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One is able to image electronic motion in 
atoms and molecules and to determine

photoionization delays
with temporal resolution at the 

natural attosecond scale.

What does that infer regarding measurement 
of time in quantum mechanics?

Time and Quantum Mechanics

Status of the time variable : operator or parameter ?



A) Heisenberg vs. Pauli.

B) Mathematical background: Weyl and Stone-von Neumann.

C) Derivations of Heisenberg inequalities.

D) Tunneling times.

E) Wigner et al. time delay.

F) Delays in photoionization.

Outline

Papers to appear on related topics : 
• Burgdörfer et al. RMP (2014); 
• Caillat et al. JPB (Sept 2014);
• Dahlström et al. Springer book (2014).
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An Outstanding Problem since the 

Foundations of Quantum Mechanics

 commutation relation (in matrix form) 
for operators associated to the canonical variables 
(e.g. position-momentum) of classical mechanics. 

Q,P[ ] =QP-PQ = i 1 (1)

Dqi Dpi ³ / 2Heisenberg’s position-momentum uncertainty inequality:

T,H[ ] =TH -HT = i 1 (2)

Given the known time-frequency uncertainty for 
wave-like phenomena (e.g. in Fourier analysis)

why not defining a time-operator T ? Its
commutator with the hamiltonian would be:

DEDt ³ / 2
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In fact, that was Heisenberg’s idea…(in 1927)



Heisenberg (1927)
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From Classical to Quantum Mechanics

Classical Quantum

Poisson Bracket

{A,B} = (
¶A

¶qii

å
¶B

¶pi
-

¶A

¶pi

¶B

¶qi
)

1

i
A,B[ ]

Hamilton function +
canonical variables

Hamiltonian operator
in a Hilbert space

Commutator

H(qi,pi ) H (qi ,-i
¶

¶qi
)

dF(qi , pi ,t)

dt
=

¶F

¶t
+{F,H}

Equation of motion Heisenberg’s equation

dF(qi , pi ,t)

dt
=

¶F

¶t
+

1

i
F,H[ ]

Time variable is a 
parameter

Time variable is also 
a parameter ??
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Pauli (1930)

W. Pauli (1933), in General Principles of Quantum Mechanics, (Springer, Berlin, 1980); footnote p. 63.

No such time operator does exist!
Pauli’s argument: Relations of type (1) are only valid for unbounded operators

As H is semi-bounded, eq. (2) cannot hold:
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Time and Quantum Mechanics
(the parameter – operator conundrum)

Position – Momentum:

Angle – Action:

Time – Energy:

Heisenberg 1927: three uncertainty relations

Canonical variables
Dqi ×Dpi ³

Dw ×DJ ³

Dt ×DE ³
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Time and Quantum Mechanics
(the parameter – operator conundrum)

Position – Momentum:

Angle – Action:

Time – Energy:

Heisenberg 1927: three uncertainty relations inequalities

Canonical variables
Dqi ×Dpi ³

Dw ×DJ ³

Dt ×DE ³

Inequalities can be
rationalized using

algebraic properties
of commutators

or Fourier analysis.

Rationalized via 
Fourier-Transform

analysis
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Heisenberg’s inequalities for operators constructed from

canonical variables (qi, pi)

Q and P self-adjoint operators on an infinite Hilbert space 
H of complex-valued L2 functions.

[Q,P] = i 1 (1)

Commutator of position and momentum operators 
(1-dimensional system)

Pauli: If ħ ≠ 0, Eq. (1) has solutions only if Q and P are unbounded.
By contrast, it has no solution if:

• H is finite-dimensional (trace of commutator [Q,P] would be = 0);
• either Q or P is bounded (or semi-bounded); 

⇔ Stone-von Neumann theorem

W. Pauli (1933), in General Principles of Quantum Mechanics, (Springer, Berlin, 1980); footnote p. 63.
Weyl + Stone-von Neumann theorem: see: J. Rosenberg, in Contemporary Maths. 365, 331-353 (2004) 10
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 Eq. (1) verified only if

 = 0.

