Conceptual problems in QED

Part I: Polarization density of the vacuum

(photon = classical field)

Part II: Bare, physical particles, renormalization

(photon = independent particle)

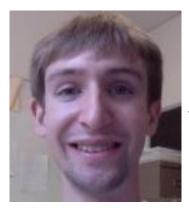
Rainer Grobe
Intense Laser Physics Theory
Illinois State University

Coworkers

Prof. Q. Charles Su

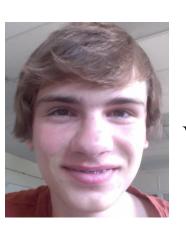
Dr. Sven Ahrens

QingZheng Lv



Andrew Steinacher

Jarrett Betke



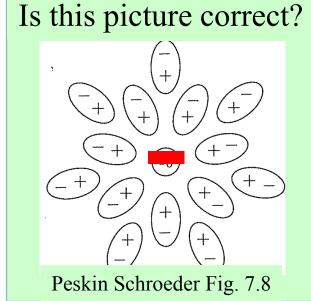
Will Bauer

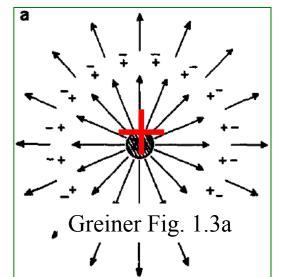
Questions

Can we visualize the dynamics of QED interactions with space-time resolution?

Relationship between virtual and real particles?

Dynamics of virtual particles?





Quantum mechanics:

- (1) know: $\phi(x,t=0)$ and h(t)
- (2) solve: $i \partial_t \phi(x,t) = h(t) \phi(x,t)$ for the initial state ONLY
- (3) compute: observables $\langle \phi(t) | O | \phi(t) \rangle$

Quantum field theory:

- (1) know: $|\Phi(t=0)\rangle$ and H(t)
- (2) solve: $i \partial_t \phi_E(x,t) = H(t) \phi_E(x,t)$ for **EACH** state $\phi_E(x)$ of **ENTIRE** Hilbert space
- (3) compute: observables $\langle \Phi(t=0)| O(\text{ all } \phi_E(x,t)) | \Phi(t=0) \rangle$

Charge

density $\rho(z,t)$

$$\rho(z,\,t) \,=\, \langle\,\,\Phi(t=0)\,\,|\, -\, [\Psi^\dagger(z,t),\,\Psi(z,t)]/2\,\,\,|\,\,\Phi(t=0)\rangle$$
 charge operator

example: single electron $|\Phi(t=0)\rangle = b_p^{\dagger} |\text{vac}\rangle$

$$\rho(z,t) = - |\phi_P(+;z,t)|^2 + \left(\sum_{E(+)} |\phi_E(+;z,t)|^2 - \sum_{E(-)} |\phi_E(-;z,t)|^2 \right) / 2$$

electron's wave function

(trivial)

vacuum's polarization density

(not understood)

$$t=0: \quad h_0 \ \phi_E = E \ \phi_E$$

t>0:
$$i \partial_t \phi_E(t) = h \phi_E(t)$$

$$\phi_{\rm E}(-)$$
 $\phi_{\rm E}(+)$ $\phi_{\rm E}(+)$

Quick overview

- (1) Computational approach
 - Steady state vacuum polarization $\rho(z)$
 - Space-time evolution of $\rho(z,t)$
 - Steady state and time averaged dynamics
- (2) Analytical approaches
 - Phenomenological model
 - Decoupled Hamiltonians
 - Perturbation theory
- (3) Applications
 - Coupling ρ to Maxwell equation
 - Relevance for pair-creation process
 - Relationship to traditional work

2. Example: $\rho(z)$ for the dressed vacuum state $|VAC\rangle$

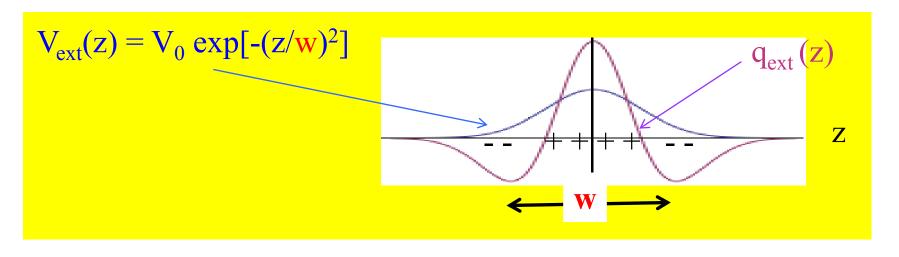
$$ho_{pol}(z) = \langle VAC | - [\Psi^{\dagger}(z), \Psi(z)]/2 | VAC \rangle$$

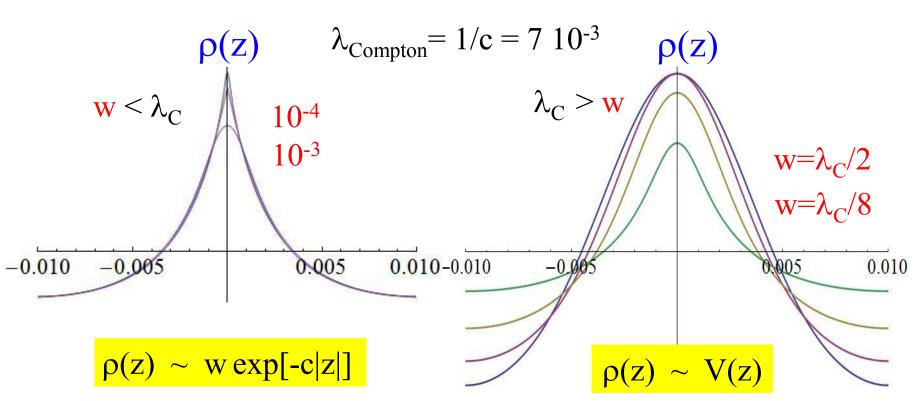
Dirac equation

$$[c \sigma_1 p_z + mc^2 \sigma_3 + V_{ext}(z)] \Phi_E(z) = E \Phi_E(z)$$

$$\rho_{\text{pol}}(z) = \left(\sum_{E(+)} |\Phi_E(+;z)|^2 - \sum_{E(-)} |\Phi_E(-;z)|^2\right) / 2$$

