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Schwinger Effect: Pair Production from Vacuum
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Figure 2. A static electric field can tear apart a virtual e+e� pair from the vacuum, producing

an asymptotic electron and positron, as shown on the left. On the other hand, a static magnetic

field does not break this virtual dipole apart, as shown on the right for a magnetic field directed

out of the page.

approaches a critical value Ec ⌅ m2c3

e� ⌅ 1016 Vcm�1, where the work done

accelerating a virtual pair apart by a Compton wavelength is of the order

of the rest mass energy for the pair. Such electric field strengths are well

beyond current technological capabilities, even in the most intense lasers.

For an excellent recent review of the search for this remarkable phenomenon

of vacuum pair production, see [14]. Even though the condition of a con-

stant electric field is rather unrealistic, Heisenberg and Euler’s result (1.10)

provides the starting point for more detailed analyses which incorporate

time-dependent electric fields, as is discussed below in Section 2.

1.2.3. Charge renormalization, ⌥-functions and the strong-field limit.

Another remarkable thing about Heisenberg and Euler’s result (1.2) is that

they correctly anticipated charge renormalization. The first term (on each

line) on the the RHS of (1.2) is the bare result, the second term is the

subtraction of a field-free infinite term, and the third term is the subtraction

of a logarithmically divergent term which has the same form as the classical

Maxwell Lagrangian. This last subtraction corresponds precisely to what

we now call charge renormalization, as was later formalized by Schwinger

[12, 13]. Indeed, the study of such logarithmically divergent terms was a

major focus of the early quantum field theory work of both Heisenberg and

Weisskopf. Weisskopf [2] noted the characteristic strong-field limit behavior

of the Heisenberg-Euler result (1.2), for example for spinor QED in a strong

magnetic background:
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⇥
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�
, B ⇤ ⇥ (1.12)

In modern language, the coe⌅cient of the logarithmic dependence of this

ratio is known as the one-loop QED ⌥-function, and Weisskopf anticipated

the importance of such logarithmic behavior. In later work [15] he showed

Schwinger critical field: 2eE ~
mc ∼ 2mc2 ⇒

Ec ≈
m2c3

e~
≈ 1016 V/cm , Ic ≈ 4× 1029 W/cm2

experimentally inaccessible scales

but, estimate based on constant-field approximation ...



Importance of Pulse Shape: Quantum Interference

I realistic short laser pulses have temporal structure
[envelope, carrier-phase, chirp, focussing, ...]

I particle production is extremely sensitive to these, due to
quantum interference

I we can learn to take advantage of this, to enhance the
particle production effect

I critical intensity can be lowered several orders of magnitude



Importance of Pulse Shape: Quantum Interference

constant E field

monochromatic 
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Particle Number in Quantum Field Theory

I the Schwinger effect: non-perturbative production of
electron-positron pairs when an external electric field is
applied to the quantum electrodynamical (QED) vacuum

I Parker-Zeldovich effect: cosmological particle production
due to expanding cosmologies

I Hawking radiation: particle production due to black holes
and gravitational horizon effects

I Unruh radiation: particle number as seen by an
accelerating observer



Particle Number in Quantum Field Theory

QED effective action: (Heisenberg/Euler, Feynman, Schwinger, Nambu, ...)

〈0out | 0in 〉 ≡ exp

(
i

~
Γ[A]

)

vacuum persistence probability:

|〈0out | 0in 〉|2 = exp

(
−2

~
Im Γ[A]

)
≈ 1− 2

~
Im Γ[A]

Fredholm determinant: (Feynman, Schwinger, Matthews/Salam, ...)

Γ[A] = ln det (iD/+m+iε) , Dµ ≡ ∂µ −
ie

~c
Aµ

simple computation for constant E field
for realistic laser pulses we want more information:

I momentum distributions, spectra, ...

I optimization and quantum control

I backreaction
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Particle Number in Quantum Field Theory

|0〉in

t = −∞ intermediate time

|0〉out

t = +∞



Particle Number in Quantum Field Theory

local information?

Im Γ = V4
E2

4π3
e−

m2π
E ?→ ?

