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Quantum chaos and quantum gravity

Quantum chaos ↔ Quantum gravity
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Black holes are thermal

Strong chaos underlies thermal behavior in ordinary systems

Quantum black holes are thermal

They have entropy [Bekenstein]

They have temperature [Hawking]

Suggests a connection between quantum black holes and chaos
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AdS/CFT

Gauge/gravity duality:
AdS/CFT

Thermal state of field theory on
boundary

Black hole in bulk

Chaos in thermal field theory ↔
what phenomenon in black
holes?

[Maldacena, Sci. Am.]

2 + 1 dim boundary
3 + 1 dim bulk
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Butterfly effect

Strong chaos – sensitive dependence on initial conditions, the
“butterfly effect”

Classical mechanics

v(0), v(0) + δv(0) two nearby points in phase space

|δv(t)| ∼ eλLt |δv(0)|

λL a Lyapunov exponent

What is the “quantum butterfly effect”?
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Quantum diagnostics

Basic idea [Larkin-Ovchinnikov]

General picture [Almheiri-Marolf-Polchinsk-Stanford-Sully]

W (t) = e iHtW (0)e−iHt

Forward time evolution, perturbation, then backward time evolution

Chaos causes a lack of cancellation, W (t) a complicated operator
(“precursor”)
[Polchinski-Susskind-Toumbas, Roberts-Stanford-Susskind]

C (t) = −〈[W (t),V (0)]2〉, increases with time
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Quantum diagnostics

C (t) = −〈[W (t),V (0)]2〉, four terms

Significant time dependence from the

out-of-time order correlator (OTOC)

D(t) = 〈W (t)V (0)W (t)V (0)〉

D(t) decreases with time due to chaos
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Measuring D

D(t) = 〈W (t)V (0)W (t)V (0)〉

To measure D one must evolve forward, then backward, in time.

Or change the sign of H

Many body version of spin echo–Loschmidt echo.
[Pastawski et al. ...]

Proposed experiments in cavity QED
[Swingle-Bentsen-Schleier-Smith-Hayden]

Initial experiments (in ion and NMR systems) have been done...
Li-Fan-Wang-Ye-Zeng-Zhai-Peng-Du;

Garttner-Bohnet-Safavi-naini-Wall-Bollinger-Rey]
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Holographic calculation of D

Holographic calculation of OTOCs, and related quantities.
[SS-Stanford; Kitaev]

The onset of chaos is dual to a high energy gravitational
collision near the black hole horizon.

Why high energies?

t becomes a lightlike direction at the horizon. Implies an enormous
redshift between the horizon and a far away observer.

For a wavepacket to start very near the horizon at time 0 and end up
far away with thermal energy T at time t, it must start with
enormous energy E ∼ T exp (2πβ t).
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Holographic calculation of D, contd.

Gravitational scattering ∼ GNE
2
com

GN ∼ inverse number of degrees of freedom ∼ 1/N2

D ∼ c0 − c1
N2 exp (2πβ t) + . . .

exp (2πβ t)→ exp (λLt) [Kitaev]

λL = 2π
β = 2πT
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A bound on chaos

A number of results suggest that this gravitational result should be a
universal bound ( for systems with large numbers of degrees of
freedom and “reasonable” interactions)
[Maldacena-SS-Stanford]

λL ≤ 2π
β +O( 1

N2 )

In the spirit of the KSS conjecture, η/s ≥ 1
4π

A numerically precise refinement of the Fast Scrambling Conjecture
[Sekino-Susskind]

One of a growing number of bounds motivated by gravity, firmly
established on general grounds

Stephen Shenker (Stanford University) Quantum gravity and quantum chaos Walter Kohn Symposium 11 / 26



The chaos bound–flavor of argument

[Maldacena-SS-Stanford]

OTOCs are analytic in time.

Expect that chaotic decrease should persist for small amounts of
imaginary time

For F (t), a special OTOC, the chaotic decrease in time persists when
t → t + iτ , at least up to |τ | = β/4. (Hard part)

For simplicity assume F (t) ∼ 1− 1
N2 e

λLt

If λL is very large, the exponential will oscillate fast in τ ,
changing − to +.

|τ | ≤ β/4 =⇒ λL ≤ 2π
β (+O( 1

N2 ))
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Sachdev-Ye-Kitaev Model

What systems saturate the chaos bound?

A variant of the Sachdev-Ye model ! (The Sachdev-Ye-Kitaev model)
[Kitaev]

Quantum mechanics of N species of Majorana fermions
{χa, χb} = δab

H =
∑

a,b,c,d Jabcdχaχbχcχd J random

Jabcd gaussian distributed around 0, 〈J2abcd〉 = 1
N3 J

2

dim H = 2N/2 = L
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Sachdev-Ye-Kitaev model

H =
∑

a,b,c,d Jabcdχaχbχcχd

Vectorlike model. Solvable in a large N expansion, but not almost
integrable !