Width w of external potential $V_{ext}(z)$ determines $\rho(z)$





3. Example: **Dynamics of the polarization density**

$$\rho_{\text{pol}}(z, t) = \langle \text{bare vac} | - [\Psi^{\dagger}(z, t), \Psi(z, t)]/2 | \text{bare vac} \rangle$$

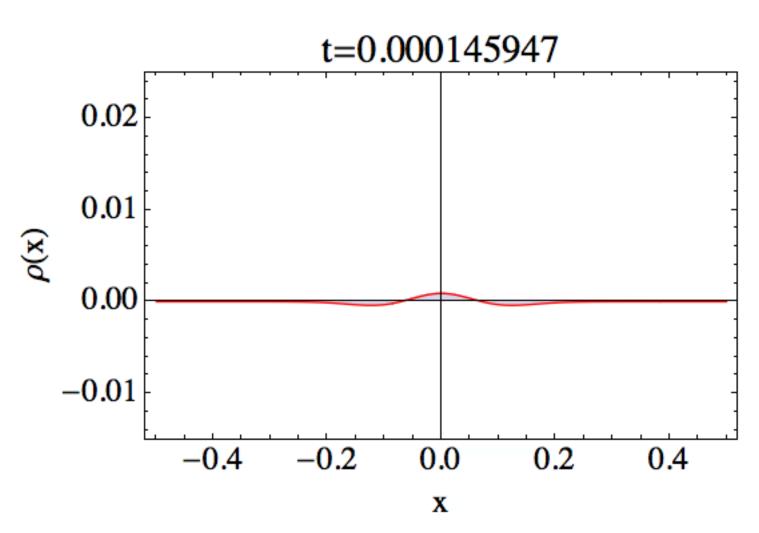
$$\rho_{\text{pol}}(z, t) = \left(\sum_{E(+)} |\phi_E(+; z, t)|^2 - \sum_{E(-)} |\phi_E(-; z, t)|^2\right) / 2$$

$$\phi_{\rm E}(-)$$
 $\phi_{\rm E}(+)$ $\phi_{\rm E}(+)$

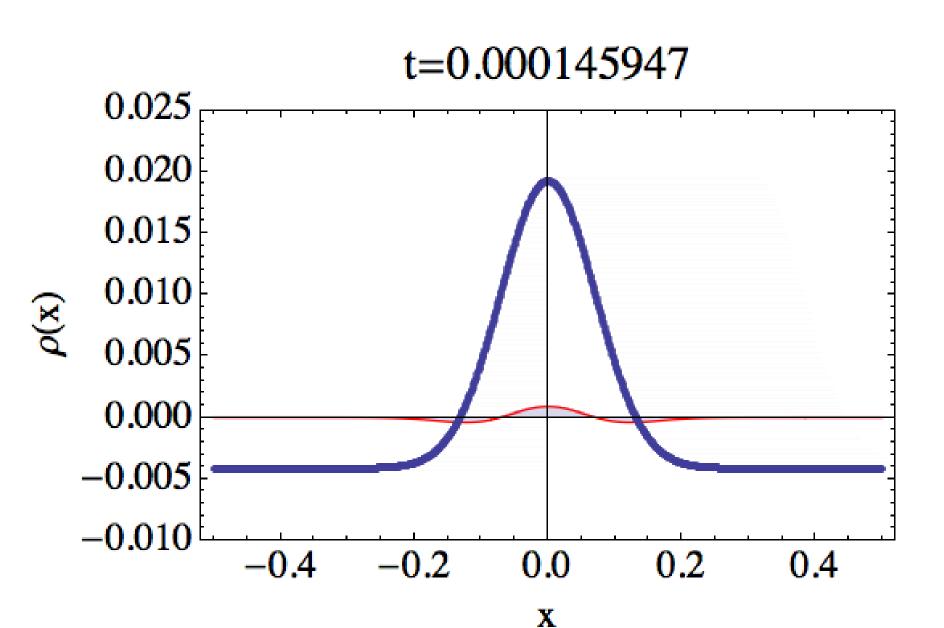
time-dependent Dirac equation:

$$i \; \hbar \; \partial_t \; \phi_E(z,t) = \left[c \; \sigma_3 \; p_z \; + mc^2 \; \sigma_3 + V(z) \right] \; \phi_E(z,t)$$

Temporal evolution of $\rho(x,t)$



$$\rho_{\text{steady}}(x) = T^{-1} \int T dt \rho(x,t)$$



Quick overview

- (1) Computational approach
 - Steady state vacuum polarization $\rho(z)$
 - Space-time evolution of $\rho(z,t)$
 - Steady state and time averaged dynamics

(2) Analytical approaches

- Phenomenological model
- Decoupled Hamiltonians
- Perturbation theory

(3) Applications

- Coupling ρ to Maxwell equation
- Relevance for pair-creation process
- Relationship to traditional work

$$q_{ext}(z) \qquad \begin{array}{c} \text{Maxwell} & \text{Dirac} \\ V_{ext}(z) & \\ \end{array} \qquad \begin{array}{c} \rho_{pol}(z) \end{array}$$

Phenomenological model for $\rho_{pol}(z,t)$

$$(\partial_{ct}^2 - \partial_z^2) \rho_{pol}(z,t) = 8\pi \chi q_{ext}(z) \qquad \chi = \alpha^3/(2\pi \lambda_C^2) \text{ (guess)}$$

exact solution:

$$\begin{split} \rho_{pol}(z,t) &= \chi \left[\ 2V_{ext}(z) \ -V_{ext}(z\text{-ct}) - V_{ext}(z\text{+ct}) \ \right] \\ j_{pol}(z,t) &= \chi \ c \left[\ V_{ext}(z\text{+ct}) - V_{ext}(z\text{-ct}) \ \right] \end{split}$$

if width of $V_{ext} > \lambda_C =>$ predictions for $\rho_{pol}(z, t)$ are highly accurate

