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1931 F. Sauter: Dirac’s theory of the electron predicts that an electric
field of sufficient strength and extent can induce spontaneous creation of
electron — positron pairs from the vacuum.

By a statistical fluctuation, a virtual pair separates out far enough to
draw its rest mass energy from the field (vacuum tunneling).




The QED effective Lagrangian

1936 W. Heisenberg and H. Euler: One-loop QED effective Lagrangian in a constant field (“Euler-Heisenberg
Lagrangian”)

T AT i (@aT)(ebT) &
us 0

—(a® = b)T? - 1]
tanh(eaT) tan(ebT) 3

Here a, b are the two invariants of the Maxwell field, related to E, B by a2 — b2 =82 — E2, ab=E-B.
1936 V. Weisskopf: Analogously for Scalar QED.
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N-photon amplitudes

The Euler-Heisenberg Lagrangian has the information on the NV photon
amplitudes in the low energy limit (where all photon energies are small
compared to the electron mass, w; < m ). The amplitudes can be
constructed explicitly from the weak field expansion coefficients cyy,

defined by
L(a,b) = Z cu >k p?!
kI

Diagrammatically, this corresponds to



Imaginary part of the effective action

If the field has an electric component (b # 0) there are poles on the integration contour at ebT = k7 which
create an imaginary part. For the purely electric case one gets (J. Schwinger 1951)

(1) o 7k
ImL\V/(E) = 87-r3 B E_ — exp [ ?}
mt oo
(1) _ 7'rk:|
I = i
mEocar(E) " 1673 kZ:: P { B

(B = eE/m?).
m  The kth term relates to coherent creation of k pairs in one Compton volume.
m Weak field limit 3 < 1 = only k = 1 relevant.

m ImL(E) depends on E nonperturbatively, which is a confirmation of the tunneling picture.



Relation to pair creation

For not too strong fields, the imaginary part of the effective action relates to the total pair production probability P
as

P ~ 2Tml(E)

This is based on the Optical Theorem, which relates

to the “cut diagrams”
T

However, the latter individually all vanish for a constant field, which can emit only zero-energy photons.
Thus what counts is the asymptotic behaviour for a large number of photons.
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Borel dispersion relation

Thus for a constant field we cannot use dispersion relations for
individual diagrams; the appropriate generalization is a
Borel dispersion relation: define the weak field expansion by

L(E) = i c(n) (;—i)zn
n=2

c(n) "7 el [2n — 2]

(G.V. Dunne & CS 1999):

7I'ITI2

ImL(E) ~ coo € eE
for 5 — 0.
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Critical field strength

For a constant field the pair creation probability is exponentially
small for

m? 18
E < Eqit = £ 10°V/m

Here the critical field strength is such that an electron will collect
its rest energy moving along the field lines a distance of one
Compton wave length.
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Laser field configurations

To have any chance at seeing pair creation soon, complicated laser
configurations must be used to lower the pair creation threshold.
For example,

m Counterpropagating lasers beams with linear polarization (M.
Ruf, G. R. Mocken, C. Miller, K. Z. Hatsagortsyan & C. H.
Keitel 2009).

m Superimposing a plane-wave X-ray beam with a strongly
focused optical laser pulse (G.V. Dunne, H. Gies & R.
Schiitzhold 2009).

m ... (many more).
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Approximation methods for Schwinger pair creation

The calculation of pair creation rates for generic electric fields
requires approximative methods:

m Until recent years, practically all such results were obtained
using WKB (L. Keldysh 1965, E. Brézin and C. Itzykson 1970,
N.B. Narozhnyi and A. |. Nikishov 1970, V.S. Popov 1972,
...). A more sophisticated version of WKB is the worldline
instanton formalism (I.K. Affleck, O. Alvarez and N.S.
Manton 1982, G. V. Dunne and C. S. 2005, ...).

m The quantum kinetic approach, based on some Vlasov-type
equation (Y. Kluger et al. 1991, 1992, S.M. Schmidt et al.
1998, R. Alkofer, F. Hebenstreit and H. Gies 2008 ... ).

m The Dirac-Heisenberg-Wigner formalism (F. Hebenstreit,
A.llderton, M. Marklund and J. Zamanian 2011, ...).
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2. The Quantum Kinetic Approach

Properties:

m Evolution equations for arbitrary fields.
m Straightforward to include the backreaction on the field.

m Usually can be solved only numerically (— Florian
Hebenstreit's talk).

m Particularly simple for a purely time-dependent field E(t).
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Purely time-dependent fields

For a purely time-dependent electric field, the spatial momentum k
is a good quantum number, so that one has a mode decomposition
(for a scalar particle at one loop)

2ImL(t) = > In(1+ Ni(t))
k

The N(t) are densities of created pairs of momentum k.