However, as AB = A(BA)A-1

(similarity transform)

AB and BA 

have the same spectrum.

BA =AB - 1
Suppose they have a non-zero 

commutator: AB - BA = 1  (1)

AB and BA spectra would be 

translated  by .
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1) Let: A and B bounded,

then AB and BA are bounded.

(i.e. finite spectral radius)
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Spectra and commutators of bounded operators

2) If H is finite-dimensional, with dimension N, 

the trace of the commutator Tr[A,B] =0, while Tr 1 = N



The Stone-von Neumann Theorem (1930-31)

Vt = eitQ andUt = eitP , t Î R

Original idea from Weyl (1928):
Q and P can be exponentiated to one-parameter unitary groups:

UtQU-t = eitPQe-itP =Q+ it P,Q[ ] +
(it )2

2!
[P,[P,Q]]+

(it )3

3!
[P,[P,[P,Q]]]...

One constructs the operator: Ut QU-t , (same spectum as Q),
and expanding the exponentials, one finds:

(Baker-Campbell-Hausdorff formula + Hadamard)
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eitPQe-itP = (1+ itP+
(it )2

2!
PP+ )Q(1- itP+

(-it )2

2!
PP+ )

=Q+ it (PQ-QP)+
(it )2

2!
(PPQ- 2PQP+QPP)+

One has, 
for instance:

= [P,[P,Q]]



The Stone-von Neumann Theorem (II)

UtQU-t = eitPQe-itP =Q+ it P,Q[ ] +
(it )2

2!
[P,[P,Q]]+

(it )3

3!
[P,[P,[P,Q]]]...

• b) Generalization: Applies to any power Qn and, thus to any function f(Q) 

expressible as a power series. Thus:

Ut  f(Q)U-t = f(Q + ħt)

In particular: UtVsU-t = Ut e
isQ U-t = eis(Q + ħt) = eiħst Vs

One has also: VsUtV-s = eiħst Ut

⇔ multiplicative form of the commutation relation (Weyl)
13

• a) As: [P,Q] =-iħ,  [P,[P,Q]] = 0, idem for higher-order terms, then:

 Ut QU-t = Q + ħt

shows that the spectrum of Q is invariant under a translation ħt

⇔ spectrum of Q is the real line and is unbounded. 



The Stone-von Neumann Theorem (III)

This is the mathematical background Pauli used to 
formulate his famous statement.

Theorem states the unicity (i.e. irreducibility) of the 
representations of the Heisenberg commutation relations 

in Weyl form.

Generalizations exploiting the Lie algebra of 
commutators, constitute the main outgrow of the 

theorem. 

Further extensions related to the so-called Heisenberg 
group, have given rise also to an abundant literature

(Mackey, Weil, Lions, etc.)  
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(*) As Joachim Burgdörfer said last week, this assertion is still discussed in the 
mathematical physics literature. See for instance: 

Time in Quantum Mechanics, Muga et al. editors, Lecture Notes in Physics 789 (2009)

From the preceding analysis, (+Stone-von Neumann theorem):
Since, based on physical grounds,

• time is unbounded (t ∈ ] -∞ , +∞ [ ) 
• Hamiltonian H is semi-bounded (or with discrete eigenvalues), 
⇒ there is no Hermitian time operator in quantum mechanics (*)

⇒ time is not an “observable” quantity.
In other words: a time delay cannot be associated 

to eigenvalues of an hermitian operator.

See also the papers by Briggs & Rost: Time enters Quantum Mechanics
as the result of the coupling of the system with the (classical) environment, 

which encompasses the time measurement device itself. 

Euro. Phys. J. D10, 311 (2000) and Found. Phys. 31, 693 (2001).