∫
d4x

E2(x)

4π3
e
−m2π
E(x) ???

locally constant field approximation misses a lot of important
physics: quantum interference

how to formulate this in general ?

perturbative effective field theory:

Γpert[A] =

∫
d4xLpert

(
F, ∂F, ∂2F, ....

)

non-perturbative effective field theory:

ImLnon−pert(x) = ?



Puzzles with Particle Production

in addition to experimental challenges, vacuum particle
production presents fundamental conceptual and computational
problems

I can it be seen ?

I optimization and quantum control ?

I particle concept in time-dependent background fields ?

I backreaction ?

I cascades ?

I maximum electric field ?

I correlations and quantum noise ?

I entanglement entropy and mutual information ?



Mode Decomposition of Fields

spatial homogeneity ⇒ Φk(t) = akfk(t) + b†−kf
∗
−k(t)

mode Klein-Gordon equation:
(
d2

dt2
+ ω2

k(t)

)
fk(t) = 0

Schwinger effect:

ω2
k(t) = m2 + k2⊥ +

(
k‖ −A‖(t)

)2

Parker-Zeldovich effect: metric ds2 = −dt2 + a2(t) dΣ2

ω2
k(t) = H2

(
γ2 +

(
2k + d− 3

2

)(
2k + d− 1

2

)
sech2(Ht)

)



Adiabatic Particle Number

In a time-dependent background field there is no unique
separation into positive and negative energy states with which
to identify particles and anti-particles [Dirac, DeWitt,
Parker].

For a slowly varying time-dependent background we can define
an adiabatic particle number with respect to a reference basis
that reduces to ordinary positive and negative energy plane
waves at intial and final times when the background is
constant



Particle Number in Quantum Field Theory

|0〉in

t = −∞ intermediate time

|0〉out

t = +∞



Bogoliubov Transformation

Bogoliubov transformation to time-dependent
creation/annihilation operators:

(
ãk(t)

b̃†−k(t)

)
=

(
αk(t) β∗k(t)
βk(t) α∗k(t)

)(
ak
b†−k

)

unitarity: |αk(t)|2 − |βk(t)|2 = 1

Φk(t) = akfk(t) + b†−kf
∗
−k(t)

= ãk(t)f̃k(t) + b̃†−k(t)f̃
∗
−k(t)

f̃k(t): reference mode functions

fk(t) = αk(t) f̃k(t) + βk(t) f̃
∗
−k(t)



Bogoliubov Transformation & Adiabatic Particle
Number

time-dependent adiabatic particle number:

Ñk(t) ≡ 〈0| ã†k(t) ãk(t) |0〉 = |βk(t)|2

vacuum: ak|0〉 = 0 = b−k|0〉
total number of particles produced in mode k:

Ñk ≡ Ñk(t = +∞) = |βk(t = +∞)|2

in this talk, consider the full time evolution of the adiabatic
particle number Ñk(t), as it evolves from an initial value of zero
to some final asymptotic value Ñk ≡ Ñk(t = +∞).



Bogoliubov Transformation & Adiabatic Particle
Number

immediate problem:

time-dependent adiabatic particle number, Ñk(t), depends on
the reference mode functions and so is not unique, at
intermediate times

even though the final value at t = +∞ is unique



Basis Dependence of Adiabatic Particle Number

-15 -10 -5 0 5 10 15 20
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

t
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blue and red defined w.r.t. different reference mode functions



Basis Dependence of Adiabatic Particle Number

close-up at late times
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blue & red defined w.r.t. different reference mode functions

same final value, but very different at intermediate times



Basis Dependence of Adiabatic Particle Number

reference functions: fk(t) = αk(t) f̃k(t) + βk(t) f̃
∗
−k(t)

f̃k(t) ≡
1√

2Wk(t)
e−i

∫ tWk

f̃k(t) solves time-dependent oscillator equation if

W 2
k = ω2

k −


 Ẅk

2Wk
− 3

4

(
Ẇk

Wk

)2


leading order adiabatic expn: Wk(t) = ωk(t), cf. WKB

also need momentum field operators Πk(t) = Φ̇†k(t)

