Super-Adiabatic Particle Number:
 Vacuum Particle Production in Real Time

Gerald Dunne

University of Connecticut
\& Helmholtz Institut Jena, Theoretisch-Physikalisches Institut
Friedrich-Schiller-Universität Jena

KITP Program Frontiers of Intense Laser Physics: August 5, 2014
R. Dabrowski \& GD: 1405.0302, PhysRevD90(2014)

Schwinger Effect: Pair Production from Vacuum

Schwinger critical field: $2 e E \frac{\hbar}{m c} \sim 2 m c^{2} \Rightarrow$

$$
E_{c} \approx \frac{m^{2} c^{3}}{e \hbar} \approx 10^{16} \mathrm{~V} / \mathrm{cm} \quad, \quad I_{c} \approx 4 \times 10^{29} \mathrm{~W} / \mathrm{cm}^{2}
$$

experimentally inaccessible scales
but, estimate based on constant-field approximation ...

Importance of Pulse Shape: Quantum Interference

- realistic short laser pulses have temporal structure [envelope, carrier-phase, chirp, focussing, ...]
- particle production is extremely sensitive to these, due to quantum interference
- we can learn to take advantage of this, to enhance the particle production effect
- critical intensity can be lowered several orders of magnitude

Importance of Pulse Shape: Quantum Interference

constant E field
monochromatic or single pulse

pulse with sub-cycle structure; carrier phase effect

Gaussian beam, ...

Particle Number in Quantum Field Theory

- the Schwinger effect: non-perturbative production of electron-positron pairs when an external electric field is applied to the quantum electrodynamical (QED) vacuum
- Parker-Zeldovich effect: cosmological particle production due to expanding cosmologies
- Hawking radiation: particle production due to black holes and gravitational horizon effects
- Unruh radiation: particle number as seen by an accelerating observer

Particle Number in Quantum Field Theory

QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...)

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle \equiv \exp \left(\frac{i}{\hbar} \Gamma[A]\right)
$$

vacuum persistence probability:

$$
\left|\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle\right|^{2}=\exp \left(-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]\right) \approx 1-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]
$$

Particle Number in Quantum Field Theory

QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...)

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle \equiv \exp \left(\frac{i}{\hbar} \Gamma[A]\right)
$$

vacuum persistence probability:

$$
\left|\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle\right|^{2}=\exp \left(-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]\right) \approx 1-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]
$$

Fredholm determinant: (Feynman, Schwinger, Matthews/Salam, ...)

$$
\Gamma[A]=\ln \operatorname{det}(i \not D+m+i \epsilon) \quad, \quad D_{\mu} \equiv \partial_{\mu}-\frac{i e}{\hbar c} A_{\mu}
$$

simple computation for constant E field

Particle Number in Quantum Field Theory

QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...)

$$
\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle \equiv \exp \left(\frac{i}{\hbar} \Gamma[A]\right)
$$

vacuum persistence probability:

$$
\left|\left\langle 0_{\text {out }} \mid 0_{\text {in }}\right\rangle\right|^{2}=\exp \left(-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]\right) \approx 1-\frac{2}{\hbar} \operatorname{Im} \Gamma[A]
$$

Fredholm determinant: (Feynman, Schwinger, Matthews/Salam, ...)

$$
\Gamma[A]=\ln \operatorname{det}(i \not D+m+i \epsilon) \quad, \quad D_{\mu} \equiv \partial_{\mu}-\frac{i e}{\hbar c} A_{\mu}
$$

simple computation for constant E field for realistic laser pulses we want more information:

- momentum distributions, spectra, ...
- optimization and quantum control
- backreaction

Particle Number in Quantum Field Theory

$$
|0\rangle_{\text {out }}
$$

$t=-\infty$
intermediate time

$$
t=+\infty
$$

Particle Number in Quantum Field Theory

local information?

