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Questions

Can we visualize the dynamics of QED interactions

with space-time resolution?

Peskin Schroeder Fig. 7.8

Is this picture correct?

Relationship between 

virtual and real particles?

Dynamics of

virtual particles?

Greiner Fig. 1.3a

-

+



Quantum mechanics: 

(1) know: f(x,t=0)  and  h(t)

(2) solve: i ∂t f(x,t) = h(t)  f(x,t)      for the initial state ONLY

(3) compute: observables f(t) O f(t)

Quantum field theory: 

(1) know: F(t=0) and  H(t)

(2) solve: i ∂t fE(x,t) = H(t)  fE(x,t)       for EACH state fE(x)                  

of ENTIRE Hilbert space

(3) compute: observables F(t=0) O( all fE(x,t) ) F(t=0)



Charge

density r(z,t)
r(z, t)  =   F(t=0)  – [Y†(z,t), Y(z,t)]/2   F(t=0)

1. example: single electron         F(t=0)  =   bP
†  vac 

r(z, t)  =  – fP(+;z,t)2 +    (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

vacuum’s polarization densityelectron’s wave function

(trivial) (not understood)

t=0:    h0 fE = E fE

t>0:     i ∂t fE(t) = h  fE(t)
–mc2 mc2

fE(-) fE(+)

charge operator



Quick overview

(1) Computational approach

 Steady state vacuum polarization r(z) 

 Space-time evolution of r(z,t)

 Steady state and time averaged dynamics

(2) Analytical approaches

 Phenomenological model

 Decoupled Hamiltonians

 Perturbation theory

(3) Applications

 Coupling r to Maxwell equation

 Relevance for pair-creation process

 Relationship to traditional work



2. Example:    r(z) for the dressed vacuum state   VAC 

Dirac equation

rpol(z)  =   VAC  – [Y†(z), Y(z)]/2   VAC 

[c s1 pz + mc2 s3 + Vext (z)] FE(z) = E FE(z)

rpol(z)  = (SE(+) FE(+;z)2 – SE(–) FE(–;z)2) /2



Width w of external potential Vext(z) determines r(z) 

r(z)  ~  w exp[-c|z|] 

Vext(z) = V0 exp[-(z/w)2] qext (z)

z

w

r(z)

r(z)  ~  V(z)

w < lC
lC  > w

10-3

10-4

w=lC/2

w=lC/8

lCompton= 1/c = 7 10-3r(z) r(z)

- - + + + +   - -



3. Example: Dynamics of the polarization density

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

time-dependent Dirac equation:

i ħ ∂t fE(z,t) = [c s3 pz + mc2 s3 + V(z)] fE(z,t)

rpol(z, t)  =   bare vac  – [Y†(z,t), Y(z,t)]/2   bare vac

–mc2 mc2
fE(-) fE(+)



Temporal evolution of r(x,t)

Vext(x)        rpol(x,t) 

movies



rsteady(x)  =  T-1 ∫ Tdt  r(x,t)



Quick overview

(1) Computational approach

 Steady state vacuum polarization r(z) 

 Space-time evolution of r(z,t)

 Steady state and time averaged dynamics

(2) Analytical approaches

 Phenomenological model

 Decoupled Hamiltonians

 Perturbation theory

(3) Applications

 Coupling r to Maxwell equation

 Relevance for pair-creation process

 Relationship to traditional work



Phenomenological model for rpol(z,t)

exact solution:

rpol(z,t) =  c [ 2Vext(z)  – Vext(z-ct) – Vext(z+ct) ]

jpol(z,t) =  c c[ Vext(z+ct) – Vext(z–ct) ]

(∂ct
2 –∂z

2) rpol(z,t)  =  8p c qext(z)        c = a3/(2p lC
2) (guess)

qext(z)         Vext(z)        rpol(z)      

if width of Vext > lC => predictions for rpol(z, t) are highly accurate

Maxwell Dirac



rpol(z,t) and jpol(z,t) for an external       point charge ✚

r(z,t) =  c [2V(z) –V(z-ct) – V(z+ct)]
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j(z,t) =  c c[V(z+ct) – V(z–ct)] 

qext(z) = q d(z) 

