)^{m} \cos \pi n b^{2}
$$

at $\sigma(m, \pm n)$ (Martinec).

Finite, discrete spectrum of open strings between $|m, n\rangle$ and $\left|m^{\prime}, n^{\prime}\right\rangle$ ZZ branes: $(m, n) \otimes\left(m^{\prime}, n^{\prime}\right)$.

These branes are localized in the strong coupling region $\phi \rightarrow+\infty$.

Branes in Minimal String Theory

FZZT branes: Tensor a Liouville brane labelled by σ and a matter brane labelled by r, s

Since $b^{2}=\frac{p}{q}$ is rational, and there is a limited set of operators...

- Can restrict to $r=s=1$
- Distinct branes are labelled by $z=\cosh \frac{\pi \sigma}{\sqrt{p q}}$

ZZ branes: Tensor a Liouville brane labelled by (m, n) and the $r=s=1$ matter brane

Simplification: the independent ZZ branes are

$$
1 \leq m<p, \quad 1 \leq n<q, \quad n p<m q
$$

Eigenstates of the ring elements

$$
\begin{aligned}
X|m, n\rangle & =(-1)^{m} \cos \frac{\pi p n}{q}|m, n\rangle \\
Y|m, n\rangle & =(-1)^{n} \cos \frac{\pi q m}{p}|m, n\rangle
\end{aligned}
$$

\Rightarrow a simple derivation of the ring relations.

Geometric Interpretation

The disk amplitude $Z\left(\mu_{B}\right)$ is not a single valued function of

$$
x \equiv \mu_{B}=\cosh \pi b \sigma, \quad b^{2}=\frac{p}{q}
$$

Instead, x and

$$
y \equiv \partial_{\mu_{B}} Z\left(\mu_{B}\right)=\cosh \frac{\pi \sigma}{b}
$$

satisfy

$$
\begin{gathered}
T_{p}(y)=T_{q}(x) \\
T_{p}(y=\cos \theta)=\cos p \theta
\end{gathered}
$$

Another perspective on the relation in the tachyon module.

This is a genus $\frac{(p-1)(q-1)}{2}$ Riemann surface with $\frac{(p-1)(q-1)}{2}$ pinched A-cycles
σ gives an infinite cover.
$z=\cosh \frac{\pi \sigma}{\sqrt{p q}}$ gives a single cover

Line integrals of $y d x$ lead to branes:

An FZZT brane is an open line integral

$$
Z(x)=\int_{P}^{x} y d x^{\prime}
$$

A ZZ brane is a difference between two FZZT branes, and hence it is an integral along a closed contour. We will show that it passes through a singularity; it is an integral along a B-cycle

$$
Z(m, n)=\oint_{B_{m, n}} y d x
$$

FZZT and ZZ branes on the Riemann surface:

($x_{m, n}, y_{m, n}$) at the singularities are the eigenvalues of the ring generators X and Y. Recall, the $\mathbf{Z Z}$ branes are eigenstates.

More explicitly, at the singularities we have

$$
\begin{aligned}
& T_{p}(y)=T_{q}(x) \\
& T_{p}^{\prime}(y)=p U_{p-1}(y)=0 \\
& T_{q}^{\prime}(x)=q U_{q-1}(x)=0
\end{aligned}
$$

These are the ring relations and the relation in the tachyon module!

With $N \sim \mathcal{O}\left(1 / g_{s}\right)$ ZZ branes of type (m, n) the corresponding pinched cycle opens up:

$$
\oint_{A_{m, n}} y d x=g_{s} N
$$

This is conjugate to $\oint_{B_{m, n}} y d x$ which creates the ZZ brane

Matrix Model

Consider ($p=2, q=2 l+1$) , which corresponds to the one matrix model

Our surface is

$$
2 y^{2}-1=T_{q}(x)
$$

It has two copies of the complex x plane which are connected along a cut $(-\infty,-1)$ and l singularities (pinched cycles)

$$
\left(x_{n}=\cos \frac{2 \pi n}{q}, y_{n}=0\right), \quad n=1, \ldots, l
$$

Interpretation:

y is the singular part of the resolvent

Discontinuity along the cut is the eigenvalue density $\rho(x)=\operatorname{Im} \sqrt{2+2 T_{q}(x)}$
y is the force on an eigenvalue. $y=0$ at the singularities.

The disk amplitude of FZZT brane

$$
Z(x)=\int^{x} y d x^{\prime}=V_{e f f}(x)
$$

is the effective potential of a probe eigenvalue.

ZZ brane: Eigenvalue at a stationary point of $V_{e f f}(x)$ (where $y=0$).

Nonperturbative instability

Conclusions

- We translated the features of the minimal string theory to simple properties of an underlying Riemann surface.
- In the simplest situation most of the A-cycles are pinched.
- Observables are deformations of the Riemann surface (did not do here).
- The ring relations control
- the correlation functions
- the defining equation of the surface
- its singularities
- D-branes are contour integrals of a certain one form:
- FZZT branes are open contours
- ZZ branes are associated with the B-cycles.

This gives a worldsheet "derivation" of the matrix model, and adds a new perspective to the understanding that
the eigenvalues are associated with Dbranes (Polchinski, McGreevy, Verlinde, Klebanov, Maldacena, N.S., Martinec...)

Extensions/Generalizations

\author{

- Minimal type 0 theory
}
- $c=1$
- $\hat{c}=1$
- Quantization
- ???