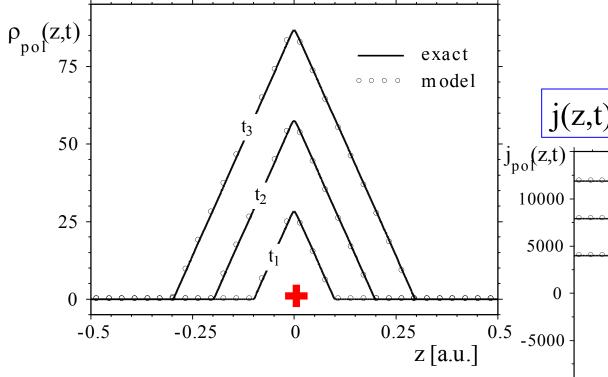
$\rho_{pol}(z,t)$ and $j_{pol}(z,t)$ for an external

point charge +

$$q_{ext}(z) = \mathbf{q} \delta(z)$$

$$V_{ext}(z) = -2\pi \mathbf{q} |z|$$

$$\rho(z,t) = \chi \left[2V(z) - V(z-ct) - V(z+ct) \right]$$



- $j(z,t) = \chi c[V(z+ct) V(z-ct)]$
- $\begin{array}{c}
 0000 \\
 5000 \\
 0
 \end{array}$

-10000

- charge conservation
- $\lim_{L, t \to \infty} \rho(z=0,t) \to \infty \checkmark$
- -0.5 -0.25 0 0.25 0.5 z [a.u.]
 - j(z) grows everywhere \checkmark

Decoupled Hamiltonian model

$$H(+) = [m^2c^4+c^2p^2]^{1/2} + V_{ext}(z)$$
 => bound states
 $H(-) = [m^2c^4+c^2p^2]^{1/2} - V_{ext}(z)$ => scattering states

$$\rho_{\text{pol}}(z, t) = \left(\sum_{E(+)} |\phi_{E}(+; z, t)|^2 - \sum_{E(-)} |\phi_{E}(-; z, t)|^2\right) / 2$$

predictions for $\rho_{pol}(z, t)$ are highly accurate

=> transitions between positive and negative Dirac states irrelevant

Traditional perturbation theory

$$\begin{split} |\Psi_{E}^{(1)}\rangle &= |\varphi_{E}\rangle + \ \Sigma_{E'} \ \langle \varphi_{E\square} | V_{ext} | \varphi_{E\square} \rangle \ / \ (E-E') \ |\varphi_{E\square}\rangle \ + ... \\ |\Psi_{E}^{(1)}\rangle &= |\varphi_{E}\rangle - \ \Sigma_{E'} \ \langle \varphi_{E\square} | V_{ext} | \varphi_{E\square} \rangle \ / \ (E-E') \ |\varphi_{E\square}\rangle \ + ... \end{split}$$

$$\rho_{\text{pol}}(\mathbf{z}, t) = \left(\sum_{\mathbf{E}} |\Psi_{\mathbf{E}}^{(1)}(\mathbf{z})|^2 - \sum_{\mathbf{E}} |\Psi_{\mathbf{E}}^{(1)}(\mathbf{z})|^2\right) / 2$$

predictions for $\rho_{pol}(z, t)$ are highly accurate

=> perturbative approach applicable also to 2 and 3D?

Intermediate summary

$$(\partial_{ct}^2 - \partial_z^2) \rho_{pol}(z,t) = 8\pi \chi q_{ext}(z)$$
 with $\chi = \alpha^3/(2\pi \lambda_C^2)$

4 independent approaches: (steady, dynamics, phenom, decoupled hamiltonian) predict:

massless virtual positive particles accumulate around positive charges

- => Is the energy conserved?
- => What if real particles are created in addition?
- => Consistent with traditional QED methods?

Quick overview

- (1) Computational approach
 - Steady state vacuum polarization $\rho(z)$
 - Space-time evolution of $\rho(z,t)$
 - Steady state and time averaged dynamics
- (2) Analytical approaches
 - Phenomenological model
 - Decoupled Hamiltonians
 - Perturbation theory
- (3) Applications
 - Coupling ρ to Maxwell equation
 - Relevance for pair-creation process
 - Relationship to traditional work

Coupled Dirac-Maxwell equation

$$\rho_{pol}(z, t) = \left(\sum_{E(+)} |\phi_E(+; z, t)|^2 - \sum_{E(-)} |\phi_E(-; z, t)|^2\right) / 2$$

Dirac equation:

$$i \partial_t \phi_E(z,t) = \left[c \sigma_1 \left[p_z - A(z,t)/c \right] + mc^2 \sigma_3 + V(z,t) \right] \phi_E(z,t)$$

Maxwell equation:

