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Questions I will raise 

•  Is DFT interesting physics? 

•  What are the leading corrections to the local 
density approximation? 

•  Where can I find the Poisson equation inside 
the Schrodinger equation? 

•  For potentials that are v(r), what is special 
about the quantum mechanics? 
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The electronic structure problem 

•  Use atomic units 
•  Born-Oppenheimer 

approximation 
•  All non-relativistic 

(but added back in) 
•  Wavefunctions 

antisymmetric and 
normalized 

•  Only discuss ground-
state electronic 
problem here, but 
many variations. 

Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1
Ò2

i
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1
2
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1
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and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1
v(r

i

)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N
ÿ

‡1

. . .
ÿ

‡
N

⁄
d3r2 . . . d3r

N

| (r‡1, r2‡2, . . . , r

N

‡
N

)|2

and n(r) d3r gives probability of finding any electron in d3r around r.
Wavefunction variational principle:

I E [ ] © È |Ĥ| Í is a functional
I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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Thomas/Fermi Theory 1927 
•  Derived in 1926 without Schrodinger eqn. 

•  Thomas-Fermi Theory (TF): 
–  T ≈ TTF 
–  Vee≈ U = Hartree energy 
–  V = ∫dr ρ (r) v(r) 
–  E0 = T + Vee + V 
–  Minimize E0[n]  for fixed N 

•  Properties: 
–  Typical error of order 10% 
–  Teller’s unbinding theorem:  Molecules don’t bind. 
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Ts
loc =

3(3π )2/3

10
d3r n5/3(r)∫
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1
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d3r∫ d3r ' n(r)n(r ')
| r − r ' |∫



HK theorem (1964) 

•  Makes TF an 
approximation to 
an exact theory 

•  Can find both 
ground-state 
density and 
energy via Euler 
equation 

Hohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
 

È |T̂ + V̂ee + V̂ | Í

= min
n

;
F [n] +

⁄
d3r v(r)n(r)

<

where

F [n] = min
 æn

È |T̂ + V̂ee| Í

I The minimum is taken over all positive n(r) such that
s

d3r n(r) = N
2 The external potential v(r) and the hamiltonian Ĥ are determined to

within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965) 
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„
j

(r) = ‘
j

„
j

(r),
Nÿ

j=1
|„

j

(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d3r n(rÕ)

|r ≠ r

Õ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
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KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a

Accurate exchange-correlation

potentials and total-energy components for

the helium isoelectronic series, C. J.
Umrigar and X. Gonze, Phys. Rev. A 50,
3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39

Dec	
  8,	
  2016	
   KITP	
  Kohn	
  Science	
  Symposium	
   6	
  

F	
  =	
  



Today’s commonly-used functionals 

•  Local density approximation (LDA) 
–  Uses only n(r) at a point. 

•  Generalized gradient approx (GGA)  
–  Uses both n(r) and |∇n(r)| 
–  Should be more accurate, corrects overbinding of LDA 
–  Examples are PBE and BLYP and AM05 

•  Hybrid: 
–  Mixes some fraction of HF 
–  Examples are B3LYP and PBE0  
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Applications 

•  Computers, codes, algorithms always improving 
•  Making bona fide predictions 
•  E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after 
about 25,000 failed experiments (Jens Norskov’s 
group) 

•  Now scanning chemical and materials spaces using 
big data methods for materials design (materials 
genome project). 

•  World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, then made. 

•  Latest generation of intel chips (needed for Mac 
airbook) is half-size and Pb-free with help of DFT 
calcs. 
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DFT papers 
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DFT:	
  A	
  Theory	
  Full	
  of	
  Holes,	
  	
  Aurora	
  Pribram-­‐Jones,	
  David	
  A.	
  Gross,	
  Kieron	
  Burke,	
  
Annual	
  Review	
  of	
  Physical	
  Chemistry	
  (2014).	
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In reality… 
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Important points 

•  DFT ‘works’ for both molecules and materials 
•  There are too many different approximations on 

the market, but in fact at least 70% of all 
calculations one of only a half-dozen 
approximations. 

•  Electronic structure in chemistry and materials 
dominated by need for useful accuracy for very 
small energy differences; physics more concerned 
with response functions. 

•  Starts with local density approximations: 
–  Pure DFT: Local approximation for TS[n] 
–  KS DFT: LDA for EXC[n]. 
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B. Random sampling of modern DFT development 

•  Many different directions 
•  Many different people 

–  Study exact functional 
–  New XC approximations 
–  New solution methods 
–  Strong correlation 
–  Extensions beyond ground state 
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Exact KS-DFT 

•  Derive conditions that Exc[n] must satisfy 
–  Scaling relations, derivative discontinuity,… 

•  Solve electronic problem highly accurately 
–  Reverse-engineer to find Exc[n] and vxc[n](r). 

•  Results used for 
–  Building new approximations 
–  Testing existing ones 
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Guaranteed convergence 

ground-state density, as long as the first input density is a
physical density. This is because we can choose each
subsequent input density as a physical density [31], and
the exact ensemble functional [22,33] is convex. The only
stationary point of the exact functional, when considering
physical densities, is the ground-state density [34].