ḟk(t) =

(
−iWk(t) +

1

2
Vk(t)

)
αk(t) f̃k(t)+

(
iWk(t) +

1

2
Vk(t)

)
βk(t) f̃

∗
−k(t)

freedom in Wk(t) & Vk(t) encodes arbitrariness in defining
positive and negative energy states at intermediate times
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Basis Dependence of Adiabatic Particle Number

Conventional choices:

1. Wk(t) = ωk(t) and Vk(t) = 0 → time evolution of
Bogoliubov coefficients:

(
α̇k(t)

β̇k(t)

)
=

ω̇k(t)

2ωk(t)

(
0 e2i

∫ t ωk
e−2i

∫ t ωk 0

)(
αk(t)
βk(t)

)

2. Wk(t) = ωk(t) and Vk(t) = −Ẇk(t)
Wk(t)

→ time evolution of
Bogoliubov coefficients:

(
α̇k(t)

β̇k(t)

)
=

1

4i

(
3

2

ω̇2
k(t)

ω3
k(t)
− ω̈k(t)

ω2
k(t)

)(
1 e2i

∫ t ωk
−e−2i

∫ t ωk −1

)(
αk(t)
βk(t)

)



Computation for Time Dependent Electric Fields

I in a chosen basis, evolve Bogoliubov coefficients αk(t) and
βk(t) from t = −∞ to t = +∞, with βk(−∞) = 0

(
αk(−∞)
βk(−∞)

)
=

(
1
0

)
−→

(
αk(+∞)
βk(+∞)

)

I total asymptotic particle number: Ñk = |βk(t = +∞)|2

I do for each momentum mode k, momentum of the
produced particles along the electric field direction

I useful analogy: |βk(t=+∞)|2
|αk(t=+∞)|2 is the reflection probability for

over-the-barrier scattering for the "Schrödinger equation"(
− d2

dt2
− (k‖ −A‖(t))2

)
fk(t) = (m2 + k2⊥) fk(t)



Importance of Quantum Interference

I realistic short laser pulses have temporal structure
[envelope, carrier-phase, chirp, ...]

I particle production is extremely sensitive to these, due to
quantum interference

I we can learn to take advantage of this, to enhance the
particle production effect



Particle Number in Quantum Field Theory

|0〉in

t = −∞ intermediate time

|0〉out

t = +∞



Dynamical Schwinger Mechanism

[Schützhold, GD, Gies, PRL 2008; Di Piazza, Lötstedt, Milstein, Keitel, PRL 2009]

superimpose strong slow field (optical laser) with fast weak
pulse (X-ray laser): leads to exponential enhancement

lowers Schwinger critical field by several orders of magnitude

http://inspirehep.net/record/789976?ln=en
http://inspirehep.net/record/822190?ln=en


Quantum Interference: Carrier Phase

carrier phase effect [Hebenstreit, Alkofer, GD, Gies, PRL 2009]

E(t) = E0 exp

(
− t

2

τ2

)
cos (ω t+ φ)

� = 0

sensitive dependence on the other shape parameters, such
as !.

In fact, there is an even more distinctive dependence on
the carrier phase " upon which the form of the scattering

potential !!2ð ~k; tÞ is extremely sensitive. The carrier-
phase dependence is difficult to discuss in the WKB ap-
proach, because a nonzero carrier phase breaks the EðtÞ ¼
Eð!tÞ symmetry of the pulse shape, which in turn makes
the imaginary time treatment of the WKB scattering prob-
lem significantly more complicated [21]. But in the quan-
tum kinetic approach, the carrier phase causes no
computational problems; it is just another parameter. We
have found that the introduction of the carrier phase makes
the oscillatory behavior in the longitudinal momentum
distribution even more pronounced. This is shown in
Figs. 3 and 4, where the momentum distribution function
is plotted for " ¼ !#=4 and " ¼ !#=2. We see that, for
the same values of the other parameters, the oscillatory
behavior becomes more distinct as the phase offset in-
creases. The most distinctive momentum signature, how-
ever, is found for " ¼ !#=2, when the electric field is
totally antisymmetric. In this case, the asymptotic distri-