$$\left[\partial_{ct}^2 - \partial_z^2\right] V(z,t) = 4\pi \rho(z,t)$$

$$\left[\partial_{ct}^2 - \partial_z^2\right] A(z,t) = 4\pi j(z,t)/c$$

Energy conservation

$$E_{tot} = E_{mat}(t) + E_{int}(t) + E_{field}(t)$$

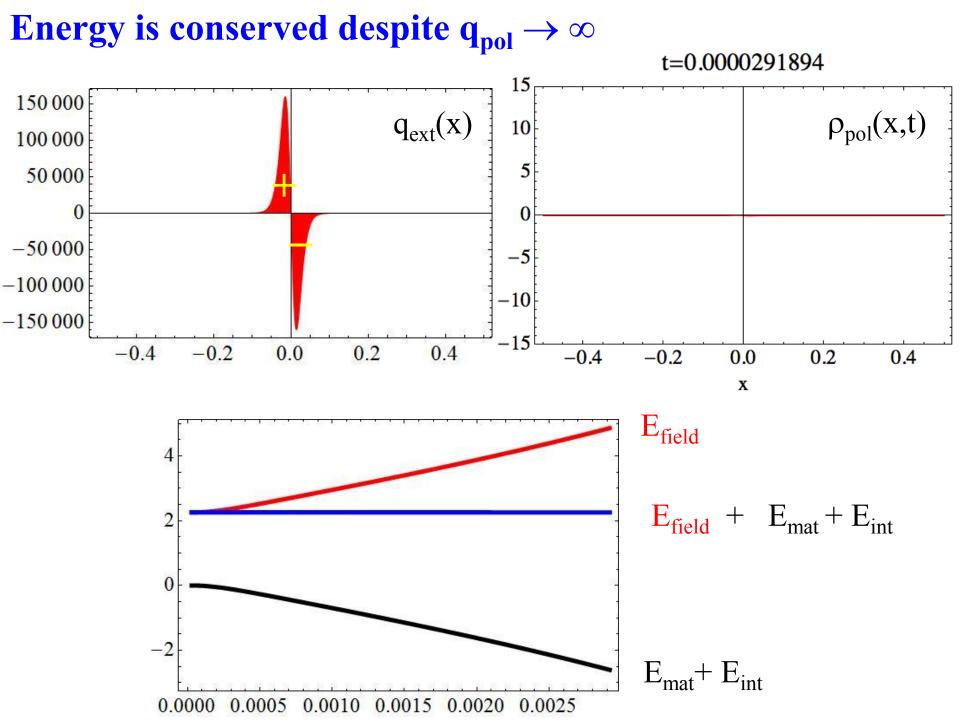
$$E_{\text{mat}}(t) = \int dz \langle \Psi^{\dagger}(z,t) \{ c \sigma_1 p + \sigma_3 mc^2 \} \Psi(z,t) \rangle$$

$$E_{int}(t) = q \int dz \langle \Psi^{\dagger}(z,t) \{ V(z,t) - \sigma_1 A(z,t) \} \Psi(z,t) \rangle$$

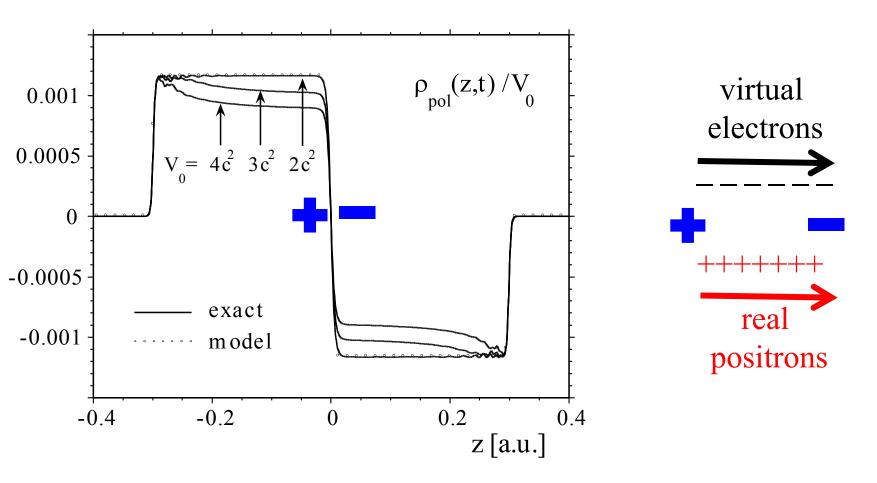
$$E_{\text{field}}(t) = (8\pi)^{-1} \int dz \left\{ \left[\partial_{\text{ct}} A(\mathbf{z}, t) \right]^2 - \left[\partial_{\mathbf{z}} V(\mathbf{z}, t) \right]^2 \right\}$$

Temporal gauge:

$$\begin{split} E_{int}(t) &= - q \int dz \, \langle \, \Psi^{\dagger}(z,t) \, \sigma_1 \, A(z,t) \, \Psi(z,t) \, \rangle \\ E_{field}(t) &= (8\pi)^{-1} \int dz \, E^2(z,t) \end{split}$$



Pair creation regime: $\rho_{pol} = \rho_{vac} + \rho_{e-e+}$

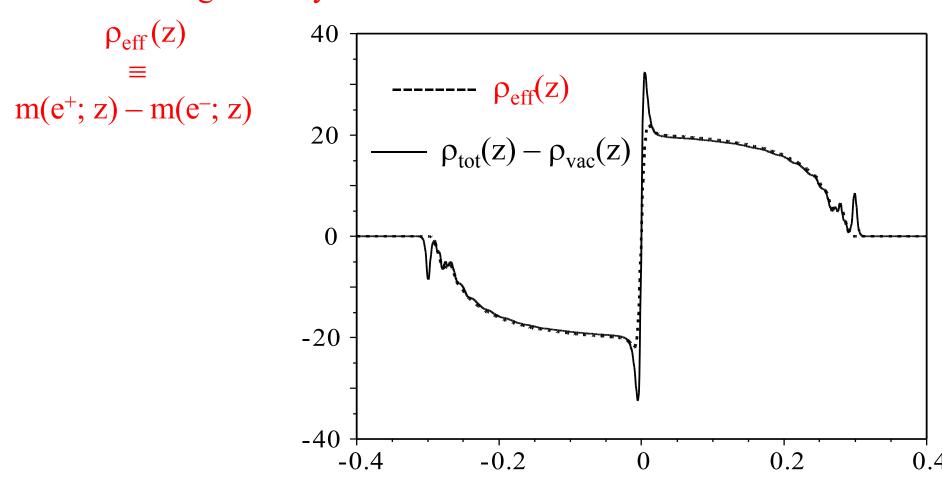


real particles **reduce** the total charge density induced and real particles obey **opposite** "**force laws**"

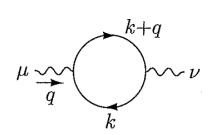
More quantitatively: mass density of real particles

$$\Psi(z,t) \equiv \Psi(e^{-}) + C \Psi(e^{+})$$

$$m(e^-; z, t) \equiv \langle vac | \Psi^{\dagger}(e^-)\Psi(e^-) | vac \rangle$$
 effective charge density
$$m(e^+; z, t) \equiv \langle vac | \Psi^{\dagger}(e^+)\Psi(e^+) | vac \rangle$$