Numerical implementation.—To find the KS energy
functional exactly when there is no degeneracy, we must
find the many-electron wave function!½n" that minimizes
h!jT̂ þ V̂eej!i (the kinetic and electron-electron repul-
sion energies) with density nðrÞ [22,35]. To perform this
very demanding [36] interacting inversion, start with a
guess for the potential ~vðrÞ. Then solve the many-body
system for the ground-state wave function ~! and density
~nðrÞ. Using a quasi-Newton method [37], modify ~vðrÞ and
repeat, minimizing the difference between ~nðrÞ and the
target density nðrÞ. Once converged, the procedure is
repeated for NI electrons. The HXC energy is then

EHXC½n" ¼ h!½n"jT̂ þ V̂eej!½n"i' TS½n"; (13)

and the HXC potential is

vHXC½n"ðrÞ ¼ vS½n"ðrÞ ' v½n"ðrÞ: (14)

We implement these functionals for 1D continuum systems
[11,12], obtaining highly accurate many-body solutions
with the density matrix renormalization group [38,39].
These are the first such inversions for systems with more
than two electrons [40,41]. Because, in one dimension,
degeneracy (beyond spin) does not occur, we find pure
states !½n". More generally, one should invert using an
ensemble "½n" and take a trace in Eq. (13) [22,33].

To illustrate convergence of the damped KS algorithm
using the exact functional, we plot the output densities
and KS potentials for a four-electron, four-atom system
in Fig. 2. We choose the interatomic spacing R ¼ 3 to be

roughly twice the equilibrium spacing of H2 (when the
interaction between nuclei is the same as that between
electrons), making this a moderately correlated system.
Taking ! ¼ 0:30, the algorithm converges to the exact
density (computed separately using DMRG) to "< 10'6

using Eq. (4), within 13 steps.
Consider the KS scheme applied to a simple 1D H2

molecule with bond length R [12]. Initialize the algorithm
with an asymmetric input density, aH' density centered on
the left atom. Of course, no sensible KS calculation starts
with such a density, but we do this to amplify convergence
issues. In Fig. 3, we quantify the convergence of the KS
algorithm using " from Eq. (4) as well as energy differ-
ences from the ground state. For the equilibrium bond
length (R ¼ 1:6), ! may be chosen quite large (( 0:5),
but as the atoms are stretched to R ¼ 3, ! must be & 0:2.
When R ¼ 5, even ! ¼ 0:01 is too large to converge the
calculation (not shown). Thus, as the bond is stretched and
the system develops strong static correlation [12], conver-
gence becomes increasingly difficult. As more atoms are
added to the chain (not shown), such as stretched H4, even
a reasonable initial state converges very slowly.
Consequences for real calculations.—For approximate

XC functionals, the corresponding Ev½n" is not, in general,
convex for every vðrÞ, and our corollaries do not hold.
Consider H2 in the local spin-density approximation.
At and near equilibrium bond lengths, only one stationary
solution exists. The approximate functional may or may
not be convex. But when the bond is stretched beyond the
infamous Coulson-Fischer point [42,43], an unrestricted
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FIG. 2 (color online). KS procedure for a moderately corre-
lated four-electron system (four hydrogen atoms with R ¼ 3),
showing the first few iterations. Using a fixed ! ¼ 0:30, we
converge to "< 10'6 using Eq. (4) within 13 iterations.
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FIG. 3 (color online). Differences in the density " using
Eq. (4) and the energy with #E ¼ Ev½n0" ' Egs

v , for an H2

molecule with (a) R ¼ 1:6 and (b) R ¼ 3. In (b), the #E curves
are omitted for clarity, but are like those in (a).
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negative as in Fig. 1(b), we show there is always a linear
combination of the input and output densities that lowers
the energy. By sufficiently damping each KS step, the
energy is always reduced each iteration, yielding the
ground-state density and energy to within a given tolerance
in a finite number of iterations.

The KS algorithm is designed to minimize the energy as
a functional of the electron density nðrÞ. For an N-electron
system with a reasonable [21] external potential vðrÞ, the
energy functional is [1]

Ev½n$ ¼ TS½n$ þ
Z

d3rnðrÞvðrÞ þ EHXC½n$; (1)

where TS½n$ is the kinetic energy of noninteracting (NI)
electrons having density nðrÞ, and EHXC½n$ is the Hartree-
exchange-correlation (HXC) energy [22,23]. The KS equa-
tions are, in atomic units,

' 1

2
r2!jðrÞþ ðvðrÞþvHXC½n$ðrÞÞ!jðrÞ ¼ "j!jðrÞ; (2)

where vHXC½n$ðrÞ ¼ #EHXC½n$=#nðrÞ is the HXC poten-
tial, !jðrÞ are the electron orbitals, and "j are their eigen-
values. (In this work, we consider spin-unpolarized systems
for simplicity.) An output density n0ðrÞ is found by doubly
occupying the lowest-energy orbitals

n0ðrÞ ¼ 2
X1

j¼1

fjj!jðrÞj2; (3)

where 0 ( fj ( 1 and
P

jfj ¼ N=2. Fractional occupation
is only allowed for the highest occupied orbitals if they are
degenerate, where fj is chosen to minimize the difference
between nðrÞ and n0ðrÞ [24].

