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1. History

1931 F. Sauter: Dirac’s theory of the electron predicts that an electric
field of sufficient strength and extent can induce spontaneous creation of
electron – positron pairs from the vacuum.
By a statistical fluctuation, a virtual pair separates out far enough to
draw its rest mass energy from the field (vacuum tunneling).
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FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e h̄
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2mE

3/2
b

eEh̄

]
. (1.5)

Taking as a representative atomic energy scale the binding energy of hydrogen, Eb = me4

2h̄2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E h̄4

]
. (1.6)

This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the

quantum vacuum. For example, the polarization tensor Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect
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The QED effective Lagrangian

1936 W. Heisenberg and H. Euler: One-loop QED effective Lagrangian in a constant field (“Euler-Heisenberg

Lagrangian”)

L(1)(a, b) = −
1

8π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

tanh(eaT ) tan(ebT )
−

e2

3
(a2 − b2)T 2 − 1

]

Here a, b are the two invariants of the Maxwell field, related to E, B by a2 − b2 = B2 − E2, ab = E · B.

1936 V. Weisskopf: Analogously for Scalar QED.

L(1)
scal

(a, b) =
1

16π2

∫ ∞
0

dT

T 3
e
−m2T

[
(eaT )(ebT )

sinh(eaT ) sin(ebT )
+

e2

6
(a2 − b2)T 2 − 1

]
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N-photon amplitudes

The Euler-Heisenberg Lagrangian has the information on the N photon
amplitudes in the low energy limit (where all photon energies are small
compared to the electron mass, ωi � m ). The amplitudes can be
constructed explicitly from the weak field expansion coefficients ckl ,
defined by

L(a, b) =
∑

k,l

ckl a
2kb2l

Diagrammatically, this corresponds to

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.

Number of external legs

Number of loops 4 6 8 · · ·

1
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· · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.
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Imaginary part of the effective action

If the field has an electric component (b 6= 0) there are poles on the integration contour at ebT = kπ which
create an imaginary part. For the purely electric case one gets (J. Schwinger 1951)

ImL(1)(E) =
m4

8π3
β

2
∞∑
k=1

1

k2
exp

[
−
πk

β

]

ImL(1)
scal

(E) = −
m4

16π3
β

2
∞∑
k=1

(−1)k

k2
exp

[
−
πk

β

]

(β = eE/m2).

The kth term relates to coherent creation of k pairs in one Compton volume.

Weak field limit β � 1⇒ only k = 1 relevant.

ImL(E) depends on E nonperturbatively, which is a confirmation of the tunneling picture.
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Relation to pair creation

For not too strong fields, the imaginary part of the effective action relates to the total pair production probability P
as

P ≈ 2ImΓ(E)

This is based on the Optical Theorem, which relates

Figure 7: Higher order terms in the Euler-Heisenberg lagrangian.
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with the arguments 4, 6, 8, and 10, respectively.
Similarly, we can draw the diagrams from many particle physics in figures 8
and 9:
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Figure 1: Photon-photon scattering in QED (left) and BI theory (right).
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to the “cut diagrams”

+ + · · ·

1

However, the latter individually all vanish for a constant field, which can emit only zero-energy photons.
Thus what counts is the asymptotic behaviour for a large number of photons.
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Borel dispersion relation

Thus for a constant field we cannot use dispersion relations for
individual diagrams; the appropriate generalization is a
Borel dispersion relation: define the weak field expansion by

L(E ) =
∞∑

n=2

c(n)
( eE
m2

)2n

c(n)
n→∞∼ c∞Γ[2n − 2]

(G.V. Dunne & CS 1999):

ImL(E ) ∼ c∞ e−
πm2

eE

for β → 0.
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Critical field strength

For a constant field the pair creation probability is exponentially
small for

E � Ecrit =
m2

eE
≈ 1018V/m

Here the critical field strength is such that an electron will collect
its rest energy moving along the field lines a distance of one
Compton wave length.