$$
\operatorname{Im} \Gamma=V_{4} \frac{E^{2}}{4 \pi^{3}} e^{-\frac{m^{2} \pi}{E}} \quad ? \rightarrow ? \int d^{4} x \frac{E^{2}(x)}{4 \pi^{3}} e^{-\frac{m^{2} \pi}{E(x)}} \quad ? ? ?
$$

locally constant field approximation misses a lot of important physics: quantum interference
how to formulate this in general ?
perturbative effective field theory:

$$
\Gamma_{\mathrm{pert}}[A]=\int d^{4} x \mathcal{L}_{\text {pert }}\left(F, \partial F, \partial^{2} F, \ldots .\right)
$$

non-perturbative effective field theory:

$$
\operatorname{Im} \mathcal{L}_{\text {non-pert }}(x)=?
$$

Puzzles with Particle Production

in addition to experimental challenges, vacuum particle production presents fundamental conceptual and computational problems

- can it be seen ?
- optimization and quantum control ?
- particle concept in time-dependent background fields ?
- backreaction?
- cascades ?
- maximum electric field?
- correlations and quantum noise ?
- entanglement entropy and mutual information?

Mode Decomposition of Fields

spatial homogeneity $\Rightarrow \Phi_{k}(t)=a_{k} f_{k}(t)+b_{-k}^{\dagger} f_{-k}^{*}(t)$ mode Klein-Gordon equation:

$$
\left(\frac{d^{2}}{d t^{2}}+\omega_{k}^{2}(t)\right) f_{k}(t)=0
$$

Schwinger effect:

$$
\omega_{k}^{2}(t)=m^{2}+k_{\perp}^{2}+\left(k_{\|}-A_{\|}(t)\right)^{2}
$$

Parker-Zeldovich effect: metric $d s^{2}=-d t^{2}+a^{2}(t) d \Sigma^{2}$

$$
\omega_{k}^{2}(t)=H^{2}\left(\gamma^{2}+\left(\frac{2 k+d-3}{2}\right)\left(\frac{2 k+d-1}{2}\right) \operatorname{sech}^{2}(H t)\right)
$$

Adiabatic Particle Number

In a time-dependent background field there is no unique separation into positive and negative energy states with which to identify particles and anti-particles [Dirac, DeWitt, Parker].

For a slowly varying time-dependent background we can define an adiabatic particle number with respect to a reference basis that reduces to ordinary positive and negative energy plane waves at intial and final times when the background is constant

Particle Number in Quantum Field Theory

$$
|0\rangle_{\text {out }}
$$

$t=-\infty$
intermediate time

$$
t=+\infty
$$

Bogoliubov Transformation

Bogoliubov transformation to time-dependent creation/annihilation operators:

$$
\binom{\tilde{a}_{k}(t)}{\tilde{b}_{-k}^{\dagger}(t)}=\left(\begin{array}{cc}
\alpha_{k}(t) & \beta_{k}^{*}(t) \\
\beta_{k}(t) & \alpha_{k}^{*}(t)
\end{array}\right)\binom{a_{k}}{b_{-k}^{\dagger}}
$$

unitarity: $\left|\alpha_{k}(t)\right|^{2}-\left|\beta_{k}(t)\right|^{2}=1$

$$
\begin{aligned}
\Phi_{k}(t) & =a_{k} f_{k}(t)+b_{-k}^{\dagger} f_{-k}^{*}(t) \\
& =\tilde{a}_{k}(t) \tilde{f}_{k}(t)+\tilde{b}_{-k}^{\dagger}(t) \tilde{f}_{-k}^{*}(t)
\end{aligned}
$$