Consider convergence of the following simple algo-
rithm. Given an input density nðrÞ, solve the KS equations
to obtain the output density n0ðrÞ. Define

$ ) 1

N2

Z
d3rðn0ðrÞ ' nðrÞÞ2: (4)

Choose some small #> 0, and if $< #, then the calcu-
lation has converged. Otherwise, the next input is

n%ðrÞ ¼ ð1' %ÞnðrÞ þ %n0ðrÞ; (5)

for some %2ð0;1$, and repeat. An ensemble-v-representable
nðrÞ is the ground-state density (or an ensemble mixture of
degenerate ground-state densities) for some local potential
v½n$ðrÞ [26,27]. For NI electrons, this potential is vS½n$ðrÞ.
We call nðrÞ physical when both potentials exist, and we
require all n%ðrÞ to be physical. We refer to a single iteration
of Eqs. (2)–(5) as one step of the KS algorithm. Taking
full steps with % ¼ 1 does not usually lead to a fixed point.
But taking damped steps with %< 1 ensures the algorithm
converges, as we now prove.

Lemma.—Consider two finite [28] systems of N elec-
trons, with ground-state densities nðrÞ, n0ðrÞ, and potentials
v½n$ðrÞ ! v½n0$ðrÞ, by which we mean the potentials differ
by more than a constant. Then [9]

Z
d3rðv½n0$ðrÞ ' v½n$ðrÞÞðn0ðrÞ ' nðrÞÞ< 0: (6)

Proof.—Following Ref. [9], we apply the variational
principle. Since nðrÞ is the ground-state density of the
potential v½n$ðrÞ, we have Ev½n$½n$< Ev½n$½n0$, or

Z
d3rv½n$ðrÞðnðrÞ ' n0ðrÞÞ<F½n0$ ' F½n$; (7)

where F½n$ ) TS½n$ þ EHXC½n$. It is also true that
Ev½n0$½n0$< Ev½n0$½n$, so we may switch primes with
unprimes in Eq. (7). Adding the resulting equation to the
original yields Eq. (6). j
Note that the lemma is true for any interaction between

electrons, including none.
Theorem.—Given an arbitrary physical density nðrÞ as

input into the KS algorithm,

E0
v½n$ )

dEv½n%$
d%

!!!!!!!!%¼0
( 0; (8)

where n%ðrÞ is defined as in Eq. (5). If equality holds, then
nðrÞ is a stationary point of Ev½n$.
Proof.—Consider !Ev resulting from %!nðrÞ )

%ðn0ðrÞ ' nðrÞÞ ¼ n%ðrÞ ' nðrÞ. Then

E0
v½n$ ¼

Z
d3r

#Ev½n$
#nðrÞ !nðrÞ: (9)

For a physical density, the functional derivative is [27]

#Ev½n$
#nðrÞ ¼ 'vS½n$ðrÞ þ vðrÞ þ vHXC½n$ðrÞ: (10)

Since vðrÞ þ vHXC½n$ðrÞ defines vS½n0$ðrÞ [n0ðrÞ is the
output density of Eq. (2)], we have

#Ev½n$
#nðrÞ ¼ vS½n0$ðrÞ ' vS½n$ðrÞ: (11)

Combining Eqs. (11) and (9) gives

E0
v½n$ ¼

Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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Z
d3rðvS½n0$ðrÞ ' vS½n$ðrÞÞðn0ðrÞ ' nðrÞÞ: (12)

Two cases arise: if vS½n0$ðrÞ ! vS½n$ðrÞ, use the lemma
applied to NI systems: then E0

v½n$ must be less than zero.
Otherwise, vS½n0$ðrÞ ¼ vS½n$ðrÞ, so both E0

v½n$ and the
rhs of Eq. (11) are zero, and nðrÞ is a stationary point
of Ev½n$. j
We illustrate the theorem in Fig. 1(b), where we plot

Ev½n%$ and its linear-response approximation for the input
density of Fig. 1(a).
Corollary 1.—The KS algorithm described above is

guaranteed to converge to a stationary point of the func-
tional, if (1) only physical densities are encountered,
(2) the energy functional is convex, and (3) appropriate
values for % are used, e.g., from the algorithm of Ref. [29],
because it is effectively a gradient-descent algorithm [30].
Corollary 2.—When using the exact functional, the KS

algorithm using appropriate %’s converges to the exact
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New DFT approximations 

•  Originally based on XC hole 
–  Either non-empirical (Perdew) or mildly so (Becke) 

•  SCAN – Perdew group meta-GGA 
•  vdW  
–   Langreth-Lundqvist, Grimme, Tkatchenko-Scheffler 

•  RPA – use KS orbitals 
•  LCSF 
–  Truhlar 

•  ML: machine learning 
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Failures for strong correlation 

•  Local approximations go bad as bonds are 
stretched. 

•  Importance of T[n] less relative to Vee[n]. 
•  E.g., U/2t -> infinity in Hubbard model 
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Infamous limitation 
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interacting system, the KS system is the unique noninter-
acting system with the same density [20].) In the thermo-
dynamic limit, the KS gaps extrapolate to zero, so that
the exact N ! 1 KS system is a metal. This is consistent
with the fact that each finite KS system in Fig. 3 has one
electron per unit cell and thus a half-filled band (in contrast
to the unrestricted LSDAwhich breaks spin symmetry for
this system).