9

Laser field configurations

To have any chance at seeing pair creation soon, complicated laser
configurations must be used to lower the pair creation threshold.
For example,

Counterpropagating lasers beams with linear polarization (M.
Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan & C. H.
Keitel 2009).

Superimposing a plane-wave X-ray beam with a strongly
focused optical laser pulse (G.V. Dunne, H. Gies & R.
Schützhold 2009).

. . . (many more).
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Approximation methods for Schwinger pair creation

The calculation of pair creation rates for generic electric fields
requires approximative methods:

Until recent years, practically all such results were obtained
using WKB (L. Keldysh 1965, E. Brézin and C. Itzykson 1970,
N.B. Narozhnyi and A. I. Nikishov 1970, V.S. Popov 1972,
. . . ). A more sophisticated version of WKB is the worldline
instanton formalism (I.K. Affleck, O. Alvarez and N.S.
Manton 1982, G. V. Dunne and C. S. 2005, . . . ).

The quantum kinetic approach, based on some Vlasov-type
equation (Y. Kluger et al. 1991, 1992, S.M. Schmidt et al.
1998, R. Alkofer, F. Hebenstreit and H. Gies 2008 . . . ).

The Dirac-Heisenberg-Wigner formalism (F. Hebenstreit,
A.Ilderton, M. Marklund and J. Zamanian 2011, . . . ).
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2. The Quantum Kinetic Approach

Properties:

Evolution equations for arbitrary fields.

Straightforward to include the backreaction on the field.

Usually can be solved only numerically (→ Florian
Hebenstreit’s talk).

Particularly simple for a purely time-dependent field E (t).
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Purely time-dependent fields

For a purely time-dependent electric field, the spatial momentum k
is a good quantum number, so that one has a mode decomposition
(for a scalar particle at one loop)

2ImL(t) =
∑

k

ln
(
1 +Nk(t)

)

The Nk(t) are densities of created pairs of momentum k.
Using the in-out formalism and a Bogoliubov transformation, one
can derive the Quantum Vlasov Equation (Y. Kluger et al. 1991,
1992, S.M. Schmidt et al. 1998, R. Alkofer, F. Hebenstreit and H.
Gies 2008 . . . ).
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The Quantum Vlasov equation is an evolution equation at fixed k
for the density of pairs Nk(t) (scalar case):

Ṅk(t) =
ω̇k(t)

2ωk(t)

∫ t

t0

dt ′
ω̇k(t ′)
ωk(t ′)

(1 + 2Nk(t ′)) cos
[
2

∫ t

t′
dt ′′ωk(t ′′)

]

where t0 is the initital time, usually −∞, and

ω2
k(t) = (k‖ − qA‖(t))2 + k2

⊥ + m2

Nk(t) is zero at t = −∞, and for t →∞ turns into the density of
created pairs with fixed momentum k .
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Solitonic example

S.P. Kim and C.S. 2011: infinite family of analytic solutions to the
Vlasov equation related to the Korteweg-de-Vries equation.
The simplest one has the gauge potential

qA(t) = k‖ −
√
k2
‖ +

2ω2
0

cosh2(ω0t)
.
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Pair non-creation

The exact solution of the Vlasov equation for this field is

Nk(t) =
4 + sech4(ω0t)(1 + 2 cosh(2ω0t))

8
√

1 + 2sech2(ω0t)
− 1

2

-2 -1 1 2

0.002

0.004

0.006

0.008

Nk(t) vanishes for t →∞, thus there is no pair creation (at that
particular momentum k).
The external field excites the vacuum, but no particles materialize.
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3. Worldline instantons

Feynman’s worldline representation of the scalar QED effective
action
R.P. Feynman, Phys. Rev. 80 (1950) 440.

Γscal[A] =

∫ ∞

0

dT

T
e−m

2T

∫
Dx(τ) e−S[x(τ)]

S [x(τ)] =

∫ T

0
dτ
( ẋ2

4
+ ieA · ẋ

)

Here m and T are the mass and proper time of the loop scalar,
and the path integral

∫
Dx(τ) is over closed trajectories in

Euclidean spacetime.