Traditional pert. QED approach:



$$q_{\rm ext}(\mathbf{r}) = e \, \delta(\mathbf{z})$$

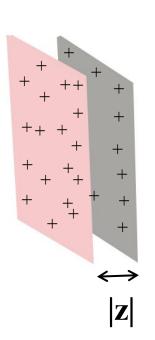
Peskin-Schroeder Eq. 7.93

$$\Pi_2 = 4\alpha \left[k^{-2} - 4c^4 k^{-3} (4c^4 - k^2)^{-1/2} \arctan[k(4c^4 - k^2)^{-1/2}] \right]$$

necessary: regularization (P-V or dim.) and charge renormalization

$$E_{int}(z) = (2\pi)^{-1} \int dk \, \exp(ikz) \, e^2 \, k^{-2} \, [1 - \Pi_2]^{-1}$$

$$\cong -2\pi \, e^2 \, |z| - \alpha \, e^2 \, 4\pi/3 \, |z|^3 + \dots$$
 Coulomb vac. pol. correction



Traditional pert. QED approach:

$$E_{int}(z) \cong -2\pi e^2 |z| - \alpha e^2 4\pi/3 |z|^3 + ...$$

Coulomb vac. pol. correction

Possible connection to our approach:

$$-\partial^{2}_{z} V_{ext}(z) = 4\pi q_{ext}(z) = V_{ext}(z) = -2\pi e |z|$$

$$-\partial^{2}_{z} \rho_{pol}(z) = 8\pi \chi q_{ext}(z) = -2\pi e |z|$$

$$+ \partial^{2}_{z} V_{pol}(z) = 4\pi \rho_{pol}(z) = V_{pol}(z) = -8\pi^{2}/3 e \chi |z|^{3}$$

$$= -\alpha e 4\pi/3 |z|^{3}$$

regularization and charge renormalization NOT necessary

(Too) many open questions....

$$\bigcirc$$
 $q_{ext}(z) = \delta(z) => infinite plane: $\lim_{t\to\infty} \rho(z,t)\to\infty$$

- \odot 1D \neq 3D with spatial symmetry (relativity)
- implications for 2D and 3D: $\Box \rho_{pol} = 8\pi \chi q_{ext}(r)$??
- more contact with traditional methods
- experimental implications
- **....**

Q.Z. Lv, J. Betke, W. Bauer, Q. Su and R. Grobe, Phys. Rev. Lett. (in preparation)

A. Steinacher, J. Betke, S. Ahrens, Q. Su and R. Grobe, Phys. Rev. A 89, 062016 (2014).

A. Steinacher, R. Wagner, Q. Su and R. Grobe, Phys. Rev. A 89, 032119 (2014).

Conceptual problems in QED

Part I: Polarization density of the vacuum

(photon = classical field)

Part II: Bare, physical particles, renormalization

(photon = independent particle)

5 drawbacks of the S matrix

- (1) $T \rightarrow \infty$ is built in
- (2) $d\sigma/d\omega$ is rate based
- (3) usually only perturbative
- (4) no spatial information
- (5) black box approach

What happens inside the interaction zone?

The challenge:

study QED interactions with space-time resolution

- construct Hamiltonian H
- \bigcirc evolve $|\Psi(t=0)\rangle$ to $|\Psi(t)\rangle$

by solving $i \Box / \mathbb{I} | \Psi(t) \rangle = H | \Psi(t) \rangle$

 \bigcirc convert $|\Psi(t)\rangle$ into observables

The problems:

- Hilbert space is gigantic
- © Hamiltonian is "wrong" and requires serious repair
- © correct physical operators are unknown

Electron – **positron** – **photon** interactions

$$H_{int} = \Sigma + dp dk \dots$$
 8 basic "processes"

Photon annihilation: bba

Photon creation:

Three Hamiltonians of quantum field theory

$$H_{\text{bare}} = b^{\square}b + a^{\square}a + b^{\square}b a^{\square} + \dots$$

- wrong energies
- \bigcirc bad operators $H \ b^{\square}|0\rangle \neq E \ b^{\square}|0\rangle$

$$H_{renorm} = b^{\square}b + a^{\square}a + \infty b^{\square}b a^{\square} + ...$$

- ⊙ correct energies ✓
- bad operators

$$H_{dressed} = B^{\square}B + A^{\square}A + B^{\square}B^{\square}BB + ...?...$$

- ⊙ correct energies ✓
- ⊙ good operators ✓

Overview

Repair work I: find H_{renom}

© compute the physical mass (numerical renormalization)

Dynamics in terms of bare particles

- 1 vacuum
- 2 single particle
- ③ two-particles (e-γ and e-e scattering)

Repair work II: find H_{dressed}

© construct physical operators

Bare mass $m \neq physical mass M$

$$H_{0} = +dp \ e_{p} \ b_{p} \ b_{p} + +dk \ \omega_{k} \ a_{k} \ a_{k}$$
 where $e_{p} = [m^{2}c^{4}+c^{2}p^{2}]^{1/2}$
$$H_{int} = ++dp \ dk \ g(p,k) \ b_{p+k} \ b_{p} \ (a_{k}+a_{-k}) + ...$$
 $m = bare \ mass$

Measurement: physical mass of an electron is 1 kg (= M)

The problem: eigenvalue of H is # and not m and not 1kg

$$(H_0 + H_{int}) |P\rangle = E_P |P\rangle$$
 $E_P = [\#^2 c^4 + c^2 P^2]^{1/2}$

The goal: choose m such that # is the physical mass M

Assume bare mass m and compute physical mass M

$$H = +dp \ e_p b_p^{\Box} b_p \ + \ +dk \ \omega_k a_k^{\Box} a_k \ + \ ++dp \ dk \ g(p,k) \ b_{p+k}^{\Box} b_p \ (a_k + a_{-k}^{\Box}) \ + \ ...$$