The discrepancy between the KS and exact gap was long
ago identified [21] with the exchange-correlation deriva-
tive discontinuity in DFT: Eg ¼ !s þ !XC, where !s is
the KS gap, that is, the energy difference between the
lowest unoccupied and highest occupied orbitals of the
neutral KS system. Approximate functionals such as
LSDA that are continuous in particle number miss this
effect entirely. The LSDA KS gaps are almost identical
to the exact ones shown in Fig. 3, but the LSDA funda-
mental gap drops from close to Eg for small N to near zero
at large N (details reported elsewhere).

Previous calculations have found !XC for semiconduc-
tors [22,23] with finite KS gaps !s, but our system’s gap is
entirely due to !XC, underscoring its importance for strong
correlation physics. Our results rely on no uncontrolled
approximations and so demonstrate unambiguously the
behavior of Mott insulators in DFT. Present DFT research
on this issue focuses on extracting accurate Eg from semi-
local functional calculations [24,25].

The onset of strong correlation with increasing bond
length is often identified with the Coulson-Fischer point
[26], where an unrestricted Hartree-Fock calculation spon-
taneously breaks spin symmetry. A different way to dis-
tinguish strong from weak correlation is through the
entanglement spectrum, readily accessible in DMRG.

Defining the left reduced density matrix !L¼TrRj"ih"j,
where the trace is over all grid sites in the right half of the
system, the entanglement spectrum consists of the energies
of the entanglement Hamiltonian HE ¼ # ln!L [27]. The
most probable density matrix eigenstates are those in the
low ‘‘energy’’ part of the spectrum. By classifying these
states according to their particle numberNL, we can under-
stand the dominant quantum fluctuations of the ground
state. Figure 4 shows the entanglement spectrum at the
center of a series of four-atom chains with increasing
interatomic separation. A sharp crossover at b ’ 5:5, where
the probability for charge fluctuations drops below that
of pure spin fluctuations, signals the onset of strongly
correlated behavior.
Many oxide materials of current interest are too strongly

correlated for present DFT methods, but crucial properties
must be calculated to an accuracy far beyond that of simple
model Hamiltonians. The method described here provides
a new, alternative route to studying strongly correlated
systems. All existing approximations, from heuristic cor-
rections to standard functionals, such as LDAþ U [28], to
methods developed for lattice models, such as dynamical
mean field theory [29], can be applied and tested more
easily, thoroughly, and accurately in the present setting.
Because our 1D world captures a feature crucial to density
functional approximations, namely, the continuum instead
of a lattice, such studies should provide the insight needed
to construct more accurate density functionals for real
strongly correlated materials.
We gratefully acknowledge DOE Grant No. DE-FG02-

08ER46496 (K. B., L. O.W., and S. R.W.) and NSF Grant
No. DMR-0907500 (E.M. S. and S. R.W.) for supporting
this work.
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Elephant 
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Aside: DFT beyond ground state 

•  Time-dependent DFT (TDDFT) 
–  Yields electronic excitations 

•  Ensemble DFT (eDFT) 
–  Alternative route to excitations 
–  2 recent papers with Aurora Pribram-Jones 

•  Thermal DFT (thDFT) 
–  Applies to warm dense matter (hot electrons) 
–  4 recent papers with Aurora Pribram-Jones 
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Message: 

•  This is a very bizarre way to do quantum 
mechanics. 
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Important quote 

•  In any event, the result is extraordinarily powerful, for it 
enables us to calculate (approximate) allowed energies 
without ever solving the Schrödinger equation, by 
simply evaluating one integral. The wave function itself 
has dropped out of sight.  

•  Griffiths, Quantum Mechanics, about semiclassical approximations.  
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I. INTRODUCTION

ˆH =

ˆT +

ˆVee +
ˆV (1)

T [n] ⇡ T LDA
S [n] =

3(3⇡)2/3

10

Z
d3r n5/3

(r) (2)

Vee[n] ⇡ U [n] =
1

2

Z
d3r

Z
d3r0

n(r)n(r0)

|r� r

0| (3)

V [n] =

Z
d3r n(r) v(r) (4)

ˆH| i = E| i (5)

E = min

 
h | ˆH| i (6)

ETF
= min

n

⇢
T LDA

S [n] + U [n] +

Z
d3r v(r)n(r)

�
(7)

EGGA
XC =

Z
d3r eGGA

XC (n(r), |rn(r)|) (8)

Ehyb
XC = a (EX � EGGA

X ) + EGGA
XC (9)

Z
dx

p
2(E � v(x)) = ⇡ (j +

1

2

) (10)

2



C. Grand challenge: Systematic approach 
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•  Is there a systematic approach to constructing 
density functional approximations? 

•  Answer: I believe they are a very specific 
expansion in powers of hbar, but we don’t 
know how to do this expansion. 



Original KS idea: Simple metals 
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v(x) v(x)v(x)

µ

v(x)	
  

v(x) v(x)v(x)

n(x)	
  

WKB	
  for	
  one	
  level=>sum	
  over	
  many=>TF	
  theory	
  
Correc`ons	
  to	
  WKB	
  =>	
  sum	
  over	
  many	
  =>	
  gradient	
  expansion	
  	
  	
  
As	
  Ћ	
  	
  -­‐>	
  0,	
  TF	
  becomes	
  rela`vely	
  exact	
  (asympto`c	
  expansion)	
  



v(x)

Chemistry and most materials 
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•  TF	
  theory	
  STILL	
  rela`vely	
  exact	
  in	
  limit	
  Ћ	
  -­‐>	
  0.	
  
