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⊥Ẽ(ω) +

2iω

c
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Methods, details

TDSE: Often we care only about transitions/overlap with ground state

d(t) = �h (~r, t)| 0ih 0|z| (~r, t)i+ c.c.

Example, Argon has 3p ground state

MWE: Sometimes self-consistent solution is not stable/desired

Separate propagation of fundamental and generated fields
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@Ẽ1
@z

=
1

✏0c2
F̃ T [

@J(t)

@t
]

r2
?ẼX +

2i!

c

@ẼX
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Example I: Cooper minimum in HHG

Worner et al, PRL 2009 Cooper, Phys Rev (1962)

Min in photoionization cross section due to 
zero in one angular momentum channel

Argon

Schoun et al, PRL 2014

How does this manifest in HHG?
Three step model says:

D(!) =
p

P
ion

ei�c(!)p
rdm

(!)

Recombination dipole moment:
prdm(!) = As(!)e

i�s(!) +Ad(!)e
i�d(!)

Jin et al, PRA 2011
Farrell et al, PRA 2011
Worner et al, PRL 2009

Higuet et al, PRA 2011

h�3p|z|�d,Ei = 0, at ⇡ 47 eV
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Two wavelengths (1.3 µm, 2.0 µm), approx. 10   W/cm14 2

Optimized for short trajectory, spatially filtered
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Example I: GD and phase of RDM Schoun et al, PRL 2014

2 µm exp 1.3 µm exp 1.3 µm th

Theory

Experiment

Group delay

Phase

2 µm exp
1.3 µm exp
1.3 µm th

Total RDM phase decreases by 2-2.5 
rad over 20 eV

Jin et al, PRA 2011
Worner et al, PRL 2009
Kheifets, PRA 2013

Le et al, PRA 2008

Sharp π phase jump in d-channel 
moderated by “constant” s-channel



Consequences for XUV attosecond time profile Schoun et al, PRL 2014

Sub-cycle time profile of plateau harmonics (24 eV FWHM) 

2 µm exp
1.3 µm exp 1.3 µm TDSE Simple model

Returning EWP acquires spectral 
phase over large range 

Leads to reshaping of emitted 
attosecond pulses - two pulses

In this case group delay should 
not be interpreted as time delay
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Consequences for XUV attosecond time profile Schoun et al, PRL 2014

Sub-cycle time profile of plateau harmonics (24 eV FWHM) 

2 µm exp
1.3 µm exp 1.3 µm TDSE Simple model

Returning EWP acquires spectral 
phase over large range 

Leads to reshaping of emitted 
attosecond pulses - two pulses

In this case group delay should 
not be interpreted as time delay

Simple model for RDM 

s(w) constant, d(w) linear: �(!) = �! � !C

�!

!C = 48.5 eV �! range of d(w) sign change
⇠(!) scattering phases

Group delayPhase

Rapid variation in d-channel can make 
group delay arbitrarily large -  not 
meaningful as a time delay



Reciprocal nature of photoionization and recombination

Hole in EWP created by photo ionization first 
discussed by Noordam et al. Measurement of 
EWP amplitude and phase challenging though

Hoogenraad et al, PRA 1998 Yakovlev et al, PRL 2010

EWP spectrum

EWP radial

3p ! d only, ✓ = 0

3p ! d only, ✓ = 0
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Study electron dynamics from what happens to the XUV light
From delay-dependence, absorption is time-integrated
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Example II: Line shape changes

One photon excitation: absorption 
Access excitation more than once.     
This adds a phase shift to d(t)

2

1

3

Chen et al., PRA 2013

Heidelberg (Ott/Pfeifer) CFEL (Pabst/Santra) Madrid (Argenti/Martin) Kansas (Chu/Lin)Autoionization:
Bound/APT: ETH Zurich (Hermann/Keller)
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Broadening, shifts, new spectral features

Low dens (1e17)
High dens (5e17)

Chen et al., PRA 2013
Example II: Macroscopic reshaping of absorption line

LSU (Gaarde et al, PRA 2011, WU et al PRA 2013) Kansas (Chu & Lin, PRA 2012) Berkeley (Pfeiffer et al PRA 2013)

Also observed experimentally (Sandhu & Liao)
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2p 3p 4p 5p

XUV 400 as, 25 eV
IR 800 nm, 1e12 W/cm2



Example II: Macroscopic reshaping of absorption line
Liao et al, in prep.