bution function fð ~k; tÞ vanishes at the minima of the oscil-
lations, as shown in Fig. 4. This feature also has a direct
analogue in the scattering picture: For an antisymmetric
field, the gauge potential Eq. (2) is symmetric, and so is the

scattering potential well !!2ð ~k; tÞ. In this case, perfect
transmission is possible for certain resonance momenta,
corresponding to zero reflection and thus zero pair produc-
tion. Also note that the center of the distribution shifts from
pkð1Þ ¼ 0 to a nonzero value again. These carrier-phase
effects provide distinctive signatures, strongly suggesting a
new experimental strategy and probe in the search for
Schwinger pair production.

These momentum signatures can also be understood in a
quantum-mechanical double-slit picture, which has first
been developed in the context of above-threshold ioniza-
tion with few-cycle laser pulses [35]: In this picture, the
oscillations are fringes in the momentum spectrum that
result from the interference of temporally separated pair

creation events. The fringes are large for" ¼ !#=2, since
then the field strength has two peaks of equal size (though
opposite sign) which act as two temporally separated slits.
Moving the carrier phase away from " ¼ !#=2 corre-
sponds to gradually opening or closing the slits, resulting in
a varying degree of which-way information and thus a
varying contrast of the interference fringes. A quantitative
consequence of this double-slit picture is that the width of
the envelope of the oscillations in the distribution function
is related to the temporal width of the slits. Thewidth of the
envelope of oscillations thus also becomes a probe of the
subcycle structure of the laser.
To complete the physical picture, we consider the over-

all envelope of the longitudinal momentum distribution,
again for " ¼ 0, averaging over the rapid oscillations.
When there are more than three cycles per pulse (! *
3), the peak of the momentum distribution is located near
pkð1Þ ¼ 0, whereas for ! & 3 the peak is shifted to a
nonzero value. Furthermore, the Gaussian width of the
employed WKB approximation Eq. (4), which scales
with

ffiffiffiffiffiffiffiffi
eE0

p
=~$, is obviously somewhat broader than the

true distribution, as is shown in Fig. 5. We can quantify
this discrepancy in the width, by extending the WKB result
beyond the Gaussian approximation inherent in Eq. (4). We
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FIG. 3. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for ! ¼ 5, E0 ¼ 0:1Ecr, and " ¼ !#=4. The center of the
distribution is shifted to pkð1Þ % 102 keV.
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FIG. 4. Asymptotic distribution function fð ~k;1Þ for ~k? ¼ 0
for ! ¼ 5, E0 ¼ 0:1Ecr, and " ¼ !#=2. The center of the
distribution is shifted to pkð1Þ % 137 keV.
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FIG. 5. Comparison of the asymptotic distribution function

fð ~k;1Þ for ~k? ¼ 0 (oscillating solid line) with the prediction
of Eq. (4) (dotted line) and the improved WKB approximation
based on an expansion of Eq. (5) (dashed line) for ! ¼ 5, E0 ¼
0:1Ecr, and " ¼ 0.
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time-domain analogue of multiple-slit interference, from
vacuum

sensitive measure of sub-cycle pulse structure

http://inspirehep.net/record/811243?ln=en


Quantum Interference: Ramsey Effect

alternating-sign pulse sequence [Akkermans, GD, PRL 2012]

-1.0 -0.5 0.0 0.5 1.0 k

10-13

2.10-13

3.10-13
Nk

2-pulse

-1.0 -0.5 0.0 0.5 1.0 k

10-12

3.10-12

5.10-12

7.10-12

Nk
10-pulse

N -pulse sequence ⇒ N2 enhancement in certain modes

time-domain analogue of N-slit interference

measured in tunnel junctions (Gabelli/Reulet, 2012)

http://inspirehep.net/record/927719?ln=en


Quantum Interference: Complex WKB

(
− d2

dt2
− (k‖ −A‖(t))2

)
fk(t) = (m2 + k2⊥) fk(t)