- (1) use $e_p = \sqrt{(m^2c^4+c^2p^2)}$ with *trial value*: m = 1 kg
- (2) diagonalize H to determine eigenvalue $E_p = \sqrt{(M^2c^4+c^2p^2)}$ leading to mass M = 0.7 kg

repeat (1) and (2) with different trial bare mass m
until we obtain desired mass M=1 kg

Complication:

eigenvalue E_P depends on maximum momentum Λ

if $\Lambda \longrightarrow \Box$ then $M \longrightarrow -\Box$ (but we want M=1kg)

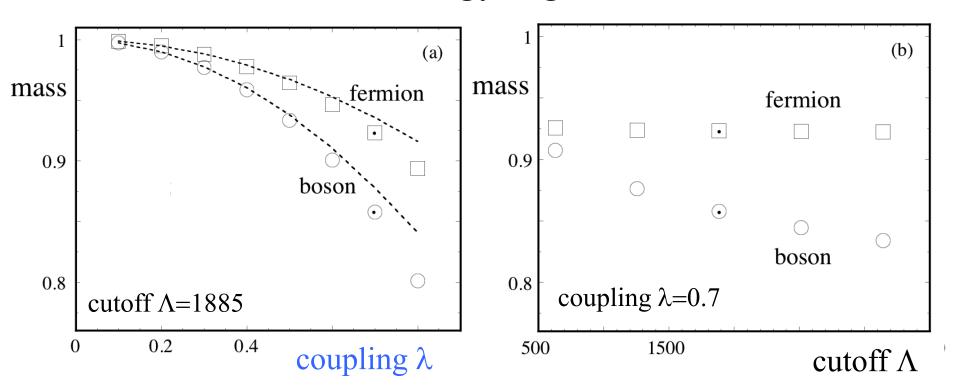
Solution:

if $\Lambda \longrightarrow \Box$ then $m \longrightarrow \Box$ (to keep M=1kg)

QED with photon mass \neq 0 & spin=0 => scalar Yukawa

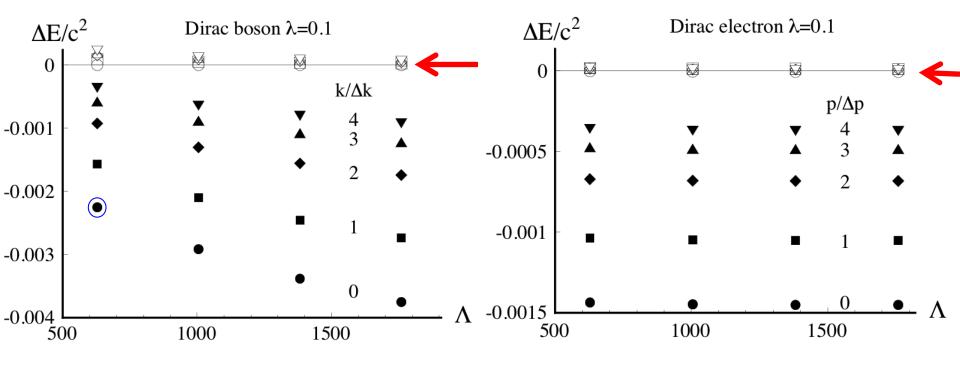
$$H_{\text{bare}} = H_0 + \lambda + dx \ \psi(x)^{\square} \gamma^0 \ \psi(x) \ \phi(x)$$

Lowest energy eigenvalue



Renormalization of one-particle energies

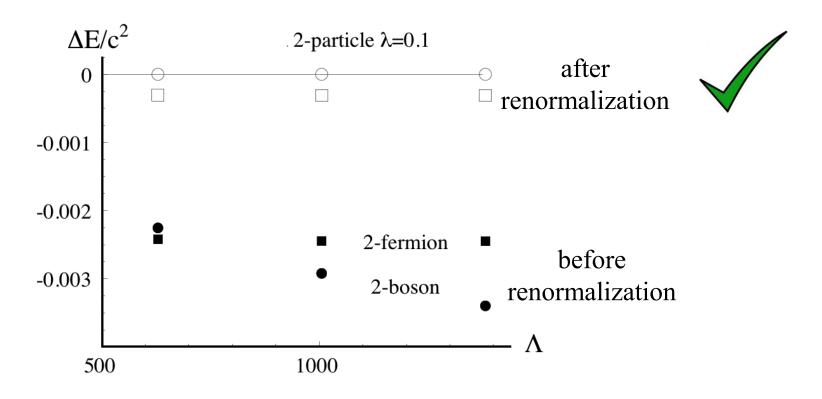
$$\Delta E(\Lambda) := E_{\text{num}}(m_e, m_{\gamma}, \Lambda) - \sqrt{(M_{\text{phys}}^2 c^4 + c^2 p^2)}$$



- find (m_e, m_{γ}) for p=0 state to get $M_{phys}c^2$ (m_e, m_{γ}) works for all other p to get $\sqrt{(M_{phys}^2 c^4 + c^2 p^2)}$

Renormalization of two-particle masses

$$\Delta E(\Lambda) = E_{\text{num}}(m_e, m_{\gamma}, \Lambda) - 2M_{\text{phys}} c^2$$



- \odot (m_e, m_{γ}) can repair entire spectrum
- © 2-fermion bound state energy can now be analyzed

Repair work I: find H_{renom}

© non-perturbative exact numerical renormalization

Dynamics in terms of bare particles

- 1 vacuum
- 2 single particle
- ③ two-particles (e-γ and e-e scattering)