Vext(z) = – 2p q |z|

 charge conservation ✓

 lim L, t∞ r(z=0,t)   ∞ ✓

✚ ✚

 j(z) grows everywhere ✓



Decoupled Hamiltonian model

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

H(+) =  [m2c4+c2p2]1/2 + Vext(z)                =>  bound states  

H(–) =  [m2c4+c2p2]1/2 – Vext(z)                 =>  scattering states 

predictions for rpol(z, t) are highly accurate

=> transitions between positive and negative Dirac states irrelevant  



Traditional perturbation theory

YE
(1) = fE + SE’  fEVextfE / (E-E’) fE + ...

rpol(z, t) = (SE YE
(1)(z)2 – SE YE

(1)(z)2) /2

YE
(1) = fE – SE’ fEVextfE / (E-E’) fE + ...

predictions for rpol(z, t) are highly accurate

=> perturbative approach applicable also to 2 and 3D ?



Intermediate summary

(∂ct
2 – ∂z

2) rpol(z,t)  =  8p c qext(z)     with    c = a3/(2p lC
2)    

=> Is the energy conserved?

=> What if real particles are created in addition?

=> Consistent with traditional QED methods?  

4 independent approaches:

(steady, dynamics, phenom, decoupled hamiltonian)

predict:

massless virtual positive particles

accumulate around positive charges
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Coupled Dirac-Maxwell equation

rpol(z, t) = (SE(+) fE(+;z,t)2 – SE(–) fE(–;z,t)2) /2

Dirac equation:

i ∂t fE(z,t) = [c s1 [pz – A(z,t)/c] + mc2 s3 + V(z,t)] fE(z,t)

Maxwell equation: 

[∂ct
2 – ∂z

2 ] V(z,t) = 4p r(z,t) 

[∂ct
2 – ∂z

2 ] A(z,t) = 4p j(z,t)/c



Energy conservation

Etot = Emat(t)  +  Eint(t)  +  Efield(t) 

Emat (t) = ∫ dz  Y†(z,t) {c s1 p + s3 mc2} Y(z,t) 

Eint (t)  = q ∫ dz  Y†(z,t) {V(z,t) – s1 A(z,t)} Y(z,t) 

Efield (t) = (8p)-1∫ dz  { [∂ct A(z,t)]2 – [∂zV(z,t)]2 } 

Temporal gauge:

Eint (t)   =  – q ∫ dz  Y†(z,t) s1 A(z,t) Y(z,t) 

Efield (t) =  (8p)-1 ∫ dz E2(z,t) 



Energy is conserved despite qpol  ∞

Efield

Emat+ Eint

Efield   +   Emat + Eint

+

–

qext(x) rpol(x,t)



Pair creation regime:  rpol =  rvac + re-e+
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More quantitatively: mass density of real particles

m(e-; z, t)    vac  Y†(e-)Y(e-)  vac 

m(e+; z, t)    vac  Y†(e+)Y(e+)  vac 

Y(z,t)  Y(e–) + C Y(e+) 

reff (z)   



m(e+; z) – m(e–; z)    

effective charge density
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Traditional pert. QED approach:

Eint(z) = (2p)-1 ∫ dk exp(ikz) e2 k-2 [1 – P2]
-1

≅ – 2p e2 z – a e2 4p/3 z3 + ...

Peskin-Schroeder  Eq. 7.93

P2 = 4a [k-2 – 4c4 k–3 (4c4-k2)-1/2 arctan[k(4c4-k2)–1/2]]

qext(r) = e d(z) 

Coulomb vac. pol. correction

z

necessary: regularization (P-V or dim.) and charge renormalization
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Traditional pert. QED approach:

Eint(z) ≅ – 2p e2 z – a e2 4p/3 z3 + ...

– ∂2
z rpol(z)   =  8p c qext(z)

=>  Vext(z) =  – 2p e z ✓

=>  rpol(z)  =  – 4p e c z

+ ∂2
z Vpol(z)  =  4p rpol(z) =>  Vpol(z)  =  – 8p2 /3 e c z3

=  – a e 4p/3 z3       ✓

– ∂2
z Vext(z)  =  4p qext(z)

Possible connection to our approach:

Coulomb vac. pol. correction

regularization and charge renormalization NOT necessary



(Too) many open questions....

 qext(z) = d(z) => infinite plane:  lim t∞ r(z,t)∞

 1D ≠ 3D with spatial symmetry (relativity)

 implications for 2D and 3D:  orpol = 8p c qext(r) ??

 more contact with traditional methods

 experimental implications

 .....

