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Some key results of SLAC E-144

Compton scattering
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Conclusion:

Detection of Compton
Scattering
Good fit with simulation
results

Bula, C., et al. ”Observation of nonlinear effects in Compton
scattering.” Physical Review Letters 76.17 (1996): 3116.

Electron-positron production
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Conclusion:

Detection of Breit-Wheeler
process
NO detection of trident
process

Burke, D. L., et al. ”Positron production in multiphoton
light-by-light scattering”. Physical Review Letters 79.9 (1997): 1626.
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What if we modify the external field?
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Mechanisms for non-perturbative pair production

“Plunging” in the Dirac sea
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Combination of different mechanisms

Dynamically assisted Schwinger’s
mechanism

R Schutzhold, H Gies, G Dunne
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Two-center systems (diatomic “molecule”)

R

Laser

Heavy ions

R ≈ 10. a.u.

mc2 ≈ 18769. a.u.

EU91+

g ≈ 13908. a.u.

I ≈ 1.5× 1024 W/cm2

Questions?

Can we use effects from non-relativistic
ionization of molecules to enhance pair
production (CREI)

Stark effect at large inter-nuclei
distance:

∆EStark ≈ ±
FR

2
≈ 2mc2
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Simple model description

(Very) Simple toy model
1 1-D model
2 Nuclei potential: delta function wells

Vnucl.(s) = −g
Nnuc∑
i=1

δ(x − Ri )

g ≈ 0.8 = U91+

3 Laser electric field: static (adiabatic
limit) Vfield(x) = −Fx

Relativistic wave equation:
time-independent Dirac equation

Spectral density
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Position of resonances → WTK

F. Fillion-Gourdeau QED effects



QED processes in high intensity lasers
Pair production in multi-center systems

Numerical solution of the Dirac equation
Schwinger pair production in a tightly focused configuration

Conclusion

Model description
Pair production in inhomogeneous field
Numerical results for pair production

Pair production = Transmission-reflection problem

x

v(p)e-ipx + Bv(-p)eipx Au(k)eikx

-L L

V(x)

-R R

2FL

2FL + mc2

2FL - mc2

mc2

-mc2

d〈n〉
dtdE

=
1

2π
|A(E )|2 , E ∈ ΩKlein

d〈n〉
dt

=
1

2π

∫
ΩKlein

dE |A(E )|2
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Solving the Dirac equation: numerical approach

The solution of the Dirac equation can be written formally as

ψ(xf ) = P exp

{
1

c

∫ xf

xi

dy
[
−σymc2 − iσz [F (y − L) + E ]

]}
ψ(xi )

= U(xi , xf )ψ(xi )

Approximated by

ψ(−L) = Ũ(−L, xn)Ũ(xn, xn−1) · · · Ũ(xjNp +1, xjNp
)G−1Ũ(xjNp

, xjNp−1)

· · · Ũ(xj1+1, xj1 )G−1Ũ(xj1 , xj1−1) · · · Ũ(x1, L)ψ(L) + O(δx3)

Much more efficient than the analytical approach!
At least, vs Maple and Mathematica implementation of parabolic cylinder functions and for

F < 1.0
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Position of resonances and pair production: g = 0.8
(Uranium), F = 0.2× 1018 V/m → I = 2.5× 1027 W/cm2

Ground state

Excited 
state

2
1

3

1 Channel 1: ground state crosses with negative energy resonances
2 Channel 2: excited state goes through avoided crossing with positive

energy resonances
3 Channel 3: negative energy states cross with positive energy states
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Total rate: d〈n〉/dt
For g = 0.8 (Uranium),
F = 0.09× 1018 V/m → I = 8.1× 1026 W/cm2,
L = 100.0× 0.38 pm
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2 nuclei
1 nucleus
No nucleus

REPP at large R, dominated by the ground state crossings
ECEPP at small R

F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)
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REPP: at LARGE interatomic distance

Negative
continuum

Bound
states

Positive
continuum

Negative
continuum

Bound
states

Positive
continuum

E

mc2

-mc2

F=0 F≠0

F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)