$\tilde{f}_{k}(t)$: reference mode functions

$$
f_{k}(t)=\alpha_{k}(t) \tilde{f}_{k}(t)+\beta_{k}(t) \tilde{f}_{-k}^{*}(t)
$$

Bogoliubov Transformation \& Adiabatic Particle Number

time-dependent adiabatic particle number:

$$
\tilde{\mathcal{N}}_{k}(t) \equiv\langle 0| \tilde{a}_{k}^{\dagger}(t) \tilde{a}_{k}(t)|0\rangle=\left|\beta_{k}(t)\right|^{2}
$$

vacuum: $a_{k}|0\rangle=0=b_{-k}|0\rangle$
total number of particles produced in mode k :

$$
\tilde{N}_{k} \equiv \tilde{\mathcal{N}}_{k}(t=+\infty)=\left|\beta_{k}(t=+\infty)\right|^{2}
$$

in this talk, consider the full time evolution of the adiabatic particle number $\tilde{\mathcal{N}}_{k}(t)$, as it evolves from an initial value of zero to some final asymptotic value $\tilde{N}_{k} \equiv \tilde{\mathcal{N}}_{k}(t=+\infty)$.

Bogoliubov Transformation \& Adiabatic Particle Number

immediate problem:
time-dependent adiabatic particle number, $\tilde{\mathcal{N}}_{k}(t)$, depends on the reference mode functions and so is not unique, at intermediate times
even though the final value at $t=+\infty$ is unique

Basis Dependence of Adiabatic Particle Number

Schwinger effect: $E(t)=E \operatorname{sech}^{2}(a t)$. Pulse parameters:
$E=0.25, a=0.1, k_{\perp}=0, k_{\|}=0$
blue and red defined w.r.t. different reference mode functions

Basis Dependence of Adiabatic Particle Number

close-up at late times

blue \& red defined w.r.t. different reference mode functions
same final value, but very different at intermediate times

Basis Dependence of Adiabatic Particle Number

reference functions: $f_{k}(t)=\alpha_{k}(t) \tilde{f}_{k}(t)+\beta_{k}(t) \tilde{f}_{-k}^{*}(t)$

$$
\tilde{f}_{k}(t) \equiv \frac{1}{\sqrt{2 W_{k}(t)}} e^{-i \int^{t} W_{k}}
$$

$\tilde{f}_{k}(t)$ solves time-dependent oscillator equation if

$$
W_{k}^{2}=\omega_{k}^{2}-\left[\frac{\ddot{W}_{k}}{2 W_{k}}-\frac{3}{4}\left(\frac{\dot{W}_{k}}{W_{k}}\right)^{2}\right]
$$

leading order adiabatic $\exp ^{\mathrm{n}}: W_{k}(t)=\omega_{k}(t)$, cf. WKB
also need momentum field operators $\Pi_{k}(t)=\dot{\Phi}_{k}^{\dagger}(t)$
$\dot{f}_{k}(t)=\left(-i W_{k}(t)+\frac{1}{2} V_{k}(t)\right) \alpha_{k}(t) \tilde{f}_{k}(t)+\left(i W_{k}(t)+\frac{1}{2} V_{k}(t)\right) \beta_{k}(t) \tilde{f}_{-k}^{*}(t)$

Basis Dependence of Adiabatic Particle Number

reference functions: $f_{k}(t)=\alpha_{k}(t) \tilde{f}_{k}(t)+\beta_{k}(t) \tilde{f}_{-k}^{*}(t)$

$$
\tilde{f}_{k}(t) \equiv \frac{1}{\sqrt{2 W_{k}(t)}} e^{-i \int^{t} W_{k}}
$$

$\tilde{f}_{k}(t)$ solves time-dependent oscillator equation if

$$
W_{k}^{2}=\omega_{k}^{2}-\left[\frac{\ddot{W}_{k}}{2 W_{k}}-\frac{3}{4}\left(\frac{\dot{W}_{k}}{W_{k}}\right)^{2}\right]
$$

leading order adiabatic $\exp ^{\mathrm{n}}: W_{k}(t)=\omega_{k}(t)$, cf. WKB also need momentum field operators $\Pi_{k}(t)=\dot{\Phi}_{k}^{\dagger}(t)$
$\dot{f}_{k}(t)=\left(-i W_{k}(t)+\frac{1}{2} V_{k}(t)\right) \alpha_{k}(t) \tilde{f}_{k}(t)+\left(i W_{k}(t)+\frac{1}{2} V_{k}(t)\right) \beta_{k}(t) \tilde{f}_{-k}^{*}(t)$
freedom in $W_{k}(t) \& V_{k}(t)$ encodes arbitrariness in defining positive and negative energy states at intermediate times