I. A. Affleck et al. 1982: Semiclassical approximation: replace the
path integral by a single stationary trajectory = worldline instanton.
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G.V. Dunne & CS 2005
G.V. Dunne, Q.-h. Wang, H. Gies & CS 2006

∫

x(T )=x(0)=x(0)
Dx(τ) e−S[x(τ)] ≈ e−S[xcl](T )

(4πT )2

√√√√√√√

∣∣∣∣det
[
η

(λ)
µ,free(T )

]∣∣∣∣
∣∣∣∣det

[
η

(λ)
µ (T )

]∣∣∣∣

The extremal action trajectory xcl(u) is a periodic solution of
the (euclidean) Lorentz force equation.

The η
(λ)
µ are zero modes of the fluctuation operator.
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Constant field case

~E = (0, 0,E ) = const.

xcl(u) =
m

eE

(
x1, x2, cos(2kπu), sin(2kπu)

)

S [xcl] = kπ
m2

eE

Winding number k ∈ Z+

kth worldline instanton ⇒ kth Schwinger exponential

Prefactor deteminant ⇒ correct normalization
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Timelike Sauter case

Single pulse time dependent electric field

E (t) = E sech2(ω t)

x3(u) = − 1

ω

1√
1 + γ2

arcsinh [γ cos (2nπu)]

x4(u) =
1

ω
arcsin

[
γ√

1 + γ2
sin (2nπ u)

]

γ ≡ mω

eE
(adiabaticity parameter)
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Worldline action

Stationary worldline action:

S0 = n
m2π

eE

(
2

1 +
√

1 + γ2

)

S0 decreases with increasing γ, thus the pair creation rate
increases.
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Timelike Sauter instantons
As in the constant field case (25), this is a weak-field condition, although it also includes

the adiabaticity parameter γ, which cannot be too large for a given peak field E.

The periodic stationary worldline instanton paths are:

x3(u) =
m

eE

1

γ
√

1 + γ2
arcsinh [γ cos (2nπu)]

x4(u) =
m

eE

1

γ
arcsin

[
γ√

1 + γ2
sin (2nπ u)

]
(36)

These instanton paths are plotted in Figure 2 for various values of the adiabaticity parameter

-1 -0.5 0.5 1
x3

-1

-0.5

0.5

1

x4

γ = 0.1

γ = 1

γ = 2

γ = 5

FIG. 2: Parametric plot of the stationary worldline instanton paths (36) in the (x3, x4) plane for

the case of a time dependent electric field E(t) = E sech2(ωt). The paths are shown for various

values of the adiabaticity parameter γ = mω
eE defined in (29), and x3 and x4 have been expressed

in units of m
eE . Note that in the static limit, γ → 0, the instanton paths reduce to the circular ones

of the constant field case shown in Figure 1.

γ. In the static limit, when γ → 0 with γ
ω ≡ m

eE fixed, we recover the circular stationary

paths of the constant field case. In the short-pulse limit, γ → ∞ with m
eE fixed, the paths

become narrower in the x3 direction, and shrink in size.

9

Figure: Plot of the worldline instanton paths in the (x3, x4) plane for the
case E (t) = E sech2(ωt). The paths are shown for various values of the
adiabaticity parameter γ. x3,4 have been expressed in units of m

eE .
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Spacelike Sauter case

E (x3) =
E

cosh2(x3/d)

x3(u) =
m

eE

1

γ̃
arcsinh

(
γ̃√

1− γ̃2
sin(2kπu)

)

x4(u) =
m

eE

1

γ̃
√

1− γ̃2
arcsin

(
γ̃ cos(2nπu)

)

γ̃ ≡ m

eEd
(inhomogeneity parameter)
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Worldline instantons for the spacelike Sauter field