•  Leading	
  correc`ons	
  come	
  from	
  turning	
  points,	
  yielding	
  quantum	
  

oscilla`ons.	
  

µ

v(x)	
  

n(x)	
  

v(x)



Lieb-Simon limit 

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Semiclassical analysis and density functional theory

Consider scaling to continuum limit:

v ⇣(r) = ⇣1+1/d v(⇣1/d r) , N ! ⇣N.

where d is spatial dimension.

Lieb and Simon (1973) proved that Thomas-Fermi theory is
relatively exact as ⇣ ! 1, i.e.,

ETF � E0

E0
! 0

Equivalent to changing Z = N for neutral atoms.

Schwinger and Englert showed LDA exchange is relatively
exact for atoms as Z ! 1
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KS version of Lieb-Simon statement 

Outline Density functional theory Semiclassical analysis of DFT Toy model: SNIFs Closing

Conjecture on KS-DFT Exc

Almost certain that

ELDA
xc is relatively exact in the ⇣ ! 1 limit

lim
⇣!1

�ELDA

xc

EXC

=
ELDA

xc � Exc

EXC

= 0

Kieron’s instinct:

Success of simple local-type approximations is because they
are crude attempts to capture leading corrections to
asymptotic limit (LDA)

9 / 19
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Leading corrections 
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Corrections to Thomas-Fermi densities at turning points and beyond

Raphael F. Ribeiro,1 Donghyung Lee,2 Attila Cangi,3 Peter Elliott,3 and Kieron Burke1
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Uniform semiclassical approximations for the number and kinetic-energy densities are derived for
many non-interacting fermions in one-dimensional potentials with two turning points. The resulting
simple, closed-form expressions contain the leading corrections to Thomas-Fermi theory, involve
neither sums nor derivatives, are spatially uniform approximations, and are exceedingly accurate.

PACS numbers: 03.65.Sq 05.30.Fk 31.15.xg 71.15.Mb

Semiclassical approximations are both ubiquitous in
physics [1, 2] and notoriously di�cult to improve upon.
Most of us will recall the chapter on WKB in our quan-
tum textbook[3], yielding a simple and elegant result for
the eigenvalues of a particle in a one-dimensional poten-
tial. The more sensitive will have recoiled at the surgical
need to stitch together various regions (allowed, turning
point, and forbidden) to find the semiclassical eigenfunc-
tion. Summing the probability densities in the allowed
region yields the dominant contribution to the density,
but what are the leading corrections?

A little later, we should have learned Thomas-Fermi
(TF) theory[4, 5]. Thomas derived what we now call
the TF equation in 1926, without using Schrödinger’s
equation[6]. He calculated the energies of atoms, finding
results accurate to within about 10%. TF theory has
since been applied in almost all areas of physics[7]. For
the electronic structure of everyday matter, TF theory is
insu�ciently accurate for most purposes, but gave rise to
modern density functional theory (DFT)[8]. The heart
of TF theory is a local approximation, and the success of
semilocal approximations in modern DFT calculations of

electronic structure can be traced to the exactness of TF
in the semiclassical limit[9, 10]. So, what are the leading
corrections?
Despite decades of development in quantum theory,

the above questions, which are intimately related, remain
unanswered. Both the WKB and the TF approximations
can be derived from any formulation of non-relativistic
quantum mechanics, but none yields an obvious proce-
dure for finding the leading corrections. Mathematical
di�culties arise because ~ multiplies the highest deriva-
tive in the Schrodinger equation. Physically, the problem
is at the dark heart of the relation between quantum and
classical mechanics.
Here we derive a definitive solution to both these ques-

tions in a limited context: Non-interacting fermions in
one dimension. Researchers from solid-state, nuclear,
and chemical physics have sought this result for over 50
years [11–21]. The TF density for the lowest N occupied
orbitals is

n

TF(x) = pF(x)/(~⇡), pF(x) � 0 (1)
where pF(x) is the classical momentum at the Fermi en-
ergy, EF, chosen to ensure normalization, and vanishes
elsewhere. This becomes

n

sc(x) =
pF(x)

~

" 
p
zAi2(�z) +

Ai
0
2(�z)p
z

!
+

✓
~!

F

csc[↵
F

(x)]

p

2

F(x)
� 1

2z3/2

◆
Ai(�z) Ai0(�z)

#

z=zF(x)

, (2)

where pF(x) is analytically continued into evanescent re-
gions, !F is the classical frequency at EF, and zF(x) and
↵F(x) are related to the classical action from the nearest
turning point, and Ai and Ai0 are the Airy function and
its derivative (details within). Eq. (2) contains the lead-
ing corrections to Eq. (1) for every value of x, without
butchery at the turning points. The primary importance
of this work is the existence of Eq. (2) and its deriva-
tion. A secondary point is the sheer accuracy of Eq. (2):
For N > 1, its result is usually indistinguishable (to the

eye) from exact, as in Fig. 1. Generalization of Eq. (2)
could prove invaluable in any field using semiclassics or
in orbital-free DFT[22].