Basis Dependence of Adiabatic Particle Number

Conventional choices:

1. $W_{k}(t)=\omega_{k}(t)$ and $V_{k}(t)=0 \rightarrow$ time evolution of Bogoliubov coefficients:

$$
\binom{\dot{\alpha}_{k}(t)}{\dot{\beta}_{k}(t)}=\frac{\dot{\omega}_{k}(t)}{2 \omega_{k}(t)}\left(\begin{array}{cc}
0 & e^{2 i \int^{t} \omega_{k}} \\
e^{-2 i \int^{t} \omega_{k}} & 0
\end{array}\right)\binom{\alpha_{k}(t)}{\beta_{k}(t)}
$$

2. $W_{k}(t)=\omega_{k}(t)$ and $V_{k}(t)=-\frac{\dot{W}_{k}(t)}{W_{k}(t)} \rightarrow$ time evolution of Bogoliubov coefficients:

$$
\binom{\dot{\alpha}_{k}(t)}{\dot{\beta}_{k}(t)}=\frac{1}{4 i}\left(\frac{3}{2} \frac{\dot{\omega}_{k}^{2}(t)}{\omega_{k}^{3}(t)}-\frac{\ddot{\omega}_{k}(t)}{\omega_{k}^{2}(t)}\right)\left(\begin{array}{cc}
1 & e^{2 i \int^{t} \omega_{k}} \\
-e^{-2 i \int^{t} \omega_{k}} & -1
\end{array}\right)\binom{\alpha_{k}(t)}{\beta_{k}(t)}
$$

Computation for Time Dependent Electric Fields

- in a chosen basis, evolve Bogoliubov coefficients $\alpha_{k}(t)$ and $\beta_{k}(t)$ from $t=-\infty$ to $t=+\infty$, with $\beta_{k}(-\infty)=0$

$$
\binom{\alpha_{k}(-\infty)}{\beta_{k}(-\infty)}=\binom{1}{0} \quad \longrightarrow \quad\binom{\alpha_{k}(+\infty)}{\beta_{k}(+\infty)}
$$

- total asymptotic particle number: $\tilde{N}_{k}=\left|\beta_{k}(t=+\infty)\right|^{2}$
- do for each momentum mode k, momentum of the produced particles along the electric field direction
- useful analogy: $\frac{\left|\beta_{k}(t=+\infty)\right|^{2}}{\left|\alpha_{k}(t=+\infty)\right|^{2}}$ is the reflection probability for over-the-barrier scattering for the "Schrödinger equation" $\left(-\frac{d^{2}}{d t^{2}}-\left(k_{\|}-A_{\|}(t)\right)^{2}\right) f_{k}(t)=\left(m^{2}+k_{\perp}^{2}\right) f_{k}(t)$

Importance of Quantum Interference

- realistic short laser pulses have temporal structure [envelope, carrier-phase, chirp, ...]
- particle production is extremely sensitive to these, due to quantum interference
- we can learn to take advantage of this, to enhance the particle production effect

Particle Number in Quantum Field Theory

$$
|0\rangle_{\text {out }}
$$

$t=-\infty$
intermediate time

$$
t=+\infty
$$

Dynamical Schwinger Mechanism

[Schützhold, GD, Gies, PRL 2008; Di Piazza, Lötstedt, Milstein, Keitel, PRL 2009]
superimpose strong slow field (optical laser) with fast weak pulse (X-ray laser): leads to exponential enhancement

lowers Schwinger critical field by several orders of magnitude

Quantum Interference: Carrier Phase

carrier phase effect
[Hebenstreit, Alkofer, GD, Gies, PRL 2009]

$$
E(t)=E_{0} \exp \left(-\frac{t^{2}}{\tau^{2}}\right) \cos (\omega t+\phi)
$$

time-domain analogue of multiple-slit interference, from vacuum
sensitive measure of sub-cycle pulse structure