I over-the-barrier scattering: turning points only in the
complex plane

I pulses with sub-structure have multiple sets of turning
points

I WKB integral between complex conjugate turning points
→ magnitude of creation event

I WKB integral between neighboring turning points
→ interference phases

βk(∞) ≈
∑

tp

(
e−2i

∫Re(tp)
−∞ ωk(t) dt

)(
e
−2i

∫Re(tp)+i Im(tp)

Re(tp)
ωk(t) dt

)



Quantum Interference: Stokes Phenomenon

particle production requires global information to connect
t = −∞ to t = +∞
Stokes lines and anti-Stokes lines separate different regions of
asymptotic behavior

t1 t3

t2 t4

ReHtL

ImHtL

1.0 1.5 2.0 2.5
p�m

5.´10-9

1.´10-8

1.5´10-8

2.´10-8
N

particle production = Stokes phenomenon, the
appearance/disappearance of exponentially small/large terms as
Stokes lines are crossed [Dumlu, GD, PRL 2010]

http://inspirehep.net/record/852068?ln=en


Quantum Interference: Complex WKB

E(t) = E0 e
−t2/τ2 cos(ω t) E(t) = E0 e

−t2/τ2 sin(ω t)

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4



Adiabatic Particle Number and Quantum
Interference

I what effect does quantum interference have on adiabatic
particle number ?

I what is happening near the turning points ?

tc

t⇤c

Re(tc)
sc

Stokes line



The Adiabatic Expansion: recall f̃ = e−i
∫ t Wk√

2Wk(t)

expand W 2
k = ω2

k −
[
Ẅk
2Wk
− 3

4

(
Ẇk
Wk

)2]
in derivatives of ωk(t):

1. Leading order: W (0)
k (t) = ωk(t)

2. Next-to-leading order: W (1)
k (t) = ωk(t)− 1
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a complicated mess !!! . . . looks hopeless
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Super-Adiabatic Basis

a closer look at the adiabatic expansion:

I adiabatic expansion is divergent (asymptotic)

I expressions for W (j)
k (t) in terms of ωk(t) rapidly become

more and more complicated

I situation look uninteresting and hopeless at high orders

I Dingle found remarkable universal large-order behavior



Super-Adiabatic Basis

Define the “singulant” variable

Fk(t) = 2i

∫ t

tc

ωk(t
′) dt′

expand

Wk(t) = ωk(t)

∞∑

l=0

ϕ
(2l)
k (t)

simple and universal large-order behavior:

ϕ
(2l+2)
k (t) ∼ − 2

π

(2l + 1)!

[Fk(t)]
2l+2

, l� 1



Super-Adiabatic Basis

W
(0)
k : 1 term

W
(1)
k : 3 terms

W
(2)
k : 8 terms
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(3)
k : 19 terms
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(4)
k : 41 terms

W
(5)
k : 83 terms

W
(6)
k : 160 terms

W
(7)
k : 295 terms

W
(8)
k : 526 terms

W
(9)
k : 911 terms

W
(10)
k : 1538 terms

W
(11)
k : 2540 terms
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Super-Adiabatic Basis

Berry: universal time dependence of Bogoliubov coefficient near
turning point:

βk(t) ≈
i

2
Erfc (−σk(t)) e−F

(0)
k

F
(0)
k = Im

∫ t∗c

tc

ωk(t) dt

σk(t) ≈
2ωk(sc) (t− sc)√

2Fk(sc)

tc

t⇤c

Re(tc)
sc

Stokes line



Super-Adiabatic Particle Number

super-adiabatic particle number:

Ñk(t) ≈
1

4

∣∣∣Erfc (−σk(t)) e−F
(0)
k

∣∣∣
2

recall: optimal order of truncation of an asymptotic expansion
depends on the value of the expansion parameter

optimal truncation of adiabatic expansion at order j:

j ≈ Int

[
1

2

(∣∣∣F (0)
k

∣∣∣− 1
)]



Super-Adiabatic Particle Number: examples
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Super-Adiabatic Particle Number

realistic laser pulses have temporal sub-structure, which means
multiple pairs of complex turning points