The crucial step in the derivation is the use of the Pois-
son summation formula[23, 24]. While long-known[24–
26] for the description of semiclassical phenomena, it has
been little applied to bound states. Although the bare
result of its application appears quite complicated, each
of the resulting terms, which include contributions from
every closed classical orbit at the EF, can be simplified
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and summed. We assume only that the potential v(x) is
slowly-varying with dynamics lying on a topological cir-
cle. Accuracy improves as the number of particles grows
except when EF is near a critical point of v(x).
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FIG. 1. Thomas-Fermi (dashed) and semiclassical (dotted)
approximations to the density (solid) of 2 particles in a Morse
potential, v(x) = 15(e�x/2 � 2 e�x/4).

To begin, at energy E, the left (x�) and right (x
+

)
classical turning points satisfy v(x±) = E. The action,
measured from the left turning point, is

S(x,E) =

Z
x

x�(E)

dx p(x,E) (3)

where p(x,E) =
p
2m[E � v(x)] is the classical momen-

tum. The WKB quantization condition [2, 25, 27] is then

S [x
+

(E
j

), E
j

] = ⇡~
✓
j +

1

2

◆
, j 2 N. (4)

The accuracy of WKB quantized energies generally im-
prove as either j or m grows, ~ shrinks, or the potential
is stretched such that its rate of change becomes smaller
[2, 28]. But the WKB wavefunction is singular in the
turning point region [2, 27, 29–31]. Langer [32] obtained
a semiclassical wavefunction for the case where turning
points are simple zeroes of the momentum:

�

j

(x) =

s
2m!

j

p

j

(x)
z

1/4

j

(x) Ai [�z

j

(x)] , (5)

where !

j

= ~�1

@E

�

/@�|
�=j

is the frequency of the

corresponding classical orbit, and z

j

= [3S
j

(x)/2~]2/3.
In a classically-forbidden region, �p(x) = �i|p(x)| =
e

3i⇡/2|p(x)|, ensuring continuity through the turning
point. The Langer solution can also be used for prob-
lems with two turning points [33]. In this work we match
Langer functions from each turning point at the mid-
phase point x

j

m

where S

j

(xj

m

) = ~(j + 1/2)⇡/2. This
procedure ensures continuity everywhere.

Our task is to use Langer orbitals to find the asymp-
totic behavior of the density of N occupied orbitals,

n(x) =
N�1X

j=0

|�
j

(x)|2. (6)

We use the Poisson summation formula:

N�1X

j=0

f

j

=
1X

k=�1

Z
N�1/2

�1/2

d� f(�)e2⇡ik�, (7)

where f(�) is essentially any continuous function with
bounded first derivatives (except for a finite number of
points) that matches the f

j

when � 2 N [23, 24, 34].
Write

n(x) = n

0

(x) + n

1

(x), (8)

where n

0

(x) is the contribution from k = 0, and n

1

(x) is
all the rest. Then, for m = 1,

n

0

(x) = 2
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N�1/2

�1/2

d�
!

�

p
z

�

(x)

p

�

(x)
Ai2[�z

�

(x)]. (9)

The lower bound of the integral corresponds to the stable
fixed point of the potential well, and the upper bound
defines E

F

as that obtained by solving Eq. (4) for j =
N�1/2, whereN is the number of particles in the system.
Hereinafter, a subscript F denotes evaluation at EF, and
x is treated as a parameter. For instance, to approximate
the integral in Eq. 9 we employ the transformation � !
p

�

(x). Integrating by parts, using the Airy di↵erential
equation [35], changing variables, and neglecting higher-
order terms from the lower-bound of the integral in Eq.
9, we find:

n

0

(x) ⇠ ~�1

pF(x) g+[zF(x)] +

Z
zF (x)

z�1/2(x)

dz
p
z

@f

@z

g�(z),

(10)
where

g±(z) = z

1/2 Ai2(�z)± z

�1/2 Ai0
2

(�z) (11)

f(z) = p(z)/
p
z, and Ai0(z) = dAi(z)/dz.

Eq. (10) is useful for the extraction of the domi-
nant terms in an asymptotic expansion for n

0

(x). As
N grows, the coe�cients

p
z@f/@z become ever more

slowly-varying functions of the energy. Integrating by
parts, ignoring the remaining higher-order contribution,
and using
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����
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). We find
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where A

0

(z) = Ai(�z)Ai0(�z).
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Lesson 

•  Underlying success of DFT approximations is 
because they are semiclassical. 

•  I defy you to find semiclassical approximations in 
your many-body book (this specific limit). 

•  Very difficult to generate general forms: 
–  Standard methods often useful only in 1d 
–  Often fail in presence of Coulomb potentials 
–  Can reverse-engineer to deduce forms, but very difficult. 
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Holy grail? 

•  What formulation of QM might directly yield 
expressions for density functionals? 

•  Within such a formulation, it should be natural to 
show LDA exact in Lieb-Simon limit. 

•  It should be possible to isolate leading corrections. 
•  It may be possible to capture essential features 

with simple density functionals. 
•  Almost all successes and failures of local density 

functionals can be understood in this way. 