-1 1 x3

-2

-1

1

2

x4

γ̃ = 0.1

γ̃ = 0.5

γ̃ = 0.7

γ̃ = 0.9

FIG. 6: Instanton paths for the spatially inhomogeneous electric field E(x) = E sech2(kx) for

various values of the inhomogeneity parameter γ̃ defined in (60). As γ̃ → 0 we recover the circular

paths of the constant field case, but as γ̃ → 1 the loops become infinitely large.

the imaginary parts of the effective action in each case:

ImΓγ̃

ImΓ0
=

(
1− γ̃2

)5/4
exp

[
−m2π

eE

(
2

1 +
√

1− γ̃2
− 1

)]
(63)

This is plotted in Figure 8, and it compares very accurately with the numerically integrated

exact result of Nikishov [36] and with the recent numerical results of Gies et al (see Figure

3 in [32]).

17
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Stationary action:

S0 = n
m2π

eE

(
2

1 +
√

1− γ̃2

)

S0 increases with γ̃ → decrease of pair creation rate.
Comparison of the pair creation rate with exact results:

21
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 Im"
Mink
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Nikishov
worldline instanton
Gies & Klingmüller

FIG. 1: The dotted line plots the ratio of our semiclassical worldline instanton expression (4.7) to

the weak field limit of the corresponding locally constant field approximation (4.8). The dashed

line is the same ratio using a numerical integration of the exact expression, derived from Nikishov’s

exact result in [47] (see also [35]). The circles represent the numerical worldline results of Gies

and Klingmüller [38], which were evaluated for eE
m2 = 1. Note that the agreement is excellent, even

though it is far from the weak field limit.

• For the Minkowski electric field E(x3) = E cos(kx3), we have f(k x3) = sin(k x3), and

f �(kx3) = cos(k x3) =
�

1 − γ̃2 y2. Thus

g̃(γ̃2) =
2

π

� 1

−1

dy
�

1 − y2

�
1 − γ̃2 y2

=
4
�

1 − γ̃2

πγ̃2

�
E

� −γ̃2

1 − γ̃2

�
−K

� −γ̃2

1 − γ̃2

��
. (4.9)

The imaginary part of the Minkowski effective action is

ImΓsemi
Mink ≈ (V2T )Mink

√
2π (eE)3/2

64π2

(1 − γ̃2)
3/4

exp

�
−4m2

eE

√
1−γ̃2

γ̃2

�
E
�

−γ̃2

1−γ̃2

�
− K

�
−γ̃2

1−γ̃2

���

K
�

−γ̃2

1−γ̃2

��
E
�

−γ̃2

1−γ̃2

�
−K

�
−γ̃2

1−γ̃2

� .

(4.10)

• For the Minkowski electric field E(x3) = E

[1+(kx3)
2]

3/2 , we have f(kx3) = kx3√
1+(kx3)

2
, and

ImΓsemi/ImΓLCF for a space-dependent field E (x) = E sech2(kx)
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Note:

No pair creation for γ̃ > 1! This fits into the vacuum
tunneling picture - for such γ̃ the field has insufficient extent
to provide a virtual particle with its rest mass energy.

The limiting case γ̃ = 1 corresponds to one particle running
from x = −∞ to ∞ and the other one from x =∞ to −∞.
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General rule

From the worldline instanton formalism we can learn:

Inhomogeneity in space tends to reduce the pair creation rate.
An insufficiently extended field, no matter how intense, will
not pair-produce.

Inhomogeneity in time tends to enhance the pair creation rate.
A purely time-dependent field will always give a non-zero pair
creation rate.
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Nonplanar worldline instantons

G.V. Dunne and Q.-h. Wang 2006:

Spatially inhomogeneous fields ~E (~x), using the gauge

A4(~x) = −i E
k
f (~x)

Inhomogeneity parameter γ = mk
eE

Examples:
f (~x) =

k(x1 + x2)

1 + k2(x2
1 + x2

2 )

f (~x) = k(x1 + x2) e−k
2(x2

1 +x2
2 )



28

13

0 0.2 0.4 0.6 0.8
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FIG. 4: ImΓ/ImΓLCF for the cases of f(z1, z2) = z1+z2
1+z2

1+z2
2

and f(z1, z2) = (z1 + z2)e−z2
1−z2

2 .