No hermitian « time operator » in quantum mechanics !
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From Commutators of Canonical Variables Operators

to Heisenberg’s Inequalities

(an operational approach, via expectation values of operators)

Q = Y,QY

(DQ)2 = (Q- Q )2 ; (DP)2 = (P - P )2

(DQ)2 × (DP)2 ³
1

4
Q,P[ ]( )

2

DQ ×DP ³
1

2
Q,P[ ] =

2

Variance:

Using commutator 
+ Cauchy-Schwarz:

Heisenberg:
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Robertson-Schrödinger Inequality

Let A and B a pair of hermitian operators. For a system in state |Ψ>, define: 
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f = A- A( ) Y ; g = B- B( ) Y

Variances : s A

2 = f f ; s B

2 = g g

s A

2 ×s B

2 = f f g g ³ f g
2

(Cauchy -Schwarz)

as : f g
*

= g f ,  one has : f g
2

=
f g + g f

2

æ

è
ç

ö

ø
÷

2

+
f g - g f

2i

æ

è
ç

ö

ø
÷

2

f g = Y AB- A B - A B+ A B Y = AB - A B

and : g f = BA - A B

Thus : f g + g f = AB+BA - 2 A B , note the anti - commutator!

and: f g - g f = A,B[ ]

DA2 ×DB2 = s A

2 ×s B

2 ³
AB+BA - 2 A B

2

æ

è
ç

ö

ø
÷

2

+
A,B[ ]

2i

æ

è

ç
ç

ö

ø

÷
÷
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Remark: Harmonic Oscillator and Other Systems

When specializing to the case of non-diagonal operators (such as x and px), 
the Heisenberg inequality is often written: Dx . Dpx ≥ ħ/2, with [x,px] = iħ.

This expression does not make apparent the first term of the inequality
written above for the product of the variances.

For most systems, this first term is ≠ 0. 

DA2 ×DB2 = s A

2 ×s B

2 ³
AB+BA - 2 A B

2

æ

è
ç

ö

ø
÷

2

+
A,B[ ]

2i
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è

ç
ç

ö

ø

÷
÷

2

The equality Dx . Dpx = ħ/2 is verified for the ground state of the 
harmonic oscillator sytem.

Remark: One checks that the minimum uncertainty Dx . Dpx = ħ/2  is verified
for the normal (i.e. Gaussian) momentum and spatial distributions 
in the ground state.

One can make a parallel with the Fourier Transform, where the minimum of 
the time-bandwidth product is reached for Gaussian distributions. 
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g(E)
R

ò
2

dE = f (t)
R

ò
2

dt ;

As there is no commutation relation for time and energy, 
one has to rely on the properties of Fourier transforms. 

Time-Energy Inequality

Fourier-
Transform
pair:

Parseval:

Variances:

g(E) =
1

2p
e-iEt/

R
ò f (t) dt; f (t) Î L2(R);

f (t) =
1

2p
e+iEt/

R
ò g(E) dE; g(E) Î L2(R);

where t0 and E0 are the average (expectation) values: 

t0 = t f (t)
R

ò
2

dt and E0 = E g(E)
R

ò
2

dE ;

Dt2 = s t

2 = (t - t0R
ò )2 f (t)

2
dt = (t2 - t0

2

R
ò ) f (t)

2
dt;

DE2 = s E

2 = (E -E0R
ò )2 g(E)

2
dE = (E2 -E0

2

R
ò ) g(E)

2
dE

t0 and E0 can be removed via variable changes like t t - t0 , etc.

Þ one can consider:  Dt2 = t2
R
ò f (t)

2
dt ; DE2 = E2

R
ò g(E)

2
dE
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If f(t) is normed: Inequality for the product 

of the square roots of the variances :
Þ Dt ×DE ³

2

Time-Energy Inequality (follow)

Derivation of Heisenberg inequality (Weyl):

Start from:
d

dt
t f (t)( ) = t

df (t)

dt
+ f (t) Þ f (t)

2
= f (t) f (t) =

d

dt
t f (t)( ) f (t)

é

ë
ê

ù

û
ú- t

df (t)

dt
f (t)

æ

è
ç

ö

ø
÷

Then : f (t)
R
ò

2

dt =
d

dt
t f (t)( ) f (t)

é

ë
ê

ù

û
úR

ò dt - t
df (t)

dt
f (t)

R
ò dt

Integrating first term by part : f (t)
R
ò

2

dt = t f (t)
2é

ë
ù
û-¥

+¥

- t f (t)
df (t)

dtR
ò dt - t

df (t)

dt
f (t)