XUV APT, H13 - H17 (440 as pulses)
40 fs IR 800 nm, 3e12 W/cm2

Evolution of 2p line shape with pressure Experiment and theory

Long medium (1 cm)

Theory: fully coupled, self-
consistent TDSE-MWE
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Example II: Macroscopic reshaping of absorption line
Liao et al, in prep.

XUV APT, H13 - H17 (440 as pulses)
40 fs IR 800 nm, 3e12 W/cm2

Evolution of 2p line shape with pressure

Broadening of main feature
Appearance of new, narrow 
feature at center of resonance

Experiment and theory

Long medium (1 cm)

Theory: fully coupled, self-
consistent TDSE-MWE

np lines similar, but less extreme



Example II: Simple model for perturbed dipole response

Time-dependent dipole moment 
calculated from model atom: two-level 
system, 1s-2p in He, resonant with 
XUV SAP 

IR perturbation is time-dependent 
phase, proportional to IR intensity

Solve coupled TDSE-MWE with 
model dipole moment

IR 2.7 fs 

IR 14 fs 

Evolution of 2p line shape 
with propagation distance

Liao et al, in prep.
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Example II: Simple model for perturbed dipole response

Time-dependent dipole moment 
calculated from model atom: two-level 
system, 1s-2p in He, resonant with 
XUV SAP 

IR perturbation is time-dependent 
phase, proportional to IR intensity

Solve coupled TDSE-MWE with 
model dipole moment

IR 2.7 fs 

IR 14 fs 

Evolution of 2p line shape 
with propagation distance

Broadening, linear in z

New features appear, broaden

Shape of outer feature preserved

Observations, short IR case

Liao et al, in prep.

1 mm 2 mm0 mm



Example II: back to the time domain

XUV time profile, end of medium (no IR)
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— 2 mm

— Initial

Note: time profiles with IR almost identical
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With longer propagation: move closer 
to main peak, grow in size and number
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Example II: back to the time domain

XUV time profile, end of medium (no IR)

— 1 mm
— 2 mm

— Initial

Note: time profiles with IR almost identical

Extra peaks in time caused by  
alternating sign of E-field due to 
absorption (well known) Crisp, PRA 1, 1970

With longer propagation: move closer 
to main peak, grow in size and number

Short IR: first extra burst is new 
“lifetime” over which perturbed 
dipole oscillates (bandwidth of 
outer structure)

Inner structure(s) come from 
additional bursts in time

Note: more complicated when first 
burst becomes comparable to 
duration of IR perturbation: 	



- outer lineshape not preserved	


- increase in width not linear in z 

Liao et al, in prep.

IR 2.7 fs 

IR 14 fs 



Example II: frequency domain thoughts

Spectral phase accumulated 
due to dispersion

Spectral phase

Bandwidth of ±π/2 controls 
duration of first extra peak - 
causes sign change of E-field

In absence of IR only broadening 
through saturation

IR 2.7 fs 

IR 14 fs 



Reshaping - effects of attosecond pulse propagation in dense 
medium with narrow absorption lines, dressed by IR pulse

TDSE-MWE, self-consistent solution allows to study reshaping 
of light by medium

Summary

Argon Cooper min induces reshaping of attosecond pulses even 
at single atom level

LSU Attosecond th. group!
Ken Schafer!
Ken Lopata (Chemistry)!
Mengxi Wu!
Seth Camp 
Paul Abanador!
Xiaoxu Guan!
Renate Pazourek !
Shaohao Chen (now CCT)

Ohio State exp. group!
Lou DiMauro!
Pierre Agostini!
Stephen Schoun 
Razvan Chirla!
Jonathan Wheeler!
Christoph Roedig

Funding 	


NSF, DOE BES, LONI (computing time)  

U Arizona exp. group!
Arvinder Sandhu 
Chen-Ting Liao



Two post doc positions at LSU, starting immediately

One postdoc in physics (Schafer/Gaarde)

One postdoc in chemistry (Lopata)

Project: Charge migration using HHS? !
Collaboration physics/chemistry, exps at OSU/UVA