IV. THREE-DIMENSIONAL SYMMETRIC ELECTRIC

FIELDS

The symmetric case we mean

f(z1, z2, z3) = f(z2, z1, z3) = f(z1, z3, z2) = f(z3, z2, z1) ,

k1 = k2 = k3 . (4.1)

Without losing any generality, we choose

k1 = k2 = k3 =
√

3 k . (4.2)

A three-dimensional symmetric electric field example with f(z1, z2, z3) = z1+z2+z3

(1+z2
1+z2

2+z2
3)3/2

is shown in Fig. 5.

Similar to the two-dimensional symmetric case, except we need more ansatz to solve the

Jacobi equation:

1. φ1 = φ2 = φ3, we have

−1
2 φ̈1 + 3eEk

[
f (2,0,0) + 2f (1,1,0)

]
ẋcl

4 φ1 +
√

3eEf (1,0,0)φ̇4 = 0 ,

φ̇4 = −6
√

3eEkf (1,0,0)φ1 + v4 . (4.3)

Figure: ImΓ/ImΓLCF for f (~x) = k(x1+x2)
1+k2(x2

1 +x2
2 )

and

f (~x) = k(x1 + x2) e−k
2(x2

1 +x2
2 )
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The double Sauter case
C. Schneider & R. Schützhold 2014
Combine a strong spacelike with a weak timelike Sauter field:

E(t, x) =

(
E

cosh2(kx)
+

E ′

cosh2(ωt)

)
ex

where E ′ � E � Ecrit.
For sufficiently large ω the weak temporal pulse squeezes the worldline instanton in the x0 direction, leading to a
significant enhancement of the pair creation rate. 2

x1

� Π
2Ω

Π
2Ω

x0

b � 0

x1��x1�

(a) ω too small

x1

� Π
2Ω

Π
2Ω

x0

b � 0

x1��x1�

(b) Reflection at π/2ω

FIG. 1: Instanton trajectories

strengths are sub-critical E� � E � Ecrit = m2/q. Fur-
thermore, in order to be in the non-perturbative regime,
we assume slowly varying pulses ω, k � m. For conve-
nience, we introduce the spatial and temporal Keldysh
parameters via

γk =
mk

qE
, γω =

mω

qE
. (7)

The Euclidean vector potential reads

A0(x1) = i
E

k
tanh(kx1) , A1(x0) = i

E�

ω
tan(ωx0) ,(8)

with x0 = it and x1 = x as well as A2 = A3 = 0. As a
result, the instanton equations (5) assume the form

ẍ0 = +
qEa

m

�
1

cosh2(kx1)
− E�

E

1

cos2(ωx0)

�
ẋ1 ,

ẍ1 = −qEa

m

�
1

cosh2(kx1)
− E�

E

1

cos2(ωx0)

�
ẋ0 , (9)

and are analogous to the planar motion of a charged par-
ticle in a magnetic field B(r) = B(x, y)ez.

Due to E�/E � 1, the second term is negligible unless
cos2(ωx0) becomes very small near the poles of E(x0, x1)
at ωx0 = ±π/2. Away from these poles, we may omit the
second term and the above equations can be integrated

ẋ0 =
a

γk
tanh(kx1) + ab ,

ẋ1 = ±a

�
1 −

�
tanh(kx1)

γk
+ b

�2

. (10)

As mentioned after Eq. (5), the constant a is given by
ẋν ẋ

ν = a2 = const. The other integration constant b de-
termines the velocity ẋ0 just before (or just after) cross-
ing the x0-axis, see Fig 1