R
ò dt

First term is zero and : f (t)
R
ò

2

dt = -2 Re t f (t)
df (t)

dtR
ò dt

é

ë
ê

ù

û
ú £ 2 t f (t)

df (t)

dtR
ò dt ;

Cauchy-Schwarz : t f (t)
df (t)

dtR
ò dt

2

£ t 2 f (t)
R
ò

2

dt ×
df (t)

dtR
ò

2

dt

Derivative:
df (t)

dt
=

-i 1

2p
e-iEt/ E g(E)

R
ò dE ; + Parseval: 

df (t)

dtR
ò

2

dt =
1

2
E 2 g(E)

R
ò

2

dt

Thus : f (t)
R
ò

2

dt £
4

2
t 2 f (t)

R
ò

2

dt × E 2 g(E)
R
ò

2

dt =
4

2
Dt2 ×DE 2
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Time-Energy Inequality (follow)

To summarize: Given the absence of time operator,
one has to use a Fourier Transform technique to establish

the time-energy Heisenberg inequality.

NB. There exists other derivations, notably the one by 
Mandelstam and Tamm: Dt is the time interval associated to 
the energy change DE in the expectation value of H. 
J. of Physics (USSR) 9 (4) 249 (1945). See also the book by 
Griffiths: Introduction to QM (Pearson) p. 114.
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How to Measure “Characteristic Times” or 
“Time Delays” in Quantum Systems?

With the recent technological advances, the question 
has arisen of how to “clock“ quantum electronic processes

on their natural time scale (in the attosecond range). 

Two topics have emerged in this context:
• Tunneling times;
• Time delays in photoionization.

NB. I will not discuss the closely related “attoclock“ 
concept as Joachim Burgdörfer already dicussed it and 
Sasha Landsman (ETH Zürich) can answer all your
questions!
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• Büttiker and Landauer, “Traversal Time for Tunneling”, PRL 49, 1739 (1982).
• Landauer and Martin, “Barrier interaction time in tunneling”, RMP 66, 217 (1994).
• Carvalho and Nussenzveig, “Time Delays”, Phys. Reports 364, 83 (2002).
• Yamada, “Unified Derivation of Tunneling Times from Decoherence
Functionals”, PRL 93, 170401 (2004). 
• Winful, “Tunneling time, the Hartman effect and superluminality…”, 
Phys. Reports 436, 1 (2006).
• Book: Time in Quantum Mechanics, Muga et al. editors, Lecture Notes in Physics 789 (2009)
• Galapon, “Only Above Barrier Energy Components Contribute to Barrier Traversal Time”,
PRL 108, 170402 (2012), etc.

An abundant literature has been (and continues to be) devoted 
to this topic. A non-exhaustive (and subjective) list includes:

Tunneling Time (I)

The question of the status of time (parameter or 
dynamical variable?) remained academic, until the 

advent of STM (Scanning Tunneling Microscopy), of 
semi-conductor devices and of Josephson junctions 

measurements (in the 1980s). 
Then arose the question of tunneling times i.e.: 

“How much time does a tunneling particle spend in the 
barrier region?”; Steinberg, PRL 74, 2405 (1995).

R T=|T| ei

V
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For a transmission amplitude T = |T| ei, one distinguishes:
• Baz or Larmor time = -ћ∂/∂V ( spin precession in B field) ;
• Büttiker-Landauer time = -ћ∂ln |T|/∂V ;
•Bohm-Wigner time= ћ∂/∂E (or group delay, see below);
• Pollack-Miller time = ћ∂ln |T|/∂E .

There is no consensus: This results essentially from the fact that 
the high-energy components of the incoming w-p:

i) arrive first; 
ii) cross the barrier with a higher probability; 

 deformation of w-p…

R T=|T| ei

V

Tunneling Time (II)

Four (4 !) different definitions 
have been proposed for tunneling 
times for a particle with energy 
E < V (height of barrier).
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The notion remains extremely controversial !!