Quantum Interference: Ramsey Effect

alternating-sign pulse sequence
[Akkermans, GD, PRL 2012]

N-pulse sequence $\Rightarrow N^{2}$ enhancement in certain modes time-domain analogue of N -slit interference measured in tunnel junctions (Gabelli/Reulet, 2012)

Quantum Interference: Complex WKB

$$
\left(-\frac{d^{2}}{d t^{2}}-\left(k_{\|}-A_{\|}(t)\right)^{2}\right) f_{k}(t)=\left(m^{2}+k_{\perp}^{2}\right) f_{k}(t)
$$

- over-the-barrier scattering: turning points only in the complex plane
- pulses with sub-structure have multiple sets of turning points
- WKB integral between complex conjugate turning points \rightarrow magnitude of creation event
- WKB integral between neighboring turning points
\rightarrow interference phases

$$
\beta_{k}(\infty) \approx \sum_{t_{p}}\left(e^{-2 i \int_{-\infty}^{R e\left(t_{p}\right)} \omega_{\mathbf{k}}(t) d t}\right)\left(e^{-2 i \int_{R e\left(t_{p}\right)}^{R e\left(t_{p}\right)+i \operatorname{Im}\left(t_{p}\right)} \omega_{\mathbf{k}}(t) d t}\right)
$$

Quantum Interference: Stokes Phenomenon

particle production requires global information to connect
$t=-\infty$ to $t=+\infty$
Stokes lines and anti-Stokes lines separate different regions of asymptotic behavior

particle production $=$ Stokes phenomenon, the appearance/disappearance of exponentially small/large terms as Stokes lines are crossed
[Dumlu, GD, PRL 2010]

Quantum Interference: Complex WKB

$$
E(t)=E_{0} e^{-t^{2} / \tau^{2}} \cos (\omega t)
$$

$$
E(t)=E_{0} e^{-t^{2} / \tau^{2}} \sin (\omega t)
$$

Adiabatic Particle Number and Quantum Interference

- what effect does quantum interference have on adiabatic particle number ?
- what is happening near the turning points ?

The Adiabatic Expansion: recall $\tilde{f}=\frac{e^{-i} \int^{t} W_{k}}{\sqrt{2 W_{k}(t)}}$

expand $W_{k}^{2}=\omega_{k}^{2}-\left[\frac{\ddot{W}_{k}}{2 W_{k}}-\frac{3}{4}\left(\frac{\dot{W}_{k}}{W_{k}}\right)^{2}\right]$ in derivatives of $\omega_{k}(t)$:

1. Leading order: $W_{k}^{(0)}(t)=\omega_{k}(t)$
2. Next-to-leading order: $W_{k}^{(1)}(t)=\omega_{k}(t)-\frac{1}{4}\left(\frac{\ddot{\omega}_{k}}{\omega_{k}^{2}}-\frac{3}{2} \frac{\dot{\omega}_{k}^{2}}{\omega_{k}^{3}}\right)$
3. Next-to-next-to-leading order:

$$
\begin{aligned}
& W_{k}^{(2)}(t)=\omega_{k}(t)-\frac{1}{4}\left(\frac{\ddot{\omega}_{k}}{\omega_{k}^{2}}-\frac{3}{2} \frac{\dot{\omega}_{k}^{2}}{\omega_{k}^{3}}\right) \\
& -\frac{1}{8}\left(\frac{13}{4} \frac{\ddot{\omega}_{k}^{2}}{\omega_{k}^{5}}-\frac{99}{4} \frac{\dot{\omega}_{k}^{2} \ddot{\omega}_{k}}{\omega_{k}^{6}}+5 \frac{\dot{\omega}_{k} \ddot{\omega}_{k}}{\omega_{k}^{5}}+\frac{1}{2} \frac{\stackrel{(4)}{\omega_{k}}}{\omega_{k}^{4}}+\frac{297}{16} \frac{\dot{\omega}_{k}^{4}}{\omega_{k}^{7}}\right)
\end{aligned}
$$