Dec	
  8,	
  2016	
   KITP	
  Kohn	
  Science	
  Symposium	
   29	
  



After a decade of work 
[99] Relevance of the Slowly Varying Electron Gas to Atoms, Molecules, and Solids John P. Perdew, Lucian 
A. Constantin, Espen Sagvolden, Kieron Burke, Phys. Rev. Lett. 97, 223002 (2006)  
[108] Restoring the Density­ Gradient Expansion for Exchange in Solids and Surfaces John P. Perdew, 
Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan 
Zhou, Kieron Burke, Phys. Rev. Lett. 100, 136406 (2008).  
[111] Semiclassical Origins of Density Functionals Peter Elliott, Donghyung Lee, Attila Cangi, Kieron Burke, 
Phys. Rev. Lett. 100, 256406 (2008).  
[113] Condition on the Kohn­Sham kinetic energy and modern parametrization of the Thomas­Fermi density 
Donghyung Lee, Lucian A. Constantin, John P. Perdew, Kieron Burke, J. Chem. Phys. 130, 034107 (2009).  
[118] Non­empirical derivation of the parameter in the B88 exchange functional Peter Elliott, Kieron Burke, 
Canadian Journal of Chemistry 87, 1485­1491 (2009). 
[125] Leading corrections to local approximations Attila Cangi, Donghyung Lee, Peter Elliott, Kieron Burke, 
Phys. Rev. B 81, 235128 (2010).  
[128] Communication: Ionization potentials in the limit of large atomic number Lucian A. Constantin, John 
C. Snyder, John P. Perdew, Kieron Burke, The Journal of Chemical Physics 133, 241103 (2010).  
[130] Electronic Structure via Potential Functional Approximations Attila Cangi, Donghyung Lee, Peter 
Elliott, Kieron Burke, E. K. U. Gross, Phys. Rev. Lett. 106, 236404 (2011).  
[146] Potential functionals versus density functionals Attila Cangi, E. K. U. Gross, Kieron Burke, Phys. Rev. A 
88, 062505 (2013).  
[157] Almost exact exchange at almost no computational cost in electronic structure Peter Elliott, Attila 
Cangi, Stefano Pittalis, E. K. U. Gross, Kieron Burke, Phys. Rev. A 92, 022513 (2015)  
[158] Atomic correlation energies and the generalized gradient approximation Kieron Burke, Antonio 
Cancio, Tim Gould, Stefano Pittalis, submitted and ArXiv:1409.4834 (2014).  
[159] Corrections to Thomas­-Fermi Densities at Turning Points and Beyond Raphael F. Ribeiro, Donghyung 
Lee, Attila Cangi, Peter Elliott, Kieron Burke, Phys. Rev. Lett. 114, 050401 (2015).  
[170] Uniform semiclassical approximations for one­-dimensional fermionic systems Raphael F. Ribeiro, 
Kieron Burke, submitted and ArXiv:1510.05676 (2015).  

Dec	
  8,	
  2016	
   KITP	
  Kohn	
  Science	
  Symposium	
   30	
  



A subtle mystery 

Total pages: 18

FIG. 1. � n

�

(x) for N = 1 harmonic potential where � =
1 (blue, with semiclassical approximation dashed red), 1/4
(orange), 1/16 (green), and TF (black).

superior to TF. Results within this paper demonstrate
this for several di↵erent potentials.

But DFT cares almost solely about energies [19]. To
connect the pointwise success of the uniform approxima-
tion with these, we calculate the integrated densities and
energy-densities in forbidden and allowed regions sepa-
rately. The semiclassical approximations allow us to de-
rive leading corrections to TF in each region analytically,
and check the results numerically. These are universal
formulas that apply to all (non-pathological) 1D poten-
tials. Again, the uniform approximations are vastly su-
perior to TF theory. However, we also show that the
improvements in allowed and forbidden regions are al-
ways equal and opposite, and so cancel from the total
energy components. The harmonic oscillator is a stark
example: because TF theory yields the exact energy com-
ponents for this case, the semiclassical approximation al-
ways worsen those energies!

This paper is devoted to demonstrating these facts and
discussing their consequences. We review in Section IIA
the semiclassical limit of nonrelativistic fermionic sys-
tems. In Sec.II B we establish the adopted notation while
providing a brief discussion of the uniform semiclassical
approximations derived in Refs. [13, 14]. Sec. III is
devoted to describing both numerical and analytic cal-
culations. Section IV provides a detailed description of
the leading corrections to TF components in di↵erent re-
gions of configuration space, ranging from pointwise (Sec.
IVA) to regional (Sec. IVB) and finally global (Sec.
IVC). In Sec. V, we study situations that di↵er quali-
tatively from the generic wells studied up to that point.
We see the breakdown of the semiclassical approximation
when the potential varies too rapidly (Sec. VA), how ex-
tended systems can be treated (Sec. VB) and tunneling
in a double well(Sec. VC). We close with a discussion of
the significance of these results, especially in the context
of density functional theory. The appendix collects useful
results about the Airy functions used in this paper.

II. BACKGROUND

A. General semiclassical limit of nonrelativistic
fermionic systems

Lieb and Simon proved in 1973 [5] that quantum-
mechanical nonrelativistic fermionic systems interacting
via the Coulomb interaction are exactly described by TF
theory in the semiclassical limit. In particular, this im-
plies the relative error of expectation values predicted by
TF theory goes to zero as the nuclear charges Z in the
system go to infinity. The reason Z gets involved here is
that it sets the relevant length scales for the Coulombic
problem [20].
More recently, Fournais et al. [21] proved that a gen-

eralization of the Lieb-Simon result is valid in any num-
ber of spatial dimensions, i.e., under semiclassical scaling,
all correlation functions of a quantum-mechanical system
(and therefore, all of its properties) agree with those ob-
tained by minimization of the TF energy functional in a
well-defined limit. Specifically, the predictions of TF the-
ory emerge from quantum mechanics when the number
of particles N is scaled to infinity and ~ ! 0 as N�1/d,
where d is the dimensionality of the considered config-
uration space. Hereafter, we restrict considerations to
1D.