Mechanism: CREI
T Seideman, MY Ivanov, PB Corkum , Phys. Rev. Lett. 75, 2819 (1995)

T. Zuo and A. D. Bandrauk , Phys. Rev. A. 52, R2511 (1995)
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ECEPP: at SMALL interatomic distance
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Many-center case: 5 nuclei

F = 0.05 × 1018 V/m→ I = 2.5 × 1026 W/cm2
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Total rate: variation with electric field strength (g = 0.8)
F = 0.2 × 1018 V/m→ I = 4.0 × 1027 W/cm2
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Relative enhancement increases

REPP occurs at larger R

Exponential suppression of the
rate
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Numerical solution of
the Dirac equation
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Dirac Equation

Relativistic wave equation

Describes spin-1/2 particles (electrons, quarks)

In non-covariant notation, it is given by:

i∂tψ(x) =
[
−icα · ∇ − eα · A(x) + βmc2 + V (x)

]
ψ(x)

where ψ(x) ∈ L2(R3)⊗ C4

αi :=

[
0 σi
σi 0

]
, β :=

[
I2 0
0 −I2

]
.

The σi are the usual 2× 2 Pauli matrices defined as

σx :=

[
0 1
1 0

]
, σy :=

[
0 −i
i 0

]
and σz :=

[
1 0
0 −1

]
.

A,V are the potentials of the external field (minimal coupling
prescription)

F. Fillion-Gourdeau QED effects
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Numerical challenge

1 Computation time:

Time step is small: δt < 1/mc2

Typical time scale of macroscopic field is large
Many initial states to consider (for pair production calculations)

2 Coupled system of equations

3 Spectrum is NOT bounded from below

F. Fillion-Gourdeau QED effects
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Numerical method: time discretization

Formal solution of the Dirac equation:

ψ(tn+1) = T exp

[
−i
∫ tn+1

tn

H(t)dt

]
ψ(tn),

= e−i∆t(H(tn)+T )ψ(tn)

Split-operator method + Alternate Direction Iteration (ADI):

Ĥ1 = −icαx∂x ,

Ĥ2 = −icαy∂y ,

Ĥ3 = −icαz∂z ,

Ĥ4 = −eα · A(t, x) + βmc2 + eI4V (t, x).

Scheme (first order):

ψ(tn+1) = e−i∆tT e−i∆tĤ4(tn)e−i∆tĤ3e−i∆tĤ2e−i∆tĤ1ψ(tn) + O(∆t2)

Treat each exponential independently!

F. Fillion-Gourdeau QED effects
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Numerical method: space discretization

Introduce rotation operators (Sa)a=x,y ,z :

ψ(tn+1) = Qc(tn, δt)
[
SzPz(δt)S−1

z

] [
SyPy (δt)S−1

y

] [
SxPx(δt)S−1

x

]
×ψ(tn) + O(δt2)

Sequence of unitary operators:

Rotation operator: Sa :=
1√
2

(β + αa)

Translation operator: Pa(∆t) := e−c∆tβ∂a

Local operator: Qc

Choosing space lattice:

cδt = Nδx

with N =
1

2
, 1,

3

2
, 2, · · ·

P
x

P
x

P
x

P
x

cδt

xΨ
1,2

P
x

P
x

P
x

P
x

xΨ
3,4
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Dispersion relation: Fermion doubling

E = ±|p|

n = 1

Zeroes of the dispersion relation are

poles of the fermion propagator

n = 1/2: staggered mesh

No fermion doubling for N =
1

2

F. Fillion-Gourdeau QED effects
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Numerical method features

Pros

No fermion doubling

Computational complexity: O(N)

Easily/Efficiently parallelized

Conservative (L2-norm is conserved)

Adaptable:

1-D, 2-D and 3-D
Many external potentials (coupled to
Maxwell’s equation solver)
Many initial states

Extended to higher order splitting
(order 2 and 3)

Cons

Alternate direction iteration

Relation between the time and
space increments:

Small time steps required

δt � 1

mc2

Small δx

Slow to find bound states
(Feit-Fleck method)

F. Fillion-Gourdeau QED effects
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Implementation on a quantum computer: quantum walk
ψ(tn+1) = Qc(tn, δt)

