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Motivation

Minimal string theory is a simple and tractable theory.

It has a precise non-perturbative definition in terms of a

dual matrix model.

It exhibits interesting phenomena like existence of

D-branes, open/closed duality and holography.

Type 0 minimal strings can have in addition RR flux

(flux vacua) and charged branes.

Here, we will focus on the simplest type 0 string theory.
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Perspectives

• Target space – physical interpretation is clear, but

computations are impossible

• Matrix model/Integrable hierarchies – easy to

calculate, but the target space physics is obscure

• Worldsheet – good for semiclassical limit (can include

α′ corrections), but hard to study the quantum

corrections
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Outline

• Target space description of the closed string theory

(with RR flux)

• Exact (matrix model) description of the closed strings

• The charged branes

• Exact description of the charged branes

• Target space interpretation
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Target space description of closed string

Target space – one dimension, φ

Linear dilaton – string coupling gs = eφ

φ → +∞φ → −∞
Strong couplingWeak coupling

The observables of the theory correspond to changing the

boundary conditions at the weak coupling end: φ → −∞.

There can be localized D-branes (ZZ branes) at the

strong coupling end: φ → +∞.
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The target space fields

NS-NS: Closed string “tachyon” – 〈T (φ)〉 = µeφ

RR scalar – C(φ) with Lagrangian

LC =
1

2
e−2T (∂φC)2

Symmetries:

RR shift symmetry: C(φ) → C(φ) + const.

Charge conjugation: C(φ) → −C(φ)
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Conserved current – flux

q = e−2T ∂φC

Solution of equation of motion with flux q

〈C(φ)〉 = q

∫ φ

e2T = q

∫ φ

e2µeφ

µ > 0 – diverges as φ → +∞ – this solution arises from a

charged brane localized there

µ < 0 – converges as φ → +∞ – no charged brane there.

The flux q is specified by boundary conditions as

φ → −∞ (vertex operator in the worldsheet).
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Exact description – matrix model

This system is described by the Gross-Witten model

V (M) = −M2 + gM4

with M an N ×N hermitian matrix.

Study the partition function

Z = e−N2F =

∫
dMe−N Tr V (M)

in the N →∞ limit
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Large N phase transition

The eigenvalues of M are distributed along “cut(s).” As

the parameters vary (g ≈ gc): two cuts/one cut transition

µ > 0

M

M

V

V

µ < 0
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The continuum/scaling limit focuses on the transition.

It is described by 2× 2 matrices of differential operators

P and Q satisfying

[P, Q] = 1

P and Q involve ∂µ and two functions of µ: r and β.

The free energy F is

∂2
µF =

1

2
r2

[Periwal, Shevitz, Crnkovic, Douglas and Moore...]
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[P, Q] = 1 leads to the closed string equations

∂2
µr − µr − r3 + (∂µβ)2r = 0

r2∂µβ = q

Here q appears as an integration constant. This is a

modified version of the Painlevé II equation.

Symmetries:

RR shift symmetry: β → β + const.

Charge conjugation: β → −β

q is RR flux. More below.
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Because of the β dependence, the combinations

Z±(µ, q) = r(µ, q)e∓β(µ,q)

have RR charges ±1, while the free energy F is neutral

∂2
µF =

1

2
r2 =

1

2
Z+Z−

A surprising identity

Z±(µ, q) = eF (µ,q)−F (µ,q±1)

relates solutions with different q.

Hence, Z± is interpreted as the expectation value of an

operator which changes q → q ± 1.
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Classical limit: |µ| → ∞

Fcl = −µ3

12
µ < 0

Fcl = 0 µ > 0

Third order transition at µ = 0

But the exact answer, given by the

differential equation, is smooth!
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Semiclassical expansion

F =
∑

h,r≥0

|µ|3(1−h)

(
q2

|µ|3
)r

µ < 0

F =
∑

h≥0, b≥1

µ3(1−h)

( |q|
µ

3
2

)b

µ > 0

(suppressed coefficients, when the power of µ vanishes

replace by log µ)

Worldsheet interpretation:

h – number of handles

b – number of boundaries

2r – number of insertions of RR-flux vertex operator
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µ < 0 phase: q is pure RR flux

µ > 0 phase: the flux q arises from |q| charged D-branes

This confirms the target space picture.