Near the poles ωx0 ≈ ±π/2, on the other hand, the
second term becomes important. Similar to the reflec-
tion of a charged particle at the region of a very strong
magnetic field, the instanton trajectory is basically re-
flected by the “wall” at ωx0 ≈ ±π/2 if it reaches out far
enough. Since this reflection occurs during a very short

proper time ∆s, we may neglect the regular terms in
Eq. (9) and keep only the divergent contributions. Then,
the equation for x1 can be integrated approximately to

ẋ1 ≈ qE�a
mω

tan(ωx0) + ẋin
1 , (11)

and thus the equation for x0 becomes

ẍ0 ≈ − (qE�a)2

m2ω

tan(ωx0)

cos2(ωx0)
∼ 1

(ωx0 ± π/2)3
. (12)

As a result, the perpendicular velocity ẋ0 is reversed by
that reflection while the parallel velocity ẋ1 has the same
value ẋin

1 before and after the reflection.

IV. TUNNELLING PROBABILITY

Again due to E � E�, the instanton action reads

S ≈ ma − qE

k

1�

0

ds tanh(kx1) ẋ0 . (13)

In order to calculate the above integral, we split the
closed loop into four quarters: from x1 = 0 to the spatial
turning point x∗

1, from x∗
1 to x1 = 0, from x1 = 0 to −x∗

1,
and finally back to x1 = 0, see Fig... Since each quarter
yields the same contribution, we get

S ≈ ma − 4m

γk

x∗
1�

0

dx1
tanh(kx1) (tanh(kx1) + γkb)�

γ2
k − (tanh(kx1) + γkb)

2
,(14)

where x∗
1 denotes the spatial turning point given by

tanh(kx∗
1) + γkb = γk , (15)

i.e., the zero of the square root in the integral in Eq. (14)
where dx1/dx0 = 0. The constant a is determined by
ẋν ẋ

ν = a2 and xµ(s = 0) = xµ(s = 1) which gives

a =
4

γk

x∗
1�

0

dx1�
γ2

k − (tanh(kx1) + γkb)
2

. (16)

The remaining integration constant b depends on the
frequency ω. If ω is too small and thus the poles at
ωx0 = ±π/2 are too far away, the instanton trajectory
is not reflected at all and thus we have b = 0. In case
of reflection, the integration constant b is non-zero and
determined by the implicit condition

4m

γk

x∗
1�

0

dx1
tanh(kx1) + γkb�

γ2
k − (tanh(kx1) + γkb)

2
=

π

2ω
. (17)

Together with the above equations for x∗
1, a, and b,

Eq. (14) is the main result of this paper.
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4. Higher-loop corrections to Schwinger’s formula

So far all our discussion was at the one-loop level. Higher-loop
corrections are not likely to be measured any time soon, but of great
theoretical interest.

Two loop (one-photon exchange) corrections:

Euler-Heisenberg Lagrangian:

This formula (called ‘AAM formula’ in the following) is highly remark-
able for various reasons. Despite of its simplicity it is a true all-loop result;
the rhs receives contributions from an infinite set of Feynman diagrams of
arbitrary loop order, as sketched in fig. 1.

Number of external legs

Number of loops 4 6 8 · · ·

1

+ + + · · ·

2

+ + · · ·

· · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

1

Schwinger pair creation:

+ + · · ·

1
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2-Loop Euler-Heisenberg Lagrangian

V. I. Ritus 1975, S.L. Lebedev & V.I. Ritus 1984, W. Dittrich &
M. Reuter 1985, M. Reuter, M.G. Schmidt & C.S. 1997: The
two-loop correction L(2)(E ) to the Euler-Heisenberg Lagrangian
leads to rather intractable integrals. However, the imaginary part
ImL(2)(E ) becomes extremely simple in the weak-field limit:
Weak field limit:

ImL(1)(E ) + ImL(2)(E )
β→0∼ m4β2

8π3

(
1 + απ

)
e
−π
β

S.L. Lebedev & V.I. Ritus 1984: Assuming that higher orders will
lead to exponentiation