[
SzPz(δt)S−1

z

] [
SyPy (δt)S−1

y

] [
SxPx(δt)S−1

x

]
ψ(tn)

Quantum register
A bunch of two-level systems
(qubits)!

|ψ〉 =
1∑

s1=0

· · ·
1∑

sm=0

αs1,··· ,sm

m⊗
l=1

|sl〉,

Mapping of the discretized wave
function on qubits:

ψn
i,j,k → αs1,···sm

Quantum gates
Unitary operations on qubits
Mapping of unitary operators on
quantum gates

Sa →

Pa →

F. Fillion-Gourdeau QED effects



QED processes in high intensity lasers
Pair production in multi-center systems

Numerical solution of the Dirac equation
Schwinger pair production in a tightly focused configuration

Conclusion

Numerical method
Numerical results

“Efficient” implementation on a quantum computer

Computational complexity (preliminary results):

Classical computer: O(N)
Quantum computer: O(log2

2(N))

Exponential speedup

Feasibility: ???

F. Fillion-Gourdeau QED effects
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“Efficient” implementation on a quantum computer

Computational complexity (preliminary results):

Classical computer: O(N)
Quantum computer: O(log2

2(N))

Exponential speedup

Feasibility:

212 = 4096 lattice points → “Hilbert space is a big place” - Carlton Caves

F. Fillion-Gourdeau QED effects
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Dirac equation in Cylindrical coordinates
Cylindrical coordinates

x = r cos θ

y = r sin θ

Azimuthal symmetry: Aµ(r , z)

Separation of variables:

Ψ(x, t) =


ψ1(t, r , z)e iµ1θ

ψ2(t, r , z)e iµ2θ

ψ3(t, r , z)e iµ1θ

ψ4(t, r , z)e iµ2θ


Angular momentum

µ1,2 := jz ∓ 1/2

jz = ...,−
3

2
,−

1

2
,

1

2
,

3

2
, ...

Boundary condition
(r = 0):
ψ1(r) = (−1)|µ1|ψ1(−r),

ψ2(r) = (−1)|µ2|ψ2(−r),

ψ3(r) = (−1)|µ1|ψ3(−r),

ψ4(r) = (−1)|µ2|ψ4(−r).

i∂tψ(t, r , z) =

{
αx

[
−ic∂r − ic

1

2r
− eAr (t, r , z)

]
+ αy

[
c
jz
r
− eAθ(t, r , z)

]
+αz

[
−ic∂z − eAz(t, r , z)

]
+ βmc2 + eV (t, r , z)

}
ψ(t, r , z)

F. Fillion-Gourdeau QED effects
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Numerical method: time discretization

Splitting (first order):

i∂tψ
(1)(t) =

[
−icαx∂r − icαx

1

2r
+ cαy

jz
r

]
ψ(1)(t)

i∂tψ
(2)(t) = −icαz∂zψ

(2)(t)

i∂tψ
(3)(t) =

[
βmc2 + eI4V (t)− eαxAr (t)− eαyAθ(t)− eαzAz(t)

]
×ψ(3)(t),

Second order: Strang-like splitting

Similar to the Cartesian case, BUT
1 2nd and 3rd step: same as Cartesian case → δz = cδt
2 1st step: no advection solution + singular terms (1/r)

Strategy:

Poisson’s integral solution of the wave equation

Time staggered mesh

F. Fillion-Gourdeau QED effects
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Order of convergence

10
-5
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-4

10
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N
u
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e

ri
c
a

l 
e

rr
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r

2a (a.u.)

jz = 1/2
jz = 3/2
jz = 5/2

E`2 (t) := ||ψexact(t)− ψ(t)||`2
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Order of convergence
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Similar to Cartesian case ∼ 2
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2-D Gaussian wave packet
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∆ = 1.0 a.u.

tf = 0.570 a.u.