Since no phase transition, smooth interpolation

between branes and flux!

Similar phenomenon in critical/topological string.
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Extended branes (a.k.a macroscopic loops
or FZZT branes)

Extended branes are described by worldsheet boundaries

with boundary interaction depending on the open string

“tachyon”

Topen(φ) = µBeφ/2

The branes are labelled by µB, which can be taken to be

either real or complex.
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Minisuperspace wavefunction

Ψ(φ) = e−(Topen)2 = e−µ2
Beφ

The brane comes from infinity and dissolves at

φ0 ≈ −2 log |µB|.

φ

Ψ(φ)

φ0 ≈ −2 log |µB|
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Motivated by the unstable branes of the critical string,

the effective Lagrangian on the brane includes the term

C(φ)G (Topen(φ)) ≈ C

2
sign (Topen) δ(φ− φ0)

(C and Topen are charge conjugation odd).

Therefore, the brane has charge

qb =
1

2
sign(µB)

It is localized around φ0.

18



The charge changes the RR-flux in the weak coupling

region

Ψ(φ)

φ

qbqweak = q + qb qstrong = q

φ0

Note: the closed string background parameter q is the

flux in the strong coupling region – not in the weak

coupling asymptotic region (more below).
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Similar to unstable branes in critical string, where a kink

of open tachyons is charged.

Except:

• Our branes are stable because Topen is massive

• Since Topen varies from 0 to ±∞, the brane is like

“half a kink”, and hence its charge is ±1
2
.
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Recall that the charge of the brane is

qb =
1

2
sign(µB)

Semiclassically, there are two branes:

• Start with µB > 0, and hence qb = +1
2
, and

analytically continue to µB < 0

• Start with µB < 0, and hence qb = −1
2
, and

analytically continue to µB > 0

Explicit worldsheet calculations (not done here) confirm

this semiclassical expectation.
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Preview

We will show that this is not true in the exact theory!

The mistake in the semiclassical reasoning is in the

analytic continuation to the other sign of µB.

Instead, as expected from the target space picture and

from the analogy with the unstable brane, there is only

one brane for every µB.

The charge of the brane changes as µB is

varied!
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Continued preview: a transition in the
charge of the brane

µB < 0

φ

qstrong = q1
2qweak = q + 1

2

µB > 0

qweak = q + 1
2 -1

2 qstrong = q + 1

φ

φ0

φ0

Ψ(φ)

Ψ(φ)
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Exact analysis – matrix model

In the matrix model the branes are constructed using the

observable det(M − iµB) (exponentiated macroscopic

loop).

Recall that in the scaling limit the closed string sector is

controlled by 2× 2 matrices of differential operators in µ

satisfying

[P, Q] = 1
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Given [P, Q] = 1, it is natural to consider the

(Baker-Akhiezer) functions ψ±(µ, q, µB) satisfying

Q

(
ψ+

ψ−

)
= µB

(
ψ+

ψ−

)

P

(
ψ+

ψ−

)
= −∂µB

(
ψ+

ψ−

)

(ψ+ ± ψ− ∼ limN→∞〈det(M − iµB)〉 with N even or

odd.)
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Physical interpretation:

There are two branes B±(µB) with partition functions

〈B±(µB)〉µ,q = ψ±(µ, q, µB)e−F (µ,q)

The functions ψ± are the brane partition functions

normalized with the closed string partition function

Z = e−F (µ,q)
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The equations for the branes can be written as

∂µ

(
ψ+

ψ−

)
=

(
µB

Z+√
2

Z−√
2
−µB

)(
ψ+

ψ−

)

∂µB

(
ψ+

ψ−

)
=

(
−4µ2

B + r2 + µ −√2(2µBZ+ + Z ′
+)

−√2(µBZ− − Z ′
−) 4µ2

B − r2 − µ

) (
ψ+

ψ−

)

Recall that Z±(µ, q) = r(µ, q)e∓β(µ,q) are determined by

the closed string equations.