The Adiabatic Expansion: recall $\tilde{f}=\frac{e^{-i \int^{t} W_{k}}}{\sqrt{2 W_{k}(t)}}$

expand $W_{k}^{2}=\omega_{k}^{2}-\left[\frac{\ddot{W}_{k}}{2 W_{k}}-\frac{3}{4}\left(\frac{\dot{W}_{k}}{W_{k}}\right)^{2}\right]$ in derivatives of $\omega_{k}(t)$:

1. Leading order: $W_{k}^{(0)}(t)=\omega_{k}(t)$
2. Next-to-leading order: $W_{k}^{(1)}(t)=\omega_{k}(t)-\frac{1}{4}\left(\frac{\ddot{\omega}_{k}}{\omega_{k}^{2}}-\frac{3}{2} \frac{\dot{\omega}_{k}^{2}}{\omega_{k}^{3}}\right)$
3. Next-to-next-to-leading order:

$$
\left.\begin{array}{rl}
W_{k}^{(2)}(t)= & \omega_{k}(t)-\frac{1}{4}\left(\frac{\ddot{\omega}_{k}}{\omega_{k}^{2}}-\frac{3}{2} \frac{\dot{\omega}_{k}^{2}}{\omega_{k}^{3}}\right) \\
& -\frac{1}{8}\left(\frac{13}{4} \frac{\ddot{\omega}_{k}^{2}}{\omega_{k}^{5}}-\frac{99}{4} \frac{\dot{\omega}_{k}^{2} \ddot{\omega}_{k}}{\omega_{k}^{6}}+5 \frac{\dot{\omega}_{k} \ddot{\omega}_{k}}{\omega_{k}^{5}}+\frac{1}{2} \frac{14}{\omega_{k}}\right. \\
\omega_{k}^{4}
\end{array} \frac{297}{16} \frac{\dot{\omega}_{k}^{4}}{\omega_{k}^{7}}\right) .
$$

a complicated mess !!! ... looks hopeless

Super-Adiabatic Basis

a closer look at the adiabatic expansion:

- adiabatic expansion is divergent (asymptotic)
- expressions for $W_{k}^{(j)}(t)$ in terms of $\omega_{k}(t)$ rapidly become more and more complicated
- situation look uninteresting and hopeless at high orders
- Dingle found remarkable universal large-order behavior

Super-Adiabatic Basis

Define the "singulant" variable

$$
F_{k}(t)=2 i \int_{t_{c}}^{t} \omega_{k}\left(t^{\prime}\right) d t^{\prime}
$$

expand

$$
W_{k}(t)=\omega_{k}(t) \sum_{l=0}^{\infty} \varphi_{k}^{(2 l)}(t)
$$

simple and universal large-order behavior:

$$
\varphi_{k}^{(2 l+2)}(t) \sim-\frac{2}{\pi} \frac{(2 l+1)!}{\left[F_{k}(t)\right]^{2 l+2}} \quad, \quad l \gg 1
$$

Super-Adiabatic Basis

$W_{k}^{(0)}: 1$ term
$W_{k}^{(1)}: 3$ terms
$W_{k}^{(2)}: 8$ terms
$W_{k}^{(3)}: 19$ terms
$W_{k}^{(4)}: 41$ terms
$W_{k}^{(5)}: 83$ terms
$W_{k}^{(6)}: 160$ terms
$W_{k}^{(7)}: 295$ terms
$W_{k}^{(8)}: 526$ terms
$W_{k}^{(9)}: 911$ terms
$W_{k}^{(10)}: 1538$ terms
$W_{k}^{(11)}: 2540$ terms