Many other “times” have been proposed to deal with the question:
Let us mention a few: “dwell time”, “time-of-arrival”, “traversal time”, 

“group delay”, etc..

Tunneling Time (III)

27

Joachim Burgdörfer has pointed out that the concept of a “time delay 
operator” is also used in different areas of physics: Solid state, Optics, 

Acoustics, etc. All deal with wave phenomena  (see Winful’s review).

The possibility of defining an hermitian operator associated to time delays
has been introduced by Smith (Phys. Rev. 118, 349, 1960) in an 

R-matrix context: The eigenvalues of the “lifetime matrix” can be 
associated to ”time  delays” in each reaction channel. The basis used

describes the system in the “inner region“ r ≤ R.
Recent references include:

• Rotter et al. “Generating particle scattering states in wave transport”
PRL 106, 120602, 2011 (transmission of electrons through mesoscopic systems)

• Barr & Reichl, “Quasi-bound states in 2- and 3-dimensional open quantum systems”
PRA 81, 022707 2010 (non-hermitian hamiltonian)
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Wigner had defined “time-delays” in collision processes (*)

• Idea: In the course of a scattering process by a potential, a 
particle experiences a “time-delay” as compared to free motion.

NB. Reference to classical motion is implicit. 

• Main result: The delay is intimately related to the scattering
phase-shift induced by the potential (see below). 

(*) Wigner, Phys. Rev. 98, 145 (1955)

Wigner’s Time-Delay
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S = - kr - Et  (r =0 at t =0)

Time-position relation for the 
maximum of w-p, given by 

stationary phase : S/E = 0, 

with k = (2E)1/2 and dk/dE =1/k

 t = -r/k ; (t < 0)

Here, () is the scattering phase-
shift induced by V(r).

With S = kr - Et +(E) and S/E = 0,

the time-position relation becomes: 
t = r/k + tW ; (t > 0)

Wigner, Phys. Rev. 98, 145 (1955)

   

tW =
dh(E)

dE
Where: = “Wigner time-delay“

V(r)
in

“Wigner time-delay”  scattering phase-shift

(Defined for short-range potential scattering)

Incoming wave-packet:

  

Yin (r,t) µ dE A(E)
0

+¥

ò ei(-kr-Et )

out

Outgoing wave-packet:

  

Yout (r,t) µ dE A(E)
0

+¥

ò ei(kr-Et+h(E ))
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Scattering by a 
short-range potential:

x

The potential induces a phase shift

x

Wigner: 1-D scattering and phase-shifts

Free particle = Plane wave
(wave number k=1 a.u.)
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A slower free particle
(wave number k=0.5 a.u.)

x

1-D scattering and phase-shifts

-20 -15 -10 -5 0 5 10 15 20
-3,5

-3

-2,5
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-0,5

0

0,5

x [a.u]

x

The phase shift depends 
on the particle’s energy.
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= Free particle = particle + Short-range potential

1-D scattering and time-delay:
a classical perspective
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Things have changed with the advent of XUV 
sources delivering “attosecond” pulses with the 

possibilty to synchronize them to an IR pulse which will
play the role of a “clock“. 34

Measurement of Time Delays

The above delays are associated to “gedanken” experiments. 
In experiments with particle beams it is not feasible 

to determine a delay between particles in free motion and the 
ones experiencing a collision or tunneling. 

b ➝vSemi-classical approach:
b = impact parameter
v = projectile velocity

“Collision time”  = b/v

Morever, “Collision times” were expected to range in the 
attosecond range or shorter, i.e. inaccessible to experiments



• When applied to tunneling this group delay is different from a traversal
time (see Landauer and Winful’s papers).
Another problem is that if you have an incoming gaussian w-p, the transmitted
one is never a pure gaussian. Not to mention the reflected component
which interferes with the incoming wave.

Remarks on “Wigner time-delay”

• Wigner time delay is defined via a stationary phase analysis: 
It is based on the motion of the maximum of the w-p spatial distribution.
This implies that the w-p keeps a decent spatio-temporal shape. 