Repair work II: find H_{dressed}

© construct physical operators

The vacuum contains "virtual" particles

$$(H_0 + V) |VAC\rangle = E_{VAC} |VAC\rangle$$

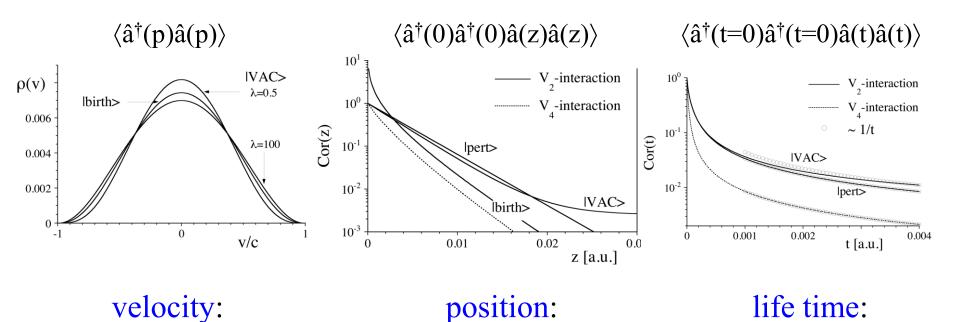
with LOWEST energy

$$H_0 |0\rangle = 0 |0\rangle$$

no particles, no interaction

state with particles $|VAC\rangle$ can have less energy than $|0\rangle$

I Properties of virtual particles in |VAC>



mainly at rest

model in terms of an ensemble of classical particles?

on top of each other

non-exponential

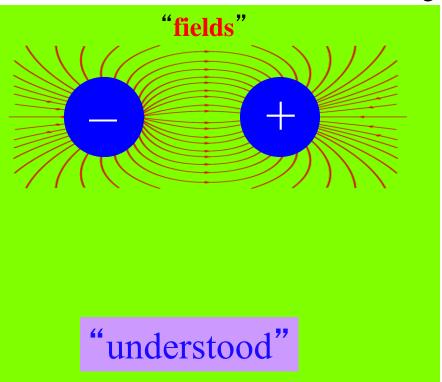
II Properties of virtual particles in single particle state

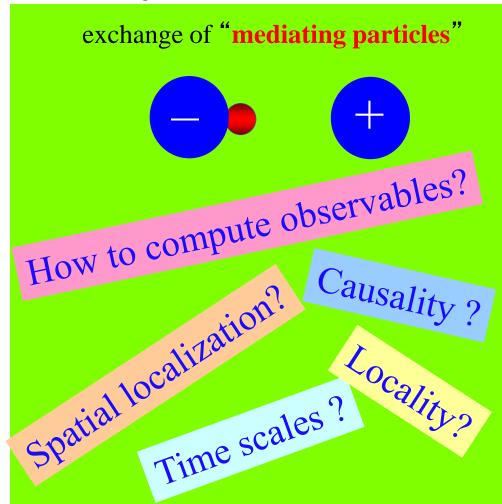


- impact of mass renormalization on dynamics
- bare photons = electric field around charge
- © electric field depends on velocity

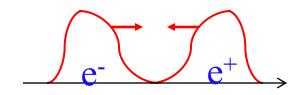
Interactions between particles: "forces"

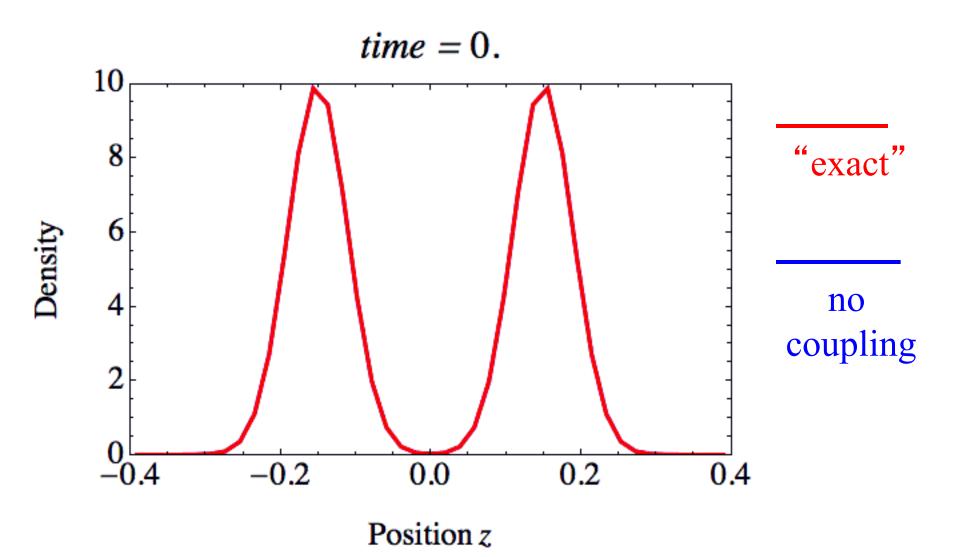
two charges attract through ...

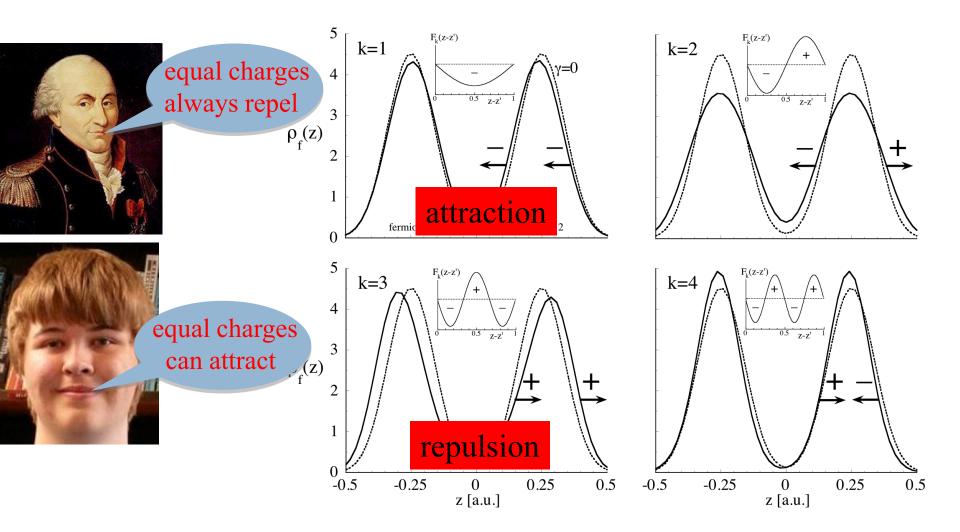




III Impact of virtual particles on forces







R.W., M. Ware et al., Phys. Rev. Lett. 106, 023601 (2011)