(The details are not important!)
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From the structure of the equations:

• B± and ψ± = 〈B±〉
e−F have charges ±1

2
(recall that

Z±(µ, q) have charges ±1)

• The exact solutions of these differential equations are

smooth functions of µ and µB!

Naively, this agrees with the semiclassical picture: two

branes for each µB.

But, explicit worldsheet calculations (not done here)

agree with the semiclassical limit of ψ+(µB) (ψ−(µB))

only for µB > 0 (µB < 0). This will be explained soon.
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An interesting identity

Using the charge ±1 objects

Z±(µ, q) = r(µ, q)e∓β(µ,q) = eF (µ,q)−F (µ,q±1)

there is a surprising identity

ψ+(µ, q, µB) = Z+(µ, q)ψ−(µ, q + 1, µB)

which means

〈B+(µB)〉µ,q = 〈B−(µB)〉µ,q+1

i.e. there are only half as many independent flux/brane

configurations – the counting agrees with the target

space picture.
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Interpreting the exact answers for 〈B±〉

The equations with the parameter q describe branes B±
with qweak = q ± 1

2
.

The subscript in B± determines the flux at infinity and

not “the charge of the brane.”

B+ has its natural charge (qb = +1
2
) for µB > 0.

B− has its natural charge (qb = −1
2
) for µB < 0.

In these two situations the flux in the strong coupling

region is qstrong = q.
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Ψ(φ)

φ

qbqweak = q + qb qstrong = q

φ0

Note, the parameter q in the equations is not the flux in

the asymptotic weak coupling region.

Analytically continuing B± to the other sign of µB

changes their charges qb → −qb and qstrong → qstrong ± 1,

while preserving qweak.
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The surprising identity

〈B+(µB)〉µ,q = 〈B−(µB)〉µ,q+1

equates two branes with the same qweak = q + 1
2
.

Consider the identity for µB > 0.

The brane B+ in the LHS has its natural charge qb = +1
2

and flux qstrong = q.

The brane B− in the RHS is analytically continued from

negative µB, where it has its natural charge qb = −1
2

and

flux qstrong = q + 1.

Conclude: the distinct flux/brane configurations are

labelled by qweak and µB (including its sign).
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This agrees with the target space picture.

It also resolves the discrepancy with the semiclassical

worldsheet computations – they are correct only before

the transition; i.e. when B± have their natural charges

qb = ±1
2

and qstrong = q (Stokes’ phenomenon).

The main surprise is that the transition which changes

the charge is smooth.
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Physical picture of the transition

µB < 0

φ

qstrong = q1
2qweak = q + 1

2

µB > 0

qweak = q + 1
2 -1

2 qstrong = q + 1

φ

φ0

φ0

Ψ(φ)

Ψ(φ)
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Comments about the transition

• qweak is well defined and does not fluctuate

– The weak coupling region has infinite volume.

• qb and qstrong are not meaningful but fluctuate. This

allows smooth transitions changing qb and qstrong.

– The strong coupling region effectively has finite

volume.

– For µB → ±∞ the volume of the strong coupling

region becomes large, and suppresses the

fluctuations. qb and qstrong become well defined.
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Lessons

• We discussed a solvable model with RR flux q and

charged branes.

• For µ > 0 the flux is generated by charged D-branes

in the strong coupling region φ = +∞.

• For µ < 0 there are no such branes, but the flux still

exists.

• There is a smooth transition between two

semiclassical limits: µ → ±∞. It converts charged

D-branes ←→ flux.
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• Extended D-branes dissolve at φ0 ≈ −2 log(|µB|),
with localized charge near φ0. Semiclassically, i.e. as

µB → ±∞, it is qb = 1
2
sign(µB).

• The classically meaningful charge qb and flux in the

strong coupling region qstrong fluctuate in the

quantum theory. Only the flux in the weak coupling

region qweak is meaningful.

• There is a smooth transition as µB varies. It changes

qb ←→ −qb. Semiclassically, the brane picks up charge

at φ = +∞ as it passes through µB = 0.
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