λL → 2π
β βJ,N →∞

Gravitational sector in the bulk, but many other states as well
(GN ∼ 1/N)
[ Maldacena-Stanford-Yang]

What can we do with this new tool?
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Finite black hole entropy from the bulk

Black holes have finite entropy equal to the area of the horizon in
Planck units

What accounts for this finite entropy–from the bulk point of view?
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A diagnostic

A simple diagnostic [Maldacena]. Let O be a bulk (smeared boundary)
operator.

〈O(t)O(0)〉 = tr
(
e−βHO(t)O(0)

)
/tre−βH

=
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/
∑
n

e−βEn

At short times can treat the spectrum as continuous. 〈O(t)O(0)〉
generically decays exponentially.

Perturbative quantum gravity–quasinormal modes. [Horowitz-Hubeny]
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A diagnostic, contd.

〈O(t)O(0)〉 =
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/
∑
n

e−βEn

But we expect the black hole energy levels to be discrete (finite
entropy) and generically nondegenerate (chaos).

Then at long times 〈O(t)O(0)〉 oscillates in an erratic way. It is
exponentially small and no longer decreasing.

What accounts for the end of smooth relaxation from the bulk point
of view?

A nonperturbative effect in quantum gravity.
(See also [Dyson-Kleban-Lindesay-Susskind; Barbon-Rabinovici])
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Another diagnostic, Z (t)Z ∗(t)

To focus on the oscillating phases remove the matrix elements. Use a
related diagnostic: [Papadodimas-Raju]∑

m,n

e−β(Em+En)e i(Em−En)t = Z (β + it)Z (β − it) = Z (t)Z ∗(t)

The “spectral form factor”

(Essentially) the fourier transform of the energy eigenvalue pair
distribution function ρ(2)(E ,E ′)

How does Z (t)Z ∗(t) decrease exponentially in magnitude to its
asymptotic (averaged) value?
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SYK model

The Sachdev-Ye-Kitaev model is a promising system in which to
investigate these questions
[Jordan Cotler, Guy Gur-Ari, Masanori Hanada, Joe Polchinski, Phil Saad, Stephen

Shenker, Douglas Stanford, Alex Streicher, Masaki Tezuka]

See also
[Garcia-Garcia–Verbaarschot]

J average smooths out erratic behavior, giving a smooth function of
time

Finite dimensional Hilbert space. For N = 34, L = 128K
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SYK 〈Z (t)Z ∗(t)〉
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What do they
mean?
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Random Matrix Theory

Chaotic quantum systems typically have fine grained energy level
statistics described by Random Matrix Theory (RMT) [Wigner; Dyson;

Bohigas-Giannoni-Schmit, Berry...]

Consider a simple model where H → M, an L× L (hermitian) random
matrix
[You-Ludwig-Xu]

The spectral form factor of RMT
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Random Matrix Theory 〈Z (t)Z ∗(t)〉
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Meaning
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The Plateau ↔ Eigenvalue
repulsion

The Ramp ↔ Spectral rigidity

The Dip ↔ Exponential
separation in scales
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Spectral rigidity
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Energies roughly evenly spaced – eigenvalue repulsion, no crossing
rule (“Dyson gas” – long range logarithmic interactions)

Long range fluctuations suppressed 〈δEn δEm〉 ∼ log |n −m|

Nearest neighbor balls and springs 〈δEn δEm〉 ∼ |n −m|

“Spectral rigidity”

Conjecture that these phenomena generically describe the long time
behavior of black hole horizon fluctuations for large AdS black holes

Lessons for nonperturbative quantum gravity....
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Lessons for quantum gravity

ρ(2)(E ,E ′) ∼ 1− sin2(L(E − E ′))

(L(E − E ′))2

The ramp is due to long range correlations: ρ(2) ∼ 1/(L(E − E ′))2

This is a 1/L2 perturbative effect in RMT

But in SYK and presumably more generally L ∼ eaN , so the ramp is
of order e−2aN , a nonperturbative effect of standard strength.

The plateau is due to the oscillatory behavior sin2(L(E − E ′)).
Continuing to imaginary E this is an e−L effect, the
Andreev-Altshuler instanton of RMT.

But in SYK, and presumably more generally, this is ∼ e−e
aN

, a novel
extremely small nonperturbative effect.
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A research program

A research program:

In SYK there is an exact nonperturbative rewrite in terms of singlet
bilocal fields: a proxy for a bulk theory.

G (t, t ′) = 1
Nχa(t)χa(t ′), Σ(t, t ′) a Lagrange multiplier enforcing this

identification

Z =
∫
dG (t, t ′)dΣ(t, t ′) exp(−N I [G ,Σ])

What part of the G ,Σ functional integral accounts for the ramp and
plateau?

Does this give a hint for higher dimensional examples of AdS/CFT ?
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