B. Relevant classical variables and Thomas-Fermi
theory

Consider a 1D Hamiltonian

ĥ = �1

2

d2

dx2

+ v(x). (1)

We consider potentials that either vanish or diverge pos-
itively at large |x|. In the former case, we require at least
one bound state for the employed methods to be relevant.
We are interested in the ground-state ofN noninteracting
same-spin fermions at 0K in this potential. We list the
eigenvalues in increasing order, ✏

j

, j = 1, 2, ..., N. Then
we may write the particle density as

n(x) =
NX

j=1

|�
j

(x)|2,
Z 1

�1
dxn(x) = N. (2)

The kinetic energy may be written many ways, but we
chose a specific kinetic-energy density,

t(x) =
NX

j=1

[✏
j

� v(x)] |�
j

(x)|2,
Z 1

�1
dx t(x) = T.

= �1

2

NX

j=1

�⇤
j

(x)
d2�

j

(x)

dx2

. (3)

Unlike the particle density, the choice of kinetic energy
density is arbitrary, as the kinetic energy density is not
a physical observable.
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the TF results. The function K
2

is useful in Sec IVB
where we explore the small � limit.

FIG. 4. Same as Fig. 1, but for the kinetic energy density.

The value of this representation becomes clear when
we reintroduce �. Then

⇢
nsc

�

(x)
tsc
�

(x)

�
=

fsc

p

(kF(x), dF(x), ✓F(x)/�)

�
, (21)

i.e., beyond the trivial scaling with �, only the phase ar-
gument depends on �, as all other quantities are purely
classical. As � ! 0, only the arguments of the K

i

func-
tions change, becoming much larger for any fixed x. Al-
ternatively, the region of |✓| < ⇠, for fixed ⇠, which we call
the turning-point region, shrinks to a region in x space
of size �.

In Fig. 1 we only show the result given by the semi-
classical formula for � = 1. For all other values of �,
the semiclassical formula is everywhere indistinguishable
from the exact curve. In Fig. 4, we plot the analogous
curve for the scaled kinetic energy density, for which the
semiclassical approximation is (slightly) less accurate.

In Fig. 5, we plot the ratio of semiclassical and exact
densities for di↵erent values of �. It appears to approach
1 everywhere, showing that its relative error vanishes for
su�ciently small �, for all values of x. This shows that
it is a uniform asymptotic expansion and su↵ers none of
the di�culties of patching for di↵erent regions, despite
the qualitatively di↵erent behavior of spatially-varying
properties in the traveling, transition and evanescent re-
gions. In fact, for |x| su�ciently large, the semiclassi-
cal density decay is exponential in |✓F(x)| (see Eq. (22)
of Ref. [13]), which does not match the decay of the
exact density, which is dominated by the highest occu-
pied level, |�

N

(x)|2. Thus the fractional error eventually
grows again beyond the edges of the figure. But as � ! 0,
the point at which this error becomes noticeable becomes
ever larger.

These formulas are remarkable for their ability to yield
extremely accurate results using only classical inputs.
Fig. 1 shows that, for the ground-state of the harmonic
oscillator, they yield densities that are indistinguishable

FIG. 5. n

sc(x)/n(x) for the harmonic oscillator with � = 1
(blue), 1/2 (red), 1/4 (green), 1/8 (orange), and 1/16 (black).

from the exact quantum curves. Yet no di↵erential equa-
tion has been solved to evaluate them, and they apply to
all potentials. The smoother the potential is, the more
accurate the result will be, even with only one occupied
level.

III. METHODS

A. Numerical

One of the great features of the uniform semiclassi-
cal approximations for the particle and kinetic energy
densities is that they allow us to obtain these quantities
with minimal e↵ort. This is to the contrary of numeri-
cally solving the Schrodinger equation for systems with
a large number of particles. In this section we explain
the numerical methods employed in the paper to com-
pare semiclassical and Thomas-Fermi theory with exact
results.

Accurate numerical solutions for the Schrodinger equa-
tion were extracted with the Matrix Numerov method
[23] whenever the studied potential could not be solved
analytically. A grid spacing of O

�
10�3

�
was chosen and

the size L of the studied region depended on each po-
tential. This choice of parameters was guided by the re-
quirement that both kinetic and total energies converge
(relative to both grid spacing and L) up to at least the
3rd decimal digit (except for the double wells where we
only enforced convergence up to the 2nd decimal digit).
In every case we checked that both the exact particle and
kinetic energy densities were at least of O(10�5) when
x = ±L. For calculations with � << 1, smaller grid
spacings were needed to capture the oscillations and the
more rapid decay in the evanescent region. Mathematica
10.1 was employed in all computations [24].
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Summary 

•  Introduction 
•  DFT incredibly successful in terms of applications 
•  DFT incredibly annoying in terms of derivations 

•  Modern DFT research 
•  Studies of exact functional 
•  As many approaches as practitioners 

•  My Perspective 
•  We are missing the semiclassical chapter in our quantum 

many-body books. 
•  Suggests there’s another way to formulate QM 
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