Overview

Repair work I: find H_{renom}

© compute the physical mass (numerical renormalization)

Dynamics in terms of bare particles

- 1) vacuum
- 2 single particle
- ③ two-particles (e-γ and e-e scattering)

Repair work II: find H_{dressed}

© construct physical operators

Beautiful special case: Greenberg-Schweber model

$$H_{bare} = \mathbf{E}_{bare} \ \Sigma_p \ b_p^{\square} b_p + \ \Sigma_k \ \omega_k a_k^{\square} a_k - \lambda^2 \ \Sigma_p \ \Sigma_k \ (2\omega_k)^{-1} \ b_{p+k}^{\square} b_p \ (a_k + a_{-k}^{\square})$$

$$\begin{split} \boldsymbol{B_p} &= \boldsymbol{U}^{\square}\boldsymbol{b_p}\boldsymbol{U} \\ &= \boldsymbol{with} \ \boldsymbol{U} \ \boldsymbol{\alpha} \ exp \Big[\boldsymbol{\lambda} \ \boldsymbol{\Sigma_p} \ \boldsymbol{\Sigma_k} \ (2\omega_k^3)^{\text{-1/2}} \ \boldsymbol{b_{p+k}}^{\square}\boldsymbol{b_p} \ (a_k^{\square} \text{-} \ a_{\text{-k}}) \ \big] \\ \boldsymbol{A_k} &= \boldsymbol{U}^{\square}\boldsymbol{a_k}\boldsymbol{U} \end{split}$$

$$\mathbf{H}_{dress} = \mathbf{E}_{phys} \; \boldsymbol{\Sigma}_{p} \; \mathbf{B}_{p}^{\square} \mathbf{B}_{p} \; + \; \boldsymbol{\Sigma}_{k} \; \boldsymbol{\omega}_{k} \mathbf{A}_{k}^{\square} \mathbf{A}_{k} \; - \; \boldsymbol{\lambda}^{2} \; \boldsymbol{\Sigma}_{p} \boldsymbol{\Sigma}_{q} \boldsymbol{\Sigma}_{k} (2\boldsymbol{\omega}_{k}^{2})^{-1} \; \mathbf{B}_{p+k}^{\square} \mathbf{B}_{q}^{\square} \mathbf{B}_{p} \mathbf{B}_{q+k}^{\square} \mathbf{B}_{p}^{\square} \mathbf{B}_{p} \mathbf{B}_{q+k}^{\square} \mathbf{B}_{p}^{\square} \mathbf{B}_{p}^{$$

$$\begin{array}{c} H_{bare} \\ = \end{array}$$

$$\mathbf{E}_{bare} \ \Sigma_{p} \ b_{p}^{\square} b_{p} + \ \Sigma_{k} \ \omega_{k} a_{k}^{\square} a_{k} \ - \ \lambda^{2} \ \Sigma_{p} \ \Sigma_{k} \ (2\omega_{k})^{-1} \ b_{p+k}^{\square} b_{p} \ (a_{k} + a_{-k}^{\square}) \end{array}$$

$$\begin{array}{c} H_{dress} \\ = \end{array}$$

$$\mathbf{E}_{phys} \, \boldsymbol{\Sigma}_{p} \, \boldsymbol{B}_{p}^{\square} \boldsymbol{B}_{p} + \boldsymbol{\Sigma}_{k} \, \boldsymbol{\omega}_{k} \boldsymbol{A}_{k}^{\square} \boldsymbol{A}_{k} \, - \lambda^{2} \, \boldsymbol{\Sigma}_{p} \boldsymbol{\Sigma}_{q} \boldsymbol{\Sigma}_{k} (2\boldsymbol{\omega}_{k}^{\ 2})^{-1} \, \boldsymbol{B}_{p+k}^{\square} \boldsymbol{B}_{q}^{\square} \boldsymbol{B}_{p} \boldsymbol{B}_{q+k} \end{array}$$

- $\Box \ physical \ energy \ E_{phys} = E_{bare} \lambda^2 \Sigma_k (2\omega_k^{\ 2})^{-1}$ $\Box \ B_P^{\Box} |0\rangle \ is \ eigenstate \ of \ H, \ as \ H \ B_P^{\Box} |0\rangle = E_P \ B_P^{\Box} |0\rangle$
 - \square no force intermediating virtual photons (no e⁻- γ interaction)
 - new e⁻-e⁻ interaction: $e^{-}(q+k) + e^{-}(p) --> e^{-}(q) + e^{-}(p+k)$

The construction of the dressed particle Hamiltonian

(1) use H_{renorm} to compute scattering matrix S

(2) find α , β , γ etc. to match S

Example: dressed particle Hamiltonian for scalar Yukawa system

$$H_{\text{bare}} = H_0 + \lambda + dx \ \psi(x)^{\Box} \gamma^0 \ \psi(x) \ \phi(x)$$

$$V_{e--e-} = +++++ \alpha(p,q,p',q') B_p^{\Box} B_q^{\Box} B_{p'} B_{q'}$$

$$\alpha(p,q,p',q') \sim \delta(p+q-p'-q') / [(q-q')^2 + M^2c^2]$$

- \Box +dx exp[i(q-q')x] α (p,q,p',q') ~ exp(-M|x|)
- direct interpretation possible

Summary



R. Wagner

P. Krekora

T. Cheng

E. Stefanovich

C. Gerry

Matt

Emily Kara

Nic

Kevin

- Goal: visualization of QED processes
- Main tool: computational quantum field theory
 - First progress: H_{bare} --> H_{renorm}
 - Early stage progress: H_{renorm} --> H_{dressed}
- many conceptual and computational challenges ...