ψ1(t, r , z) = 2N∆2
∫ ∞
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[
cos(Et)− i

mc2

E
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3-D Gaussian wave packet
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Counterpropagating laser field:

E (t) = E0f (t) cos(ωt)

Parameters:

ω = 100 a.u.
E0 = 3.65× 106 a.u.
2 cycles

Hint of pair production
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Initial state of hydrogen-like atom
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Feit-Fleck spectral method

Allows to compute eigenstates from time
evolution of trial state
Main ingredient: FFT of auto-correlation
function
Energy resolution increases with simulation
time

Coulomb-like potential: Z = 10

Simulation:

tf = 47.5 a.u. → δE ∼ 0.13 a.u.
Eground ≈ 18710.3 a.u.
(Analytically: Eground ≈ 18729.9 a.u.)

F. Fillion-Gourdeau QED effects



QED processes in high intensity lasers
Pair production in multi-center systems

Numerical solution of the Dirac equation
Schwinger pair production in a tightly focused configuration

Conclusion

Numerical method
Numerical results

Time evolution of the ground state in a laser field

Coulomb-like potential: Z = 10

Counterpropagating laser field:

E (t) = E0f (t) cos(ωt)

Parameters:

ω = 100 a.u.
E0 = 3.65× 105 a.u.
2 cycles

Electron is fully ionized

Electron is driven by the field

F. Fillion-Gourdeau QED effects



QED processes in high intensity lasers
Pair production in multi-center systems

Numerical solution of the Dirac equation
Schwinger pair production in a tightly focused configuration

Conclusion

Schwinger pair production in a
tightly focused configuration
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Towards the calculation in “realistic” conditions

Question:
“How many pairs can be produced in a “realistic” experimental
setup?”

e-dipole pulse: optimized pulses (Marklund et al.)

Experimental setup:

High numerical aperture
parabolic mirror

z

r

PM

e+ e-

Laser

High field strength

Radially polarized incident beams

Focused on a smaller focal spot
+

B-field is zero at the focal spot
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Pair production rate

Schwinger’s formula (lf ∼ lC � λ) Narozhny, Fedotov, 2014:

dN

dV
=
α

π

∫ ∞
−∞
E(t, x)H(t, x) coth

(
π
H(t, x)

E(t, x)

)
exp

(
− π

E(t, x)

)
,

where

E(t, x) =

√√
F2(t, x) + G2(t, x) + F(t, x),

H(t, x) =

√√
F2(t, x) + G2(t, x)−F(t, x).

F and G are the Lorentz invariants:

F(t, x) =
E2(t, x)− B2(t, x)

2
,

G(t, x) = E(t, x) · B(t, x),
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Computing the field at the focus

Compute the field at the focal spot: Stratton-Chu vectorial diffraction

Eext(r, t) =
1

4π

∫
S

{
ik(n̂× BS)G + (n̂× ES)×∇SG + (n̂ · ES)∇SG

}
dS

+
1

4πik

∮
∂S

(∇SG )BS · d`,

Bext(r, t) =
1

4π

∫
S

{
ik(ES × n̂)G + (n̂× BS)×∇SG + (n̂ · BS)∇SG

}
dS

− 1

4πik

∮
∂S

(∇SG )ES · d`,
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Preliminary results (by C. Murphy)

Experimental parameters:

Focal length

Frequency

Aperture size

Beam width

Laser pulse energy and duration
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Schwinger pair production in a multi-center system
Position of resonances
F. Fillion-Gourdeau et al, 2012 J. Phys. A: Math. Theor. 45 215304

Two mechanisms that enhance pair production rate:
1 At large R: REPP
2 At small R: ECEPP

F. Fillion-Gourdeau et al, Phys. Rev. Lett. 110, 013002 (2013)

F. Fillion-Gourdeau et al, 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175002

Numerical methods for the Dirac equation
Split-operator method
Efficient implementation on a quantum computer
F. Fillion-Gourdeau et al, Computer Physics Communications, Volume 183, Issue 7, July 2012, 1403-1415

F. Fillion-Gourdeau et al, J. Comp. Phys., Volume 272, September 2014, Pages 559-587

F. Fillion-Gourdeau et al, Phys. Rev. A 85, 022506 (2012)

Schwinger pair production in a realistic scenario
In the future...

Use numerical methods to study more realistic systems (3D,
time-dependent)
Study other QED processes
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