Q.Z. Lv, J. Betke, W. Bauer, Q. Su and R. Grobe, Phys. Rev. Lett. (in preparation)

A. Steinacher, J. Betke, S. Ahrens, Q. Su and R. Grobe, Phys. Rev. A 89, 062016 (2014).

A. Steinacher, R. Wagner, Q. Su and R. Grobe, Phys. Rev. A 89,  032119 (2014).
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5 drawbacks of the S matrix

(1) T is built in

(2) ds/dw is rate based

(3) usually only perturbative

(4) no spatial information

(5) black box approach

What happens inside the interaction zone?



The challenge:

study QED interactions with space-time resolution

⊙ construct Hamiltonian H

⊙ evolve Y(t=0) to Y(t)

by solving i /t Y(t) = H Y(t)

⊙ convert Y(t) into observables

?



The problems:

☹ Hilbert space is gigantic

☹ Hamiltonian is “wrong” and requires serious repair 

☹ correct physical operators are unknown



Electron – positron – photon interactions
bp

 dp
 ap



H0 = S dp Ep bp
bp + Sdp Ep dp

dp + Sdp wp

ap
ap

Hint = Sdp dk …. 8 basic “processes”

Photon

annihilation: bba dda bda bda

Photon

creation: bba dda bda bda



Three Hamiltonians of quantum field theory

Hbare =   bb   +   aa  +    bb a  + ...

⊙ wrong energies

⊙ bad operators  H  b0 ≠ E b0

Hrenorm =  bb   +  aa  +  ∞ bb a + ...

⊙ correct energies ✓

⊙ bad operators

Hdressed =  BB  +  AA  +  BBBB   + ..??...
⊙ correct energies ✓
⊙ good operators ✓



Overview

Repair work I: find Hrenom

☺ compute the physical mass   (numerical 

renormalization)

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



The problem: eigenvalue of H  is #   and not  m   and  not 1kg     

(H0+Hint) P =  EP P

m = bare mass 

H0 =  dp ep bp
bp     +   dk wk  ak

ak

Hint =  dp dk g(p,k) bp+k
bp (ak+a-k

) + ...

where ep = [m2c4+c2p2]1/2

EP = [#2c4+c2P2]1/2

Measurement:   physical mass of an electron is 1kg  (= M) 

The goal: choose m such that # is the physical mass M

Bare mass m ≠ physical mass M



Assume bare mass m and compute physical mass M

Complication:

eigenvalue EP depends on maximum momentum L

if L -–   then M -– -  (but we want M=1kg)

Solution:

if L -– then m -–  (to keep M=1kg)

H =  dp epbp
bp  +  dk wkak

ak +  dp dk g(p,k) bp+k
bp (ak+a-k

) + 

...

(1) use  ep = √(m2c4+c2p2)    with   trial value:  m =1 kg

(2) diagonalize H to determine eigenvalue EP  = √(M2c4+c2p2) 

leading to mass M = 0.7 kg

repeat (1) and (2) with different trial bare mass m

until we obtain desired mass M=1 kg 



Hbare = H0 +  l  dx  y(x) g0 y(x) f(x)

coupling l cutoff L   

cutoff L=1885 coupling l=0.7

Lowest energy eigenvalue

QED with photon mass≠0 & spin=0  =>  scalar Yukawa 



Renormalization of one-particle energies

DE(L) := Enum(me, mg, L) – (Mphys
2 c4 + c2 p2) 

☺ find (me, mg) for p=0 state to get Mphysc
2

☺ (me, mg) works for all other p to get (Mphys
2 c4 + c2 p2)   



Renormalization of two-particle masses

DE(L) = Enum(me, mg, L) – 2Mphys c2

☺ (me, mg) can repair entire spectrum

☺ 2-fermion bound state energy can now be analyzed  

after

renormalization

before

renormalization



Repair work I:  find Hrenom

☺ non-perturbative exact numerical renormalization

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



41

The vacuum contains “virtual” particles

(H0+V) VAC = EVAC VAC

with LOWEST energy

state with particles VAC can have less energy      than  0

H0 0 = 0  0

no particles, no interaction



I    Properties of virtual particles in |VAC

position:

on top of each other

velocity:

mainly at rest

life time:

non-exponential

â†(t=0)â†(t=0)â(t)â(t)â†(0)â†(0)â(z)â(z)â†(p)â(p)

model in terms of an ensemble of classical particles?