Super-Adiabatic Particle Number

super-adiabatic particle number with multiple turning point
pairs:

tc

t⇤c

Re(tc)
sc

Stokes line

tc

t⇤c

Re(tc)
sc

Stokes line

interference

Ñk(t) ≈
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(p)
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)
exp
(
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)
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)
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Super-Adiabatic Particle Number: examples

two alternating-sign pulses ⇒ constructive or destructive
interference for different k modes
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Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with constructive interference:
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Super-Adiabatic Particle Number: examples

two alternating-sign pulses, with destructive interference:
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Super-Adiabatic Particle Number: examples

alternating-sign pulses with coherent constructive
interference:
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Super-Adiabatic Particle Number: examples
momentum spectrum for alternating-sign pulses:
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Super-Adiabatic Particle Number: examples

momentum spectrum for alternating-sign pulses:



Super-Adiabatic Particle Number: examples
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Note that as a function of the longitudinal momentum k, these particle spectra represent the n-slit interference
pattern, here probed in the time-domain from the quantum vacuum [69]. In Figure 13 we show these momentum

spectra (for the final asymptotic particle number Nk = Ñk(t = +∞)), for the cases of one, two and three pulses, of
the forms (36), (37), and (39), respectively.

t = −7.5 t = +7.5

t = +30

FIG. 15: As in (14), but plotted over specific time ranges, ending with cross-sections at t = −7.5, t = +7.5, and t = +30,
respectively, to illustrate the time evolution of the longitudinal momentum spectrum (red-filled) of the produced particles
during the time periods between the particle creation events due to the pulses at t = 0, ±15. The highlighted longitudinal
momentum spectrum of each subplot follows the n-slit interference pattern (44), which can be compared to the asymptotic
momentum spectra shown in Figure 13, for one, two and three pulses, respectively.

In this paper we consider not just these final values for the asymptotic particle number, but also the time evolution
of the adiabatic particle number. Since Berry’s universal time-evolution corresponds to the behavior in the vicinity
of a single turning point pair, we need to generalize the result (32) to the case with several (complex conjugate pairs
of) turning points, as occurs for electric fields with nontrivial temporal substructure [68]. Some steps in this direction
were taken for non-relativistic two-level systems [80].

The natural generalization of (32) is the following:

Ñk(t) ≈ 1

4

������
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tp

exp
�
2iθ

(p)
k

�
exp
�
−F

(0)
k,tp

�
Erfc

�
−σ

(p)
k (t)

�
������

2

(45)

We have verified numerically that this form fits well with the time evolution of the super-adiabatic particle number
for sequences of time-dependent pulses for different field parameters and different momenta. In Figures 14 and 15 we
show plots of the super-adiabatic particle number (45) as a function of both time and the longitudinal momentum

18

Note that as a function of the longitudinal momentum k, these particle spectra represent the n-slit interference
pattern, here probed in the time-domain from the quantum vacuum [69]. In Figure 13 we show these momentum
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Super-Adiabatic Particle Number

Ñk(t) ≈
1

4
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∑
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exp
(
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k

)
exp
(
−F (0)

k,tp

)
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(
−σ(p)k (t)

)
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2

I super-adiabatic particle number is smooth in time, and in
momentum

I sensible definition because of universality (Dingle/Berry)



Super-Adiabatic Particle Number: de Sitter space

cosmological particle production: particle number in an
expanding/contracting universe

I particle production in 4 dimensional spacetime (Mottola)

I particle production in even dimensional dS spacetime,
but no particle production in odd dimensional dS spacetime
(Bousso et al)

question: physical reason for this difference ?



Super-Adiabatic Particle Number: 4d de Sitter space
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Super-Adiabatic Particle Number: 3d de Sitter space
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Conclusions

I adiabatic particle number is basis dependent at
non-asymptotic times

I preferred super-adiabatic basis: optimal truncation of
adiabatic expansion

I super-adiabatic particle number is smooth across “particle
creation events”

I super-adiabatic particle number reveals quantum
interference

I difference between dS3 and dS4 is quantum interference

I future: implications for back-reaction and quantum noise

I future: analogue systems: time-dependent Bogoliubov
transformation problems