• It is a group delay, defined with reference to free classical motion. 
• Other definitions have been proposed e.g. motion of the average value of the
position operator, etc. 
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•Remark: Again, such delays are 
defined from “gedanken”

experiments. 
In photoionization of neutrals, 
one has to determine a delay 
between electrons in a pure 

Coulomb potential and the ones 
in the potential of a structured 

ionic core. 

x

-20 -15 -10 -5 0 5 10 15 20
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-2,5
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-1,5
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-0,5

0

0,5

x [a.u]

First idea: Photoionization = 
“half-collision”

 Delay linked to scattering 
phase-shifts of the 

photoelectron wave function ?
(Wigner picture)

37

NB. This should be an 
incoming wave,
not an outgoing one!



Attosecond XUV Photoionization

However,
the time delay,
as compared to free motion,
is not measurable.
Ones needs a “clock”.
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When ionizing atoms from
either one of two distinct 
states with the same
attosecond pulse, one can
compare the time evolution of 
the photoelectron wave-
packets
(with different phase-shifts). 
Measured delays in atoms:
• Dt2s-2p (Ne) ≈ 20 as 
(Garching, Streaking)
 Dt3s-3p (Ar) ≈ 100 as 
(Lund, RABBIT)

Attosecond XUV Photoionization

NB. One needs the presence of an 
additional (IR) 

field to “clock” the process. 
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Two-Color IR-XUV Attosecond Pump-Probe Experiments

Streaking
Single attosecond XUV pulse 

+ few-cycle IR pulse with controlled
Carrier-Envelope Phase; 

(Garching)

RABBIT 
Attosecond XUV pulse 
train + (long-)IR pulse; 

(Lund)

See: Dahlström et al. JPB 45, 183001 (2012) (tutorial).

Rather intense IR field

Low intensity IR field
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≈ 2.6 fs

≈ 100 as

Two-color 

IR-XUV pulses:

Attosecond

range; 

Streaking

41



RABBIT
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Idea: One needs to determine the energy dependence of the phase-
shifts in order to compute “Wigner-like time-delays”.

However: Computation of phase-shifts in wave functions of 
photoelectrons remains a challenge for theory.

Experimental determination is difficult. 
one needs Photoelectron Angular Distributions (PADs). 

We have experts here, who can tell you more than myself
on the topic: Marcus Dahlström, Anatoli Kheifets & Eva Lindroth

Phase-Shifts
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However, Wigner time-delays computed either
from phase shifts or deduced from TDSE 
calculations for Ne 2s and 2p amount to:

DtW ≈ 5 - 12 as  < Dt ≈ 21 as.

Physical origin of the discrepancy ?
Electron correlations ?

Arises the question of the role of 
the measurement process

(based on the use of an auxiliary IR field

which “dresses” the system’s states)

44
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Idea: Use one-electron, 1-D model potentials designed to mimic
the presence of a shape resonance in the continuous spectrum

Role of resonances: Numerical experiments

The energy and width (or lifetime) of the resonance can be changed by tuning
the position, height and width of the barriers. 

Caiilat et al. PRL 106, 093002 (2011); 
Dahlström et al. to appear (2014)
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Idea: Compute the Wigner time delay from the phase shifts and their
energy derivatives and compare to numerical “times of flight”. 

The system A is used as a reference. Case (B) of a broad resonance. 

Validation of the concept of Wigner time delay

Lifetime of the resonance B 
shorter than pulse duration. 
(a): Photoelectron spectrum
and phase-shift of w-f.
(b): Time dependence of 
photoelectron fluxes for 
potentials A and B. Vertical 
lines: Average time under the 
peaks = ToF. Fluxes are 
computed at xd =1000 a.u.

The difference between the averaged “times of flight”:
DT = ToF(C) – ToF(A) ≈ 1.65 fs, agrees with the Wigner-like delay
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Eugene P. Wigner
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" Physics is becoming so unbelievably 
complex that it is taking longer and 

longer to train a physicist. It is taking so 
long, in fact, to train a physicist to the 

place where he understands the nature 
of physical problems that he is already 

too old to solve them. ”
E. P. Wigner
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