Using the in-out formalism and a Bogoliubov transformation, one
can derive the Quantum Vlasov Equation (Y. Kluger et al. 1991,

1992, S.M. Schmidt et al. 1998, R. Alkofer, F. Hebenstreit and H.
Gies 2008 .. .).
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The Quantum Vlasov equation is an evolution equation at fixed k
for the density of pairs Ni(t) (scalar case):

t

dt"wk( t”)}

Nk(t) _ C.L)k(t) /t dt/wk(tl)(].—|—2Nk(t,))cos|:2/

2wi(t) wi(t) ¢

where ty is the initital time, usually —oo, and

wi(t) = (k= qA|()? + ki + m?

Nk(t) is zero at t = —o0, and for t — oo turns into the density of
created pairs with fixed momentum k.
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Solitonic example

S.P. Kim and C.S. 2011: infinite family of analytic solutions to the
Vlasov equation related to the Korteweg-de-Vries equation.
The simplest one has the gauge potential

2w3
A(t) = ky — [ K2 + —52—.
aA(t) I " cosh?(wot)
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Pair non-creation

The exact solution of the Vlasov equation for this field is

Ne(t) = 4 + sech*(wot)(1 + 2 cosh(2wot)) B 1

84/1 + 2sech?(wot) 2

/\D
I

Ni(t) vanishes for t — oo, thus there is no pair creation (at that
particular momentum k).
The external field excites the vacuum, but no particles materialize.
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3. Worldline instantons

Feynman's worldline representation of the scalar QED effective
action
R.P. Feynman, Phys. Rev. 80 (1950) 440.

MealAl = / dTT T / Dx(7) e~ S
0

Six(r)] = /OTdT(’f+ieA-x)

Here m and T are the mass and proper time of the loop scalar,
and the path integral [ Dx(7) is over closed trajectories in
Euclidean spacetime.

I. A. Affleck et al. 1982: Semiclassical approximation: replace the
path integral by a single stationary trajectory = worldline instanton.
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G.V. Dunne & CS 2005
G.V. Dunne, Q.-h. Wang, H. Gies & CS 2006

et i)

det[ N )} ‘
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m The extremal action trajectory x°!(u) is a periodic solution of
the (euclidean) Lorentz force equation.

(A)

m The 7, are zero modes of the fluctuation operator.
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Constant field case

-

E = (0,0, E) = const.

xMNu) = ﬂE(X]_./X2,COS(2k7TU)./SiH(2k7TU))
e
2
m
S ] ko ——
[x] T F

Winding number keZt
kth worldline instanton = kth Schwinger exponential

Prefactor deteminant = correct normalization



19

Timelike Sauter case

Single pulse time dependent electric field

E(t) = Esech®(wt)

1
x3(u) = —— ————=arcsinh [y cos(2n7u)]
W /1 +~2
xa(u) = — arcsin — 1 sin (2nm u)
V1492
v = ? (adiabaticity parameter)
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Worldline action

Stationary worldline action:

m27r

2
n
eE <1+\/1+’y2>

So decreases with increasing ~y, thus the pair creation rate
increases.

So =
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Timelike Sauter instantons

Figure: Plot of the worldline instanton paths in the (x3,x4) plane for the
case E(t) = Esech?(wt). The paths are shown for various values of the
adiabaticity parameter 7. x3 4 have been expressed in units of Z£.
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Spacelike Sauter case

E
E(X3) = 2
cosh®(x3/d)
= M esinh( — 0 sin(2k
X3(U) = E% arcsin \/17_;;5/2 S|n( 7TU)

arcsin (9 cos(2nmu))

(1) m 1
X, u = —_——
' e 5y/1— 7

N=— (inhomogeneity parameter)
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Worldline instantons for the spacelike Sauter field

S a=09
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Stationary action:

m27r

2
eE \1+1-72

So increases with 4 — decrease of pair creation rate.
Comparison of the pair creation rate with exact results:
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Note:

m No pair creation for 4 > 1! This fits into the vacuum
tunneling picture - for such 4 the field has insufficient extent
to provide a virtual particle with its rest mass energy.

m The limiting case 4 = 1 corresponds to one particle running
from x = —o0 to oo and the other one from x = co to —o0.
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General rule

From the worldline instanton formalism we can learn:

m Inhomogeneity in space tends to reduce the pair creation rate.
An insufficiently extended field, no matter how intense, will
not pair-produce.

m Inhomogeneity in time tends to enhance the pair creation rate.
A purely time-dependent field will always give a non-zero pair
creation rate.
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Nonplanar worldline instantons

G.V. Dunne and Q.-h. Wang 2006:

Spatially inhomogeneous fields E()?) using the gauge

E
Ay(X) = —i; f(X)
Inhomogeneity parameter v = ’:—é‘
Examples: f(3) = k(x1 + x2)
1+ k2(x2 + x3)
F(R) = k(xi+x) e KOEH3)
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08

Figure: Iml/Iml“C¥ for f(X) = _kCatx) o4

1+Kk2 (G +x3)
F(X) = k(x4 xp) e K 0d)
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The double Sauter case

C. Schneider & R. Schiitzhold 2014
Combine a strong spacelike with a weak timelike Sauter field:

E(t, x) ( £ + £ )
X)=——+—— e
cosh?(kx)  cosh?(wt)/

where E/ < E < Eqpis-
For sufficiently large w the weak temporal pulse squeezes the worldline instanton in the xp direction, leading to a
significant enhancement of the pair creation rate.

Xo Xo

PSR
2w x

20 TN

—xi X7 —x] X
X1 X1
b=0 B b>0

ES T2 T
20 [T
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4. Higher-loop corrections to Schwinger's formula

So far all our discussion was at the one-loop level. Higher-loop

corrections are not likely to be measured any time soon, but of great
theoretical interest.

Two loop (one-photon exchange) corrections:

Euler-Heisenberg Lagrangian:

Schwinger pair creation:

T OW
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2-Loop Euler-Heisenberg Lagrangian

V. |. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, W. Dittrich &
M. Reuter 1985, M. Reuter, M.G. Schmidt & C.S. 1997: The
two-loop correction £(?)(E) to the Euler-Heisenberg Lagrangian
leads to rather intractable integrals. However, the imaginary part

ImL®)(E) becomes extremely simple in the weak-field limit:
Weak field limit:

50 m*p3?

ImLW(E) + ImLB)(E) —
T

(1 + om) e_%

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will
lead to exponentiation

492
LW (E) + L@ (E) + L@ (E) + ... 20 ”8’53
T



32

The conjecture of Affleck, Alvarez and Manton

For Scalar QED, the corresponding conjecture was established already
two years earlier by (I.K. Affleck, O. Alvarez, N.S. Manton 1982), using a
naive extension of the above one-loop worldline instanton calcuation:

0 452
Z ) g0 m'f T
=1 tmLen(E) T~ 1673 P [75 * Om}
1 T
= Imcl)(E)e
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Remarkable:

m True all-loop result, receives contributions from an infinite set
of graphs of arbitrary loop order (although non-quenched
diagrams get suppressed in this limit).

m Includes mass renormalization! (1?)
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Diagrams contributing to the AAM formula

In terms of Feynman diagrams:

Number of external legs

8

S
K

w

(plus mass renormalization counterdiagrams!). Diagrams with
more than one fermion loop get suppressed in the E — 0 limit.
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Discussion of the AAM conjecture

m Strange: an all-order loop summation has produced the finite
analytical factor e*™! This violates Dyson’s theorem!

m But both conjectures have been verified only at two loops. A
three-loop check is in order, but calculating the three-loop
Euler-Heisenberg Lagrangian in D = 4 is too difficult.

m However, a verification of the (analogue of) the AAM formula in
D =2 QED seems in reach (I. Huet, D.G.C. McKeon and CS. 2010,
I. Huet, M. Rausch de Traubenberg and CS, work in progress ).
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5. Field dependence of the electron mass

m In QED at tree-level, many arguments have been given for a
field-dependence of the electron mass (N.D. Sengupta 1952,
D.Volkov 1953, H. Reiss 1962, A.l. Nikishov & V.I. Ritus
1964, T.W.B. Kibble 1965 ...).

m This mass-shift has been confirmed so far only indirectly
(through the change in frequency of the radiation emitted by
the electron).

m It is always positive but otherwise far from universal,

depending on both intensity and pulse-shape (C. Harvey, T.
Heinzl, A. llderton & M. Marklund 2012).
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Ritus’ “classical” one-loop mass shift

V.I. Ritus 1978: electron mass shift from the one-loop propagator
in a constant electric field.

o eE
m(E) ~ m— > + O(h)

In the weak-field limit,

This mass shift is negative, and has a “classical” part that does
not vanish for i — 0.
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Lebedev-Ritus mass shift

S.L. Lebedev & V.I. Ritus 1984: assuming the exponentiation

o0 4 92
(i Bz _mpT T
; ImC 16,3 exp[ 5 + om}

then the result can be interpreted in the tunneling picture as the
corrections to the Schwinger pair creation rate due to the pair
being created with a negative Coulomb interaction energy
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Ritus vs. Lebedev-Ritus

This mass shift is identical with the Ritus mass shift, as it should,
since the processes are related by crossing:

hinis

This lends further support to the exponentiation conjecture!
It would be interesting to calculate dm for laser fields ...
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Thank you for your attention!