II   Properties of virtual particles in single particle state

☺ impact of mass renormalization on dynamics

☺ bare photons = electric field around charge

☺ electric field depends on velocity



Interactions between particles:  “forces”

“fields” exchange of “mediating particles”

two charges attract through ...

+– +–

“understood”



e+e-

“exact”

no 

coupling

III    Impact of virtual particles on forces 



Change      Coulomb law     by    manipulating virtual photons

R.W. , M. Ware et al., Phys. Rev. Lett. 106, 023601 (2011) 

repulsion

attraction

equal charges

always repel

equal charges

can attract



Overview

Repair work I:  find Hrenom

☺ compute the physical mass   (numerical 

renormalization)

Dynamics in terms of bare particles

① vacuum

② single particle

③ two-particles (e-g and e-e scattering)

Repair work II:  find Hdressed

☹ construct physical operators



Beautiful special case:

Greenberg-Schweber model

Hbare = Ebare Sp bp
bp  +  Sk wkak

ak - l2 Sp Sk (2wk)
-1 bp+k

bp (ak + a-k
)

Bp = UbpU

with U a exp[l Sp Sk (2wk
3)-1/2 bp+k

bp (ak
- a-k) ]

Ak = UakU   

Hdress = Ephys Sp Bp
Bp + Sk wkAk

Ak - l2 SpSqSk(2wk
2)-1 Bp+k

Bq
BpBq+k



physical energy Ephys = Ebare - l2Sk(2wk
2)-1

BP
0 is eigenstate of H,  as H  BP

0 = EP  BP
0

no force intermediating virtual photons (no e--g interaction)    

new e--e- interaction:  e- (q+k) + e-(p) -->  e- (q) + e-(p+k)

Hbare 

=

Ebare Sp bp
bp  +  Sk wkak

ak - l2 Sp Sk (2wk)
-1 bp+k

bp (ak + a-k
)

Hdress 

= 

Ephys Sp Bp
Bp + Sk wkAk

Ak - l2 SpSqSk(2wk
2)-1 Bp+k

Bq
BpBq+k



The construction of the dressed particle Hamiltonian

Hdressed =  dp ep Bp
Bp + dp ep Dp

Dp +  dp wpAp
Ap  + V

V =   a(p,q,p’,q’) Bp
 Bq

 Bp’ Bq’ (e--e-

interaction)

+  (p,q,p’,q’) Bp
 Dq

 Bp’ Dq’ (e--e+ interaction)

  g(p,q,p’,q’, q’’) Bp
 Bq

 Bp’ Bq’Aq’’ (e--g interaction

)

 ... 
(1) use Hrenorm to compute scattering matrix S

(2) find  a, , g etc.  to match S



Example: dressed particle Hamiltonian for scalar Yukawa system

Hbare = H0 +  l  dx  y(x) g0 y(x) f(x)

a(p,q,p’,q’) ~ d(p+q-p’-q’) / [(q-q’) 2 + M2c2]

Ve--e- =   a(p,q,p’,q’) Bp
 Bq

Bp’ Bq’

dx exp[i(q-q’)x] a(p,q,p’,q’)  ~   exp( - M |x|)

direct interpretation possible



T. ChengP. Krekora

C. Gerry

Q. Su

Summary

R. Wagner

Kara KevinNicMatt Emily

• Goal:  visualization of QED processes 

• Main tool:  computational quantum field theory

• First progress:  Hbare --> Hrenorm

• Early stage progress:  Hrenorm --> Hdressed

• many conceptual and computational challenges ...

E. Stefanovich