ImL(1)(E ) + ImL(2)(E ) + ImL(3)(E ) + . . .
β→0∼ m4β2

8π3
eαπ e

−π
β



32

The conjecture of Affleck, Alvarez and Manton

For Scalar QED, the corresponding conjecture was established already
two years earlier by (I.K. Affleck, O. Alvarez, N.S. Manton 1982), using a
naive extension of the above one-loop worldline instanton calcuation:

∞∑

l=1

ImL(l)
scal(E )

β→0∼ −m4β2

16π3
exp
[
−π
β

+ απ
]

= ImL(1)
scal(E ) eαπ



33

Remarkable:

True all-loop result, receives contributions from an infinite set
of graphs of arbitrary loop order (although non-quenched
diagrams get suppressed in this limit).

Includes mass renormalization! (!?)
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Diagrams contributing to the AAM formula

In terms of Feynman diagrams:

Number of external legs

Number of loops 4 6 8 · · ·

1 · · ·

2 · · · · · ·

3 · · · . . .
...

...
...

. . .
. . .

...

Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical
renormalized mass, which means that the above figure should strictly speak-
ing include also the mass renormalization counter diagrams which appear in
EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-
ary path approximation of Feynman’s worldline path integral representation
[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and
arguments that this trajectory remains valid in the presence of virtual pho-
ton insertions. This also implies that non-quenched diagrams do not con-
tribute in the limit (1.15), which is why we have shown only the quenched
ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,
an independent heuristic derivation of (1.15), as well as extension to the
spinor QED case (with the same factor of eαπ) was given by Lebedev and
Ritus [31] through the consideration of higher-order corrections to the pair
creation energy in the vacuum tunneling picture. At the two-loop level,
(1.15) and its spinor QED extension state that

6

(plus mass renormalization counterdiagrams!). Diagrams with
more than one fermion loop get suppressed in the E → 0 limit.
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Discussion of the AAM conjecture

Strange: an all-order loop summation has produced the finite
analytical factor eαπ! This violates Dyson’s theorem!

But both conjectures have been verified only at two loops. A
three-loop check is in order, but calculating the three-loop
Euler-Heisenberg Lagrangian in D = 4 is too difficult.

However, a verification of the (analogue of) the AAM formula in
D = 2 QED seems in reach (I. Huet, D.G.C. McKeon and CS. 2010,
I. Huet, M. Rausch de Traubenberg and CS, work in progress ).
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5. Field dependence of the electron mass

In QED at tree-level, many arguments have been given for a
field-dependence of the electron mass (N.D. Sengupta 1952,
D.Volkov 1953, H. Reiss 1962, A.I. Nikishov & V.I. Ritus
1964, T.W.B. Kibble 1965 . . . ).

This mass-shift has been confirmed so far only indirectly
(through the change in frequency of the radiation emitted by
the electron).

It is always positive but otherwise far from universal,
depending on both intensity and pulse-shape (C. Harvey, T.
Heinzl, A. Ilderton & M. Marklund 2012).
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Ritus’ “classical” one-loop mass shift

V.I. Ritus 1978: electron mass shift from the one-loop propagator
in a constant electric field.

+
+

··
·

1

In the weak-field limit,

m(E ) ≈ m − α

2

eE

m
+ O(~)

This mass shift is negative, and has a “classical” part that does
not vanish for ~→ 0.
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Lebedev-Ritus mass shift

S.L. Lebedev & V.I. Ritus 1984: assuming the exponentiation

∞∑

l=1

ImL(l) β→0∼ −m4β2

16π3
exp
[
−π
β

+ απ
]

then the result can be interpreted in the tunneling picture as the
corrections to the Schwinger pair creation rate due to the pair
being created with a negative Coulomb interaction energy

m(E ) ≈ m − α

2

eE

m
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Ritus vs. Lebedev-Ritus

This mass shift is identical with the Ritus mass shift, as it should,
since the processes are related by crossing:

+ + · · ·

1

⇐⇒

+
+

··
·

1

This lends further support to the exponentiation conjecture!
It would be interesting to calculate δm for laser fields . . .
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Thank you for your attention!