Super-Adiabatic Basis

Berry: universal time dependence of Bogoliubov coefficient near turning point:

$$
\begin{aligned}
& \beta_{k}(t) \approx \frac{i}{2} \operatorname{Erfc}\left(-\sigma_{k}(t)\right) e^{-F_{k}^{(0)}} \\
& F_{k}^{(0)}=\operatorname{Im} \int_{t_{c}}^{t_{c}^{*}} \omega_{k}(t) d t \\
& \sigma_{k}(t) \approx \frac{2 \omega_{k}\left(s_{c}\right)\left(t-s_{c}\right)}{\sqrt{2 F_{k}\left(s_{c}\right)}}
\end{aligned}
$$

Super-Adiabatic Particle Number

super-adiabatic particle number:

$$
\tilde{\mathcal{N}}_{k}(t) \approx \frac{1}{4}\left|\operatorname{Erfc}\left(-\sigma_{k}(t)\right) e^{-F_{k}^{(0)}}\right|^{2}
$$

recall: optimal order of truncation of an asymptotic expansion depends on the value of the expansion parameter optimal truncation of adiabatic expansion at order j :

$$
j \approx \operatorname{Int}\left[\frac{1}{2}\left(\left|F_{k}^{(0)}\right|-1\right)\right]
$$

Super-Adiabatic Particle Number: examples

Super-Adiabatic Particle Number

realistic laser pulses have temporal sub-structure, which means multiple pairs of complex turning points

Super-Adiabatic Particle Number

super-adiabatic particle number with multiple turning point pairs:

$$
\tilde{\mathcal{N}}_{k}(t) \approx \frac{1}{4}\left|\sum_{t_{p}} \exp \left(2 i \theta_{k}^{(p)}\right) \exp \left(-F_{k, t_{p}}^{(0)}\right) \operatorname{Erfc}\left(-\sigma_{k}^{(p)}(t)\right)\right|^{2}
$$

Super-Adiabatic Particle Number: examples

two alternating-sign pulses \Rightarrow constructive or destructive interference for different k modes

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with constructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with constructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with constructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with constructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses \Rightarrow constructive or destructive interference for different k modes

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with destructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with destructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with destructive interference:

Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with destructive interference:

Super-Adiabatic Particle Number: examples

alternating-sign pulses with coherent constructive interference:

1: 4

1: 4: 9

Super-Adiabatic Particle Number: examples

momentum spectrum for alternating-sign pulses:

Super-Adiabatic Particle Number: examples

momentum spectrum for alternating-sign pulses:

Super-Adiabatic Particle Number: examples

$t=-7.5 \quad t=+7.5$

Super-Adiabatic Particle Number

$$
\tilde{\mathcal{N}}_{k}(t) \approx \frac{1}{4}\left|\sum_{t_{p}} \exp \left(2 i \theta_{k}^{(p)}\right) \exp \left(-F_{k, t_{p}}^{(0)}\right) \operatorname{Erfc}\left(-\sigma_{k}^{(p)}(t)\right)\right|^{2}
$$

- super-adiabatic particle number is smooth in time, and in momentum
- sensible definition because of universality (Dingle/Berry)

Super-Adiabatic Particle Number: de Sitter space

cosmological particle production: particle number in an expanding/contracting universe

- particle production in 4 dimensional spacetime (Mottola)
- particle production in even dimensional dS spacetime, but no particle production in odd dimensional dS spacetime (Bousso et al)
question: physical reason for this difference?

Super-Adiabatic Particle Number: 4d de Sitter space

cf. two-pulse coherent-constructive Schwinger effect

Super-Adiabatic Particle Number: 3d de Sitter space

cf. two-pulse coherent-destructive Schwinger effect

Conclusions

- adiabatic particle number is basis dependent at non-asymptotic times
- preferred super-adiabatic basis: optimal truncation of adiabatic expansion
- super-adiabatic particle number is smooth across "particle creation events"
- super-adiabatic particle number reveals quantum interference
- difference between $d S_{3}$ and $d S_{4}$ is quantum interference
- future: implications for back-reaction and quantum noise
- future: analogue systems: time-dependent Bogoliubov